Грунтовое ядро сваи это

Обновлено: 04.07.2024

Сваи в песчаных и глинистых грунтах: забивка или вдавливание? На что влияет геология

От заказчиков часто можно услышать, что вдавливание свай – это быстро и современно, но в два раза дороже, чем забить. Однако следует разобраться в том, как обстоят дела на самом деле.

В чем разница

Вроде бы действующий СП 24.13330.2011 «Свайные фундаменты» (п. 6.1) не делает разницы между работой в грунте вдавленных и забивных свай, однако они все же имеют неодинаковую несущую способность. Согласно таблице 7.4 того же СП при расчете свай вдавливания по боковой поверхности применяется коэффициент, который на 10% превышает таковой для забивных свай.

Величина погружения сваи при ударе во время забивки носит название «отказ». При забивке сваи в песчаные грунты величина отказа с глубиной быстро уменьшается и в некоторых случаях может достигнуть нуля. В данном случае под острием сваи образуется переуплотненное ядро, а вдоль ее ствола за счет отжатия воды возникает «сухое» трение. Отток воды от источника колебаний связан с хорошей фильтрующей способностью песков. В результате свая перестает погружаться, то есть ее отказ становится равным нулю. Для его увеличения свае необходимо предоставить отдых, т.е. остановить забивку на 3–5 дней. За это время в околосвайном пространстве восстанавливается поровое давление, под нижним концом происходит консолидация грунтов. В результате в процессе добивки сваю можно дальше забивать до проектной отметки.

При забивке в водонасыщенные глинистые грунты отказ может увеличиваться с глубиной и свая «проваливается». Это явление обусловлено тем, что колебательный контур сваи создает избыточное поровое давление и в глинистом грунте вдоль ее ствола формируются пленки воды, существенно снижающие трение, а за счет динамических (вибрационных) воздействий глина приобретает текучее состояние и низкую прочность. В результате при забивке величина отказа с глубиной или становится постоянной, или может увеличиваться. После отдыха сваи в течение 1–3 недель происходит консолидация грунта, при этом глина, имеющая высокий коэффициент сцепления, обволакивает тело сваи. Это явление, получившее название «засасывание сваи», зачастую приводит к увеличению ее несущей способности. Отметим, что отказ сваи во время забивки называется ложным, после отдыха – истинным.

При погружении сваи вдавливанием вышеописанных явлений не возникает. Поэтому применение понятия «отказ» при использовании данного метода применять некорректно. Основное преимущество этого способа заключается в том, что свая погружается в грунт в результате статического воздействия, поэтому усилие вдавливания фактически соответствует несущей способности сваи по грунту, не изменяя в процессе погружения его физико-механических характеристик.

Если дело касается забивных свай, то их статические испытания – это минимум неделя времени и четыре «выброшенных» анкерных сваи, поскольку нужно забить пять свай – одну испытываемую и четыре анкерных, которым для восстановления структуры грунтов, согласно требованиям ГОСТ 5686-2012, требуется дать отдых не менее 3–6 суток до начала испытаний.

Испытания же вдавливаемых свай тот же ГОСТ разрешает выполнять уже через сутки. Это связано с тем, что при их вдавливании не возникает вибраций и динамики и не нарушается природная структура глинистого грунта. А при вдавливании в песчаные отложения скорость вхождения в них сваи является постоянной, усилие – плавно нарастающим, что приводит к равномерному уплотнению грунтов основания, вытеснению поровой воды и не создает зон уплотнения, у которых при консолидации падает несущая способность (то есть не возникает «ложный отказ»).

Оптимальная длина свай

Считается, что на основе результатов инженерных изысканий и строительных нормативных документов проектировщики могут точно рассчитать оптимальную длину свай. Безусловно, они могут вычислить все необходимые параметры для создания надежного фундамента, но вряд ли они будут считать деньги заказчика и стремиться к экономической оптимальности. Поэтому, как правило, несущая способность сваи закладывается намного выше той, которая соответствует расчетной нагрузке, за счет использования многочисленных повышающих коэффициентов и желания сделать надежное основание и спать спокойно.

Кроме того, проектировщик обычно немного перестраховывается и при расчете длины свай на основании анализа результатов изысканий. В результате зачастую получается, например, так, что сваи заглубляют на 1–5 «перестраховочных» метров в грунты, прочность которых выше прочности бетона, из которого эти сваи выполнены. Когда такой проект попадает к копровщикам на стройплощадке, они, естественно, пытаются забить пробные сваи в грунт до проектной отметки – ведь технология забивки в принципе не позволяет определить ее оптимальную длину, да и заказчик будет платить за погонные метры. Если свая при забивке не разрушится, то она достигнет проектной глубины, если же разрушится, то копровщики сообщат заказчику, что «геология не соответствует».

Далее после положенного отдыха сваи, изыскатели выполнят ее статические испытания на требуемую проектом расчетную нагрузку (не более того) и подтвердят, что свая ее выдерживает. Но даже если нагрузка на сваю подтвердится больше, чем заложено проектом, то возникает два варианта оптимизации снижения стоимости: (1) уменьшение количества свай. Данный вариант потребует изменения проекта, конструктива ростверков и, как следствие, выхода на повторную экспертизу; (2) сокращение длины свай, т.к. проектная длина избыточна. При этом корректировка проекта не потребуется, достаточно сделать запись об обеспечении несущей способности грунтов на меньшей глубине заложения свай, но для этого необходимо сначала погрузить пробные сваи на меньшую глубину и подтвердить испытаниями несущую способность, что приведет к срыву сроков еще на неделю и при условии, что копровщики знают на какой именно глубине эта несущая способность будет достаточна. Как правило, Заказчик не любит срыва сроков и идти на повторные испытания ради «журавля в небе» не хочет. Круг замкнулся.

Следует отметить, что забить одиночную сваю – это одно. Грунт в начале ее погружения еще находится в природном состоянии. А совсем другое – при массовой забивке, когда зона уплотнения грунта каждой последующей сваи накладывается на зону уплотнения предыдущей, за счет чего возникает большое недопогружение свай – ложные отказы и лес из «торчащих оголовков» (рис. 1). При этом один недопогруженный метр в среднем обходится в 2 400 руб. (покупка, доставка, разгрузка, срубка, погрузка, вывоз, оплата утилизации).

Рис. 1. Торчащие верхние концы недопогруженных забивных свай

В результате заказчик, проектировщик и подрядчик начинают искать козла отпущения, приостановив работы. Но к этому времени все сваи для массовой забивки уже заказаны на заводе и заказчик вынужден оплачивать поставку и забивку их избыточных метров, а также последующую срубку недопогруженной части свай, их вывоз и утилизацию на свалку.

Так возможно ли в принципе определить оптимальную длину свай? Если свая, забитая, скажем, на 12 м, выдержала испытание и дала минимальную осадку, то возможно ли сократить ее длину до 11 м и выдержит ли она при этом проектную нагрузку? А до 10 или до 7 м? Эти вопросы отражают желание заказчика сократить бюджет. Сваебои вместо ответа смогут ответить только то, что нужно попробовать. А для этого заказчику надо будет закупить более короткую сваю, забить ее, дать ей 3–7 суток отдыха и провести испытание, причем без гарантии положительного результата. Соответственно, заказчик все-таки этого не делает и в соответствии с проектом забивает сваи с избыточным запасом несущей способности, фактически забивая в землю лишние деньги.

И все-таки вдавливание

Так где же выход? Надо просто вспомнить, что технологии в строительстве постоянно развиваются и совершенствуются. Точно и быстро решить задачу оптимизации длины свай позволяет их погружение методом статического вдавливания с использованием современной сваевдавливающей техники, оснащенной необходимой измерительной аппаратурой и приборами, а также программным комплексом GEOPile для расчета несущей способности свай по грунту. Использование этой технологии позволяет полностью исключить все «перестраховочные» коэффициенты строительных нормативов, не снизив надежность свайного фундамента.

Самые главные преимущества применения данного метода: способность сваевдавливающего оборудования контролировать глубину погружения свай при соответствующем усилии вдавливания; возможность вести работы круглые сутки и погружать сваи рядом с существующими зданиями и сооружениями благодаря отсутствию шума и вибраций. Но речь сейчас о другом.

Изучив проект свайного поля, заказчику в 80% случаев предлагают выполнить с помощью изыскателей пробное погружение свай с мониторингом усилий вдавливания с целью уменьшения их длины, а иногда и количества. При использовании статических испытаний можно гарантировать достижение расчетной нагрузки на сваи вдавливания, имеющие рекомендованную длину. На основе полученных при этом данных и результатов их обработки проектировщики выдают абсолютно достоверные рекомендации о необходимой и достаточной длине свай.

Соответствующая технология разработана специалистами ООО «БАЗИС» и опробована на десятках строительных площадок в Москве, Санкт-Петербурге, Саратове, Пензе, Сарове, Белгороде, Нижнем Новгороде, Перми, Казани, Волгограде. Основная ее идея заключается в использовании сравнительного анализа усилия вдавливания, требований строительных норм, проектной расчетной нагрузки на сваю и текущей геологической ситуации в основании будущего строительного объекта.

Например, на одном из крупных строительных объектов в результате использования технологии пробного вдавливания 6 211 свай ООО «БАЗИС» удалось сократить длину свай с 18 до 12 м. В результате, несмотря на то что стоимость забивки составляла бы 300 руб./пог. м, а цена вдавливания была равна 600 руб./пог.м, всего на создание свайного поля ушло соответственно не 218 006 100, а 158 007 840 руб. – за счет экономии материалов, рабочего времени и пр. (к тому же сваи длиной свыше 16 м являются составными, а 12-метровые сваи – одиночными и их за смену можно погрузить в два раза больше). Приведенный пример показывает весьма впечатляющую разницу в пользу вдавливания – экономия почти в 60 млн руб. (30%)!

Таким образом, технология вдавливания свай дает все шансы выполнить строительство свайного фундамента быстро, качественно и по оптимальной цене.

Грунтовое ядро сваи это

СВАИ ЖЕЛЕЗОБЕТОННЫЕ ЗАВОДСКОГО ИЗГОТОВЛЕНИЯ

Общие технические условия

Prefabricated reinforced concrete piles. Specifications

Дата введения 2014-01-01

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Открытым акционерным обществом "Фундаментпроект" (ОАО "Фундаментпроект"), НИИОСП им.Герсеванова - ОАО "НИЦ Строительство"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (протокол от 18 декабря 2012 г. N 41)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование органа государственного управления строительством

Министерство строительства и регионального развития

Министерство регионального развития

Агентство по строительству

4 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 2014-ст межгосударственный стандарт ГОСТ 19804-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1.1 Настоящий стандарт устанавливает общие требования к железобетонным сваям заводского изготовления.

1.2 Настоящий стандарт предназначен для разработки нормативных документов и технической документации на конкретные виды изделий.

1.3 Область применения свай в зависимости от типа сооружения и грунтовых условий приведена в приложении А.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 5781-82 Сталь горячекатаная для армирования железобетонных конструкций. Технические условия

ГОСТ 6727-80 Проволока из низкоуглеродистой стали холоднотянутая для армирования железобетонных конструкций. Технические условия

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 8829-94 Изделия строительные железобетонные и бетонные заводского изготовления. Методы испытаний нагружением. Правила оценки прочности, жесткости и трещиностойкости

ГОСТ 10060.0-95 Бетоны. Методы определения морозостойкости. Общие требования

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10884-94 Сталь арматурная термомеханически упрочненная для железобетонных конструкций. Технические условия

ГОСТ 10922-90 Арматурные и закладные изделия сварные, соединения сварные арматуры и закладных изделий железобетонных конструкций. Общие технические условия

ГОСТ 12730.0-78 Бетоны. Общие требования к методам определения плотности, влажности, водопоглощения, пористости и водонепроницаемости

ГОСТ 12730.5-84 Бетоны. Методы определения водонепроницаемости

ГОСТ 13015-2003 Изделия железобетонные и бетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортировки и хранения

ГОСТ 13840-68 Канаты стальные арматурные 17. Технические условия

ГОСТ 17624-87 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 17625-83 Конструкции и изделия железобетонные. Радиационный метод определения толщины защитного слоя бетона, размеров и расположения арматуры

ГОСТ 18105-2010 Бетоны. Правила контроля прочности

ГОСТ 22362-77 Конструкции железобетонные. Методы измерения силы натяжения арматуры

ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 22904-93 Конструкции железобетонные. Магнитный метод определения толщины защитного слоя бетона и расположения арматуры

ГОСТ 23009-78 Конструкции и изделия бетонные и железобетонные сборные. Условные обозначения (марки)

ГОСТ 26134-84 Бетоны. Ультразвуковой метод определения морозостойкости

ГОСТ 26433.0-85 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Общие положения

ГОСТ 26433.1-89 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Элементы заводского изготовления

ГОСТ 26633-91 Бетоны тяжелые и мелкозернистые. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 свая железобетонная заводского изготовления: Конструкция, изготовляемая в заводских условиях из тяжелого или мелкозернистого бетона, предназначенная для погружения в грунт и передачи нагрузки от здания или сооружения на грунтовое основание.

4 Классификация и условные обозначения

4.1 По способу погружения сваи подразделяют на следующие типы: погружаемые забивкой, вибропогружением, задавливанием, бурозабивным, буроопускным и опускным способами. Допускается погружение свай комбинированными способами, при этом название сваи назначается исходя из основного способа погружения сваи.

4.2 Сваи обозначают марками в соответствии с требованиями ГОСТ 23009. Марка сваи состоит из буквенно-цифровых групп, разделенных дефисами.

В первой группе указывают обозначение типа сваи, ее длину в дециметрах и размер стороны (диаметр) поперечного сечения в сантиметрах; для сваи типа СД после длины дополнительно указывают размер от верха сваи до ее консоли в дециметрах.

Во второй группе указывают: для предварительно напряженной сваи - класс напрягаемой арматурной стали; для сваи с ненапрягаемой арматурой - порядковый номер варианта армирования в соответствии с рабочими чертежами.

В третьей группе указывают:

- для сваи типа СК или СО - наличие наконечника, обозначаемое строчной буквой "н";

- для составной сваи - тип стыка, обозначаемый строчными буквами: "б" - болтовой стык, "св" - сварной стык, "с" - стаканный стык;

- для свай всех типов (при необходимости) - дополнительные характеристики, отражающие особые условия применения или конструктивные особенности.

Пример условного обозначения (марки) сваи типа С длиной 6000 мм, размером стороны поперечного сечения 350 мм, с напрягаемой арматурной сталью класса А800 (A-V):

То же типа СО длиной 14000 мм, диаметром 1000 мм, третьего варианта армирования, с болтовыми стыками:

То же типа 1СД длиной 7500 мм, размером от верха сваи до ее консоли 3500 мм, размером стороны поперечного сечения 300x300 мм, четвертого варианта армирования:

Примечание - Сваи, изготовляемые в соответствии с настоящим стандартом по вновь разрабатываемым сериям и технической документации, классифицируются и им присваиваются условные обозначения (марки) в соответствии с настоящим стандартом и параметрами, принятыми в этой документации.

5 Форма и основные размеры

5.1 Сваи подразделяют на следующие типы:

С - квадратного сплошного сечения, цельные и составные, с поперечным армированием ствола;

СП - квадратного сечения с круглой полостью, цельные;

СК - полые круглого сечения диаметром 400-800 мм, цельные и составные;

СО - сваи-оболочки диаметром 1000-3000 мм, цельные и составные;

1СД - сваи-колонны квадратного сплошного сечения, двухконсольные, расположенные по крайним осям здания;

2СД - то же, расположенные по средним осям здания;

СЦ - квадратного сплошного сечения, цельные, без поперечного армирования ствола, с напрягаемой арматурой в центре сваи.

Примечание - Допускается изготовление свай в соответствии с требованиями настоящего стандарта иных форм, размеров и армирования по вновь разрабатываемым сериям и технической документации.

Форма и основные размеры свай, выпускаемых по действующим стандартам и сериям рабочих чертежей, приведены в таблице 1.

Грунтовое ядро сваи это

ОТРАСЛЕВОЙ ДОРОЖНЫЙ МЕТОДИЧЕСКИЙ ДОКУМЕНТ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ И УСТРОЙСТВУ БУРОНАБИВНЫХ СВАЙ ПОВЫШЕННОЙ НЕСУЩЕЙ СПОСОБНОСТИ ПО ГРУНТУ

1 РАЗРАБОТАН Открытым акционерным обществом "Научно-исследовательский институт транспортного строительства" (ОАО ЦНИИС).

2 ВНЕСЕН Управлением строительства и проектирования автомобильных дорог Федерального дорожного агентства.

3 ИЗДАН на основании распоряжения Федерального дорожного агентства от 20.03.2012 N 79-р.

4 ИМЕЕТ РЕКОМЕНДАТЕЛЬНЫЙ ХАРАКТЕР.

5 ВВЕДЕН ВПЕРВЫЕ.

1 Область применения

1.1 Настоящий отраслевой дорожный методический документ (далее - методический документ) распространяется на проектирование, производство и приемку работ по устройству буронабивных свай повышенной несущей способности, сооружаемых с применением технологии объемного виброштампования ("ВИБРОСТОЛБ").

1.2 Положения настоящего методического документа предназначены для применения организациями, выполняющими работы по проектированию, строительству, ремонту и реконструкции автомобильных дорог и искусственных сооружений на них.

2 Нормативные ссылки

В настоящем методическом документе использованы ссылки на следующие документы:

ГОСТ 5686-94 Грунты. Методы полевых испытаний сваями

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 19912-2001 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 26633-91 Бетоны тяжелые и мелкозернистые. Технические условия

СП 24.13330.2011 Свайные фундаменты (актуализированная редакция СНиП 2.02.03-85)

СП 45.13330.2012 Земляные сооружения, основания и фундаменты (актуализированная редакция СНиП 3.02.01-87)

СП 46.1333.30.2012* Мосты и трубы (актуализированная редакция СНиП 3.06.04-91)

________________
* Вероятно, ошибка оригинала. Следует читать: СП 46.13330.2012. - Примечание изготовителя базы данных.

СП 48.13330.2011 Организация строительства (актуализированная редакция СНиП 12-01-2004)

СНиП 3.03.01-87 Несущие и ограждающие конструкции (СП 70.13330.2012 - в стадии актуализации)

СНиП 12-03-2001 Безопасность труда в строительстве. Часть 1. Общие требования (СП 49.13330.2012 - в стадии актуализации)

СНиП 12-04-2002 Безопасность труда в строительстве. Часть 2. Строительное производство

3 Термины и определения

В настоящем методическом документе применены следующие термины с соответствующими определениями:

3.1 несущая способность сваи: Предельное сопротивление основания одиночной сваи по условию ограничения развития в нем чрезмерных деформаций сдвига.

3.2 основание сваи: Часть массива грунта, воспринимающая нагрузку, передаваемую сваей, и взаимодействующая со сваей.

3.3 расчетная нагрузка, передаваемая на сваю: Нагрузка, равная продольному усилию, возникающему в свае от проектных воздействий на фундамент при наиболее невыгодных их сочетаниях.

3.4 свая: Погруженная в грунт или изготовленная в грунте вертикальная или наклонная конструкция, предназначенная для передачи нагрузки на основание.

3.5 свая висячая: Свая, передающая нагрузку на основание через боковую поверхность и пяту.

3.6 свая одиночная: Свая, передающая нагрузку на грунт в условиях отсутствия влияния на нее других свай.

3.7 щебеночное "ядро" в основании буронабивной сваи: Сформированный объемным виброштампованием щебеночный массив, являющийся элементом искусственного основания и воспринимающий нагрузку, передаваемую через нижний конец сваи, совместно с окружающим грунтом.

4 Общие положения

4.1 Настоящий методический документ разработан в развитие требований СП 24.13330.2011, СП 46.13330.2012, СП 45.13330.2012.

4.2 Повышение несущей способности буронабивных свай достигается за счет уплотнения и снижения деформативности околосвайного грунта в процессе их сооружения. При этом сохраняется основная последовательность традиционных технологических операций при сооружении буронабивных свай.

4.3 При изготовлении буронабивных свай применяется специальное гидравлическое оборудование, обеспечивающее требуемые технологические режимы уплотняющего воздействия на укладываемую бетонную смесь, щебень и околосвайный грунт. В основу технологии положен способ глубинного объемного вибрационного воздействия на уплотняемые материалы.

4.4 Производство и контроль качества работ осуществляется в соответствии с Технологическим регламентом, разработанным для конкретного объекта с учетом положений настоящего методического документа. Технологический регламент согласовывается с проектной организацией - разработчиком конструкций и утверждается заказчиком. Без Технологического регламента могут выполняться только опытные работы.

5 Виды буронабивных свай повышенной несущей способности, область применения

5.1 Технология объемного виброштампования может быть применена при устройстве буронабивных свай диаметром от 0,6 до 2 м и длиной до 50 м в составе свайных ростверков, отдельно стоящих, буросекущихся и бурокасательных свай, баретт, щебеночных (песчаных) свай.

5.2 Повышение несущей способности буронабивных свай по грунту может быть достигнуто двумя способами:

- виброштампованием бетонной смеси при бетонировании скважин;

- усилением грунтового основания ниже забоя скважины вибровтрамбовыванием щебня.

Максимальная несущая способность буронабивной сваи данного типа достигается совместным применением обоих способов.

5.3 Технологию объемного виброштампования рекомендуется применять в следующих случаях:

- строительство фундаментов зданий и сооружений в сложных инженерно-геологических условиях;

- недостаточная несущая способность буронабивных свай по грунту;

- строительство объектов в стесненных условиях;

- повышение устойчивости оползневых склонов;

- для повышения сплошности, прочности бетона свай и герметичности "холодных" швов между буросекущимися и бурокасательными сваями при устройстве "стены в грунте";

- для обеспечения проектной несущей способности при необходимости сокращения длины, диаметра буронабивных свай или их количества.

5.4 Наибольший эффект от технологии объемного виброштампования достигается в грунтах, обладающих коэффициентом пористости 0,6, в том числе в водонасыщенных песчаных грунтах мелких и средней крупности, а также в пылевато-глинистых грунтах при показателе текучести 0,4.

6 Проектирование буронабивных свай

6.1 Исходные данные

6.1.1 Выбор конструкции фундаментов, сооружаемых с применением технологии объемного виброштампования, следует производить исходя из конкретных условий строительной площадки, характеризуемых результатами инженерно-геологических, инженерно-гидрологических изысканий, расчетных нагрузок, действующих на фундамент, а также на основе технико-экономического сравнения вариантов возможных проектных решений с учетом экологических и ресурсосберегающих требований.

6.1.2 В материалах изысканий приводятся результаты полевых и лабораторных исследований грунтов, геологические разрезы с данными о напластованиях грунтов, расчетные значения их физико-механических характеристик, устанавливаемых проектной организацией в необходимых случаях, результаты статического или динамического зондирования.

6.1.3 При выполнении инженерно-геологических изысканий и проектирования фундаментных конструкций с применением технологии объемного виброштампования следует руководствоваться СП 24.13330.2011, МГСН 2.07-01 [1] и Рекомендациями [2].

6.1.4 В состав исходных данных для проектирования входят чертежи основных элементов сооружения с указанием несущих конструкций, размеров, глубины заложения, расчетных нагрузок и мест их приложения, сведения об их возможном изменении в процессе эксплуатации.

6.1.5 При необходимости проведения опытных работ на стадии проектирования работы выполняются в следующей последовательности (рекомендуемый состав):

- бурение скважины до проектной отметки;

- статические испытания грунта основания штампом;

- упрочнение грунта забоя скважины вибровтрамбовыванием щебня (подразд. 7.3);

- статические испытания усиленного основания штампом (подразд. 8.15);

- установка арматурного каркаса и бетонирование скважины (подразд. 7.4);

- статические испытания готовой сваи вдавливающей и выдергивающей нагрузками после набора прочности бетона свай не менее 80%.

Состав и технология опытных работ уточняются проектной организацией в Техническом задании.

6.2 Конструирование буронабивных свай и материалы

6.2.1 Глубина заложения подошвы железобетонных виброштампованных буронабивных свай назначается исходя из гидрогеологических условий, конструктивных решений подземной части сооружений и наличия коммуникаций. При выборе несущего слоя грунта следует учитывать, что при вибровтрамбовывании щебня в забой скважин в грунте ниже отметки забоя образуется щебеночное "ядро", по форме близкое к конусу высотой не менее диаметра скважины с зоной уплотненного грунта вокруг "ядра". Для вибровтрамбовывания следует использовать щебень твердых пород (гранитный, гравийный и т.п.) размером зерен 20-40 мм (или 40-70 мм) по ГОСТ 8267-93.

6.2.2 Сваи надлежит армировать заранее изготовленными каркасами проектной длины. Допускается наращивание каркаса до проектной длины путем стыкования, в соответствии с требованиями рабочей документации, непосредственно при опускании его в пробуренную скважину.

6.2.3 Конструкция каркаса и технология его монтажа назначаются исходя из обеспечения проектного положения (центрирования) каркаса в скважине и величину защитного слоя бетона не менее 70 мм в свету. С этой целью на арматурный каркас устанавливается необходимое количество дистанционных прокладок соответствующего качества и геометрических параметров.

6.2.4 Проектные показатели прочности, морозостойкости и водонепроницаемости бетона обеспечиваются за счет назначения оптимального состава бетонной смеси, который надлежит подбирать методом лабораторных подборов исходя из конкретных свойств используемых материалов (цемента, заполнителей, добавок) в соответствии с указаниями приложения 4 СП 46.13330.2012 и рекомендациями настоящего методического документа. При этом состав бетонной смеси для бетонирования скважин с объемным виброштампованием следует подбирать исходя из возможности "оживления" уложенной бетонной смеси виброоборудованием в течение 3 ч в случае вынужденных пауз в подаче свежей порции смеси (приложение А).

6.2.5 Бетонная смесь, уложенная в скважину при помощи объемного виброштампования, может обеспечивать приобретение бетоном в возрасте 28 дней установленных проектом показателей качества по прочности, соответствующих классу не ниже В25, по водонепроницаемости не ниже W6 и морозостойкости не ниже F200.

6.2.7 В качестве добавок, улучшающих технологические свойства бетонной смеси и повышающих качество бетона, следует применять добавки, указанные в приложениях 3 и 6 СП 46.13330.2012.

6.2.8 В качестве крупного заполнителя бетонной смеси следует использовать гранитный щебень размером зерен 5-20 мм, получаемый дроблением невыветренных скальных пород в соответствии с требованиями ГОСТ 26633-91. Для приготовления щебня применяется порода, обладающая в водонасыщенном состоянии прочностью не ниже 80 МПа, с водопоглощением не более 0,5%.

6.2.9 Для бетонной смеси необходимо использовать естественный кварцевый или дробленый из высокопрочных магматических пород песок с модулем крупности не менее 2,5 в соответствии с требованиями ГОСТ 26633-91.

6.2.10 Цемент и заполнители следует дозировать по массе, а водные растворы пластифицирующих и воздухововлекающих добавок - по объему.

6.2.11 Показатели бетонной смеси на месте укладки назначаются Технологическим регламентом в зависимости от способа заполнения скважины.

Грунтовое ядро сваи это

Инженерно-строительный журнал, N 1, 2008
Рубрика: Технологии
К.т.н., доцент Г.Я.Булатов,
инженер А.Ю.Костюкова

ТЕХНОЛОГИЯ ВОЗВЕДЕНИЯ ФУНДАМЕНТОВ - "СВАЯ В ТРУБЕ"

Проблема рационального проектирования фундаментов является одной из актуальных в области фундаментостроения. Особенно остро эта проблема стоит при строительстве в сложных инженерно-геологических условиях, в которых наиболее целесообразным является применение свайных фундаментов. Доля затрат на возведение подземной части зданий и сооружений в таких грунтовых условиях составляет до 20%.

Развитие фундаментостроения направлено по пути разработки новых, экономичных и надежных конструкций фундаментов и методов их устройства, обеспечивающих повышение несущей способности грунтов в основаниях, более полного использования несущей способности материала фундаментов.

В последние годы широко возводились причальные сооружения на металлических сваях-оболочках, так как они имеют много достоинств. Стальные сваи лучше выдерживают динамические нагрузки и воспринимают большие изгибающие моменты по сравнению с железобетонными сваями. Применение открытых снизу стальных трубчатых свай способствует сокращению объемов и сроков производства строительных работ, расходов рабочей силы и материала свай за счет более рациональной работы поперечного сечения ствола под расчетной нагрузкой.

Основным недостатком металлических свай-оболочек является их коррозия. Железобетонные сваи экономичны, но их несущая способность невысока.

Технической задачей технологии было желание объединить преимущества того и другого вида свай. Один из вариантов такого объединения рассмотрен ниже.

В данной технологии погружают в грунт стальную трубчатую сваю с открытым нижним концом и возводят ростверк. После погружения трубчатой сваи в образовавшееся внутри её полости грунтовое ядро вводят продольные перегородки, а в грунтовые ячейки между перегородками и стенками сваи вводят дополнительные объемы материалов и подают дополнительную энергию, преимущественно в нижнюю часть ядра. Таким образом упрочняют грунтовое ядро, создают дополнительные радиальные сжимающие напряжения в грунте ядра, обеспечивают дополнительные трение и сцепление его со стенками сваи и превращают её в квазимонолитный фундамент глубокого заложения.

Сущность предложения поясняется чертежами. Устройство на рис.1 и 2 содержит ростверк 1 на бетонной подготовке толщиной , опирающийся на трубчатую сваю 2 и грунтовое ядро 3, в которое погружены дополнительные внутренние сваи: например, свая 4 с продольными лопастями 5 и монолитные сваи 6 и 7. На рис.3, 4 дополнительная свая 8 снабжена утолщением в виде нескольких соединенных с ней патрубков 9, которые одновременно служат и направляющими.

Промышленное строительство

Материалы о строительстве промышленных объектов, зданий и сооружений

7.1.3.1 Сваи с грунтовым ядром

Сваи с грунтовым ядром в пределах рекомендуемого сортамента и в зависимости от конкретных грунтовых условий могут воспринимать вертикальные нагрузки от 60 до 250 т . Конструкция стенок этих свай обеспечивает трещиностойкость при величине изгибающего момента до 42 тм .

В объектах промышленного и гидротехнического строительства, когда по условиям эксплуатации, транспортировки или монтажа свая воспринимает значительные изгибающие моменты, закладные кольца принимаются усиленной конструкции, а содержание арматуры составляет 0,9 – 1,0% от площади сечения бетона. Марка бетона в зависимости от условий работы сваи принимается 300 – 400.

стальное закладное кольцо, ножевое закладное кольцо, сварной стык звеньев свай

стальное закладное кольцо, ножевое закладное кольцо, сварной стык звеньев свай

На рис. 30, а изображена свая с наружным диаметром 66 см облегченной конструкции, а на рис. 30, б — с наружным диаметром 120 см усиленной конструкции. Применение полых свай с диаметром менее 40 см нецелесообразно.

Длина звеньев может быть изменена в зависимости от геологических условий и наличия оборудования для изготовления, транспортирования и монтажа свай.

Сборность конструкции свай облегчает их погружение, обеспечивает возможность устройства свай различной длины из комбинации стандартных звеньев и упрощает транспортные операции.

Полые сваи, работающие только на вертикальную нагрузку, армируются ненапряжеными горячекатаными прутками периодического профиля, приваренными к торцевым кольцам, и спиралью из гладкой круглой проволоки диаметром 5 мм .

При применении предварительно напряженной арматуры полые сваи могут воспринимать без появления трещин изгибающие моменты в 2 – 2,5 раза большие, чем при обычной арматуре.

При работе полых свай только на вертикальную нагрузку нет необходимости применять напряженное армирование.

Основные преимущества полых свай с грунтовым ядром заключаются в том, что в отличие от сплошных свай квадратного сечения эти сваи при одинаковой грузоподъемности оказываются экономичнее: по расходу бетона — на 30 – 60%, по расходу стали — на 50 – 70%. Они эффективно используются при широком диапазоне грунтов-глин, суглинков, супесей и песков.

Сравнительные данные о несущей способности свай различной конструиции приведены в табл. 18, где расчетное сопротивление призматической сваи 300×300 мм принято за 100%.

Ограничением для применения свай этого типа могут стать особо плотные грунты, воспринимающие нагрузку непосредственно через торцы стенок; грунтовое ядро в этом случае в работе не участвует и несущая способность сваи будет лимитироваться прочностью ее стенок.

Малоэффективной оказывается работа полой сваи с открытым концом при залегании под ее подошвой слабых, сильно сжимаемых грунтов; несущая способность ее в этом случае будет определяться только сопротивлением по наружной боковой поверхности.

Промышленное строительство

Материалы о строительстве промышленных объектов, зданий и сооружений

7.2.3.1 Особенности расчёта полых свай с грунтовым ядром

Упомянутые временные указания рекомендуют при проектировании и расчете полых свай с грунтовым ядром и диаметром до 1200 мм учитывать перечисляемые ниже условия.

1. Для свай с грунтовым ядром, погруженных вибратором в глинистые грунты мягкопластичной консистенции и супеси с B > 0,5 при длительности «отдыха» более 15 суток R н определяется по формуле


2. Для свай с грунтовым ядром, погруженных вибратором в глинистые грунты мягкопласгичной консистенции или супеси в В > 0,5 при длительности отдыха более 15 суток fгл н определяется по табл. 29.

3. При погружении вибратором полых свай (открытых снизу) диаметром 1,0 – 1,2 м в глинистые грунты с B ≥0,5 при отдыхе 1 свыше 1 месяца рекомендуется рассчитывать сопротивление свай осевым нагрузкам в двух вариантах:
1) как сплошную с учетом сопротивления по наружной боковой поверхности и по подошве;
2) по боковому сопротивлению (наружному и внутреннему) я по сопротивлению торцов стенок (без учета ядра).

Условное расчётное сопротивление грунта основания на глубине 2 м для грунтов мягкопластичной консистенции

Нормативное сопротивление грунта основания на боковой поверхности свай с грунтовым ядром (погружённым вибратором)

Высота ядра принимается равной глубине погружения сваи в грунт, причем высота наиболее плотных нижних слоев внутри сваи увеличивается по отношению к их мощности в естественном состоянии пропорционально отношению квадратов наружного и внутреннего диаметров сваи. Высоту же наиболее слабого слоя грунта следует при расчете уменьшить с тем, чтобы суммарная высота слоев внутри сваи равнялась глубине ее погружения. Из двух величин допускаемой нагрузки принимается наименьшая.

4. Для проверки достаточности толщины слоя песка под подошвой полой сваи при наличии ниже слоя песков сильно сжимаемых грунтов следует производить расчет осадки свайного фундамента в целом, сопоставляя ее с величиной осадки, допускаемой по условиям прочности конструкций верхнего строения и по требованиям эксплуатации.

5. Расчетная предельная нагрузка на cваю из условия прочности ее стенок может быть определена по СНиП II-B.1-62.

Необходимость учета большого количества дополнительных условий при расчете сопротивления висячих свай с «грунтовым ядром» на осевую сжимающую нагрузку подтверждает, что только испытание статической нагрузкой можно считать основным и наиболее точным методом расчета.

Выше отмечалось, что применение вибраторов для погружения сваи вызывает изменение свойств окружающей ее грунтовой толщи. При погружении полых свай эти явления сохраняют свою закономерность. Так, в песчаных, щебенистых и галечниковых грунтах происходит значительное дополнительное их уплотнение, а в суглинках и глинах в ряде случаев, вследствие разжижения и перемешивания слоев грунта, наблюдается заметное снижение несущей способности сваи по сравнению со сваей, погруженной забивкой.

свайный фундамент в скальном грунте

Здравствуйте! Необходимо запроектировать свайный фундамент под башню связи в скальном грунте. Грунт-мергель,средней прочности, слабовыветрелый, слаботрещиноватый, размягчаемый, труднорастворимый в воде. Предел прочности на одноосное сжатие в водонасыщенном состоянии, Rc=13,2МПа.
До глубины -1,1м залегают насыпные грунты, от-1,1 до -10м залегают мергели.
Вопросы:
1)т.к. сваи работают и на выдергивание,необходимо определить несущую способность сваи на выдергивание,для этого требуется расчетное сопротивление сваи по боковой поверхности. Можно ли его как то определить? В СНиПе 2.02.03 такой информации нет.
2)будет ли работать на выдергивание свая в мергеле? как она с ним взаимодействует?
3)решит ли проблему установка свай с уширением на конце?
4)какая есть литература для такого расчета?

Зараннее благодарен.
С уважением Есипенко Дмитрий.

Хотел бы я посмотреть как сваи будут загонять в такой грунт Буронабивные. А башня Останкино без свай стоит.

Геотехника. Теория и практика

Есипенко Дмитрий
В СП 50-102-2003 есть ф.7.14 для определения несущей способности набивных свай на выдергивающие нагрузки, но в таблицах R и f мергеля нет. Это не означает, что в мергеле трения б/н сваи по боковой поверхности не будет - оно образуется за счет бокового давления свежеуложенного бетона на стенки скважины. В таких случаях проводятся статические испытания сваи на выдергивание. Если делать с уширением, то его можно в принципе учесть, добавив в указанную выше формулу произведение площади уширения, выходящего за пределы боковой поверхности сваи на Rc мергеля. Новосибирск Дмитрий, с чем связана необходимость примения свай на скальном грунте? Нас тоже заставляли применять сваи на скале и тоже под башни.

4атланин
сваи буронабивные, бурильщики берутся за это дело

Sibir
Место под башню выбрано в стесненных городских условиях, вблизи откоса, до ближней грани башни от начала откоса 8м, сейсмичность 8баллов,особый ветровой р-н 100кг/м2,Новороссийск.
Почему свайный:
1) чтобы уйти от вопроса по устойчивости вышележащих слоев грунта, ближе к склону глубина залегания насыпных грунтов растет до 3х метров.
2) От отдельных столбчатых фундаментов отказываемся из-за возможных деформаций основания
3) На общей плите слишком дорогой, большой котлован,много бетона и главное грунт просто некуда девать, нужно вывозить
4) Геологи рекомендуют устраивать фундамент на глубине 4м.

AMS
Есть мнение что, свая в мергеле не будет работать,т.к.грунт не сжимаемый и свая будет болтаться в скважине как “карандаш в стакане” . Также содержащийся в мергеле мел до 30% не способствует зацеплению сваи с грунтом.
Что вы думаете по этому поводу?

Читайте также: