Вещество повышающее подвижность растворных и бетонных смесей

Обновлено: 04.07.2024

Способы увеличения прочности бетона. Добавки применяемые в производстве бетона

Основные способы увеличения прочности бетона (искусственного камня) сводятся к введению в бетонную смесь различных добавок, которые обладают разным действием.

Пластификатор

Пластификатор РС представляет собой водный раствор высокоэффективного неионогенного поверхностно-активного вещества, обеспечивающая снижение водоотделения строительных растворов, увеличивающая удобоукладываемость и время сохранения свойств растворных смесей. Добавка придает строительным растворам высокую связность, как при транспортировании, так и на стройплощадке, стабильное воздухосодержание в течение всего времени использования.

Добавка предназначена для приготовления растворных смесей на цементной основе, которые применяют при каменной или кирпичной кладке, монтаже строительных конструкций при возведении зданий и сооружений, для устройства стяжки и оштукатуривании различных поверхностей. Допускается применение добавки для производства легких растворов и бетонов различной плотности. Не содержит соединений хлора.

Рекомендуемая дозировка добавки составляет 0,3-1 % от массы цемента.

Суперпластификатор

Пластификатор РС, 20 кг.

Суперпластификатор

Пластификатор РС-Зима, 20 кг.

Суперпластификатор

Пластификатор необходимо предварительно развести в теплой воде до полного растворения, в жидком виде пластификатор сразу начинает работать в бетоне, если Вы добавляете его в сухом виде, то потребуется дополнительное время для его растворения и перемешивания бетона. Пластификатор должен быть разведен предварительно в воде, лучше при температуре 25-30 градусов за час до применения. Расчетное количество суперпластификатора вводят в бетонную смесь с водой затворения. Для повышения технологического эффекта (достижения большей подвижности бетонной смеси или повышения ее сохраняемости, при неизменном расходе добавки) целесообразно вводит С-3 с частью воды затворения спустя 1-5 минут после затворения бетонной смеси основным объемом воды.

Рекомендуемая дозировка С-3 составляет 0,5-0,8% от массы цемента (500-800 грамм на 100 кг цемента в расчете на сухое вещество).

Суперпластификатор ПК-1 представляет собой водный раствор на основе эфиров поликарбоксилатных соединений. Является базовым продуктом, не содержащим солей лигносульфонатов или нафталинформальдегидов. Не содержит замедлителей или ускорителей твердения и противоморозных модификаторов.

Основное назначение добавки – увеличение подвижности с марки П1 до П5 или снижение водопотребности (до 30 %) растворных и бетонных смесей. Применяется для производства различных бетонных и железобетонных изделий (в т.ч. преднапряженных): панелей, колонн, плит тротуарных, свай, фасадных изделий, блоков, мелкоштучных изделий и пр. Добавка эффективно работает с различными видами цементных вяжущих. Не вызывает водо- и раствороотделение. Повышает прочность бетона как на ранней (1 сутки), так и на поздней (28 суток) стадии твердения. Позволяет снизить продолжительность виброуплотнения. Добавку разрешено применять для бетонов, контактирующих с питьевой водой. Позволяет частично или полностью отказаться от тепловлажностной обработки.

Рекомендуемая дозировка добавки составляет 0,3 - 1 % от массы цемента.

Суперпластификатор

Суперпластификатор ПК-1, 20 кг.

Суперпластификатор ПК-2 представляет собой водный раствор на основе органических эфиров поликарбоксилатных соединений. Добавка предназначена для производства товарного бетона.

Основное назначение добавки – увеличение подвижности бетонной смеси с марки П1 до П5 и снижение ее водопотребности (водоредуцирующий эффект до 30 %) при сохранении подвижности во времени (не менее 2 часов). Обеспечивает высокую начальную и конечную прочность. Не вызывает водо- и раствороотделение. Позволяет снизить продолжительность виброуплотнения. Не содержит соединений хлора. Добавку разрешено применять для бетонов, контактирующих с питьевой водой.

Рекомендуемая дозировка добавки составляет 0,3-1 % от массы цемента.

Суперпластификатор

Суперпластификатор ПК-2, 20 кг.

Суперпластификатор

Суперпластификатор ПК-2-Зима, 20 кг.

Суперпластификатор ПКЛ-1 представляет собой водный раствор на основе поликарбоксилатных соединений и лигносульфоната. Не содержит замедлителей или ускорителей твердения и противоморозных модификаторов.

Основное назначение добавки – увеличение подвижности с марки П1 до П5 или снижение водопотребности (не менее 25 %) бетонных смесей. Применяется для производства различных бетонных и железобетонных изделий (в т.ч. преднапряженных): панелей, колонн, плит тротуарных, свай, фасадных изделий, блоков, мелкоштучных изделий и пр. Добавка эффективно работает с различными видами цементных вяжущих. Не вызывает водо- и раствороотделение. Повышает прочность бетона как на ранней (1 сутки), так и на поздней (28 суток) стадии твердения. Позволяет снизить продолжительность виброуплотнения. Добавку разрешено применять для бетонов, контактирующих с питьевой водой. Позволяет частично или полностью отказаться от тепловлажностной обработки.

Рекомендуемая дозировка добавки составляет 0,6-1,5 % от массы цемента.

Суперпластификатор

Суперпластификатор ПКЛ-1, 20 кг.

Суперпластификатор ПКЛ-2 представляет собой водный раствор на основе смеси органических эфиров поликарбоксилатных соединений и лигносульфоната.

Добавка предназначена для производства бетонной смеси. Основное назначение добавки – увеличение подвижности бетонной смеси с марки П1 до П5 или снижение ее водопотребности (водоредуцирующий эффект до 25 %) при сохранении подвижности во времени (не менее 2 часов). Обеспечивает повышенную начальную и конечную прочность. Не вызывает водо- и раствороотделение. Позволяет снизить продолжительность виброуплотнения. Не содержит соединений хлора. Добавку разрешено применять для бетонов, контактирующих с питьевой водой.

Рекомендуемая дозировка добавки составляет 0,3-1 % от массы цемента.

Суперпластификатор

Суперпластификатор ПКЛ-2, 20 кг.

Пластификаторы и суперпластификаторы с маркировкой "Зима" могут применяться при отрицательных температурах окружающей среды до -25°С.

Микрокремнезем

Микрокремнезем применяется для получения высокопрочных бетонов, дозировка 10% от массы цемента, в бетонах применяется вместе с суперпластификатором.

Применение микрокремнезема позволяет:

  • получить бетоны высокой прочности и водонепроницаемости
  • повысить стойкость бетона при воздействии кислот и повышенной температуры
  • заменить часть цемента (до 30-40%) при сохранении прочности растворов и бетонов.

Ускоритель твердения (кальций хлористый)

Добавка хлористый кальций применяется в производстве пенобетона, полистиролбетона, бетона, стеновых камней, тротуарной плитки и др.

"Узкое место" в производстве таких бетонных изделий таких как газобетон и пенобетона - формы, в которых происходит схватывание и твердение цементного раствора. Раствор должен находиться в формах длительное время при определенной температуре и влажности для получения достаточной (нормативной) прочности. Сложности возрастают при понижении температуры, когда время "простоя" форм увеличивается в несколько раз.

Для снижения себестоимости продукции требуется уменьшить расход цемента без потери прочности. В связи с этим в настоящее время считается технологически и экономически выгодным применение ускорителя твердения. Рекомендуемая дозировка добавки составляет 1-2 % от массы цемента.

Гидрофобизирующая добавка Гидромикс

Гидрофобизирующая добавка Гидромикс предназначена для повышения марки по водонепроницаемости и снижения водопоглощения конструкций из бетона и железобетона, цементно-песчаных оснований, испытывающих давление грунтовых, сточных и дождевых вод.

Добавка Гидромикс представляет собой сухой порошкообразный материал, содержащий активные химические вещества, которые уплотняют структуру бетона (раствора) и придают ему водоотталкивающие свойства. Добавка не влияет на подвижность бетонной или растворной смесей, незначительно снижает их расслаиваемость и водоотделение, не оказывает замедляющего или ускоряющего эффекта на твердение бетона. Добавка совместима практически с любыми пластифицирующими добавками.

Добавка повышает марку бетона по водонепроницаемости до 3 ступеней (0,6 МПа) и снижает его водопоглощение не менее чем на 30 %. Добавка способствует повышению морозостойкости бетона и защищает его от действия различных агрессивных сред. Без ограничений применяется для эксплуатации в хозяйственно-питьевом водоснабжении.

Введение добавки позволяет поднять марку бетона по водонепроницаемости с W8 до W14.

Добавку применяют в количестве 2 кг. на 1 м3 бетонной или растворной смеси.

Сухая Гидрофобизирующая добавка Гидромикс

Гидрофобизатор Гидромикс, 2 кг.

Пропитка гидрофобизирующая

Агрессивное воздействие воды на сооружения из кирпича и бетона – давно установленный факт, ибо данные материалы имеют достаточно пористую структуру. Вода проникает в сооружение снизу. Это – грунтовая вода, т.е. растворы солей: хлоридов, сульфатов и гидрокарбонатов, которые затем после испарения воды “украшают” фасады, разрушают фундаменты, срывают штукатурки и облицовку.

Вода угрожает и сверху, и это воздействие весьма неоднозначно. Дождевая вода, проникая в поры материала, при отрицательных температурах увеличивается в объеме и может вызвать локальную деструкцию. Кроме того, строго говоря, дождевая вода – это тоже раствор. Дождевые потоки захватывают из атмосферы большое количество газообразных производственных выбросов, таких как оксиды углерода, серы, азота и фосфора, таких как аммиак, хлор и хлористый водород. Эти газы, растворяясь частично в воде, превращают дождь в кислотный раствор, разрушающе действующий на бетон, мрамор, силикатный кирпич и другие материалы. При этом увеличивается количество пор, капилляров и микротрещин, являющихся все новыми очагами агрессии, и степень разрушения материала существенно возрастает. Даже очень небольшое содержание в воздухе кислотных оксидов серы и азота, а также хлористого водорода способно вызвать смещение такого экологического параметра атмосферы как углекислотное равновесие.

При этом существенно повышается содержание в воздухе свободной углекислоты, называемой в таком случае “агрессивной”. Агрессивным углекислый газ является по отношению к минеральным строительным материалам (извести, мрамору и бетону), превращая нерастворимый кальцит в водорастворимый гидрокарбонат кальция. Происходит элементарное вымывание материала с дополнительным образованием трещин, пор, раковин и т.д. Бетон стареет, штукатурки отшелушиваются, мрамор тускнеет, на его поверхности появляются характерные “потеки”.

Проблема защиты материала от воздействия влаги решается различными способами гидрофобизации (водоотталкивания). Это применение всевозможных методов гидроизоляции, использование жидкого стекла, закрывающего поры, получение высокоплотных материалов с минимальной пористой структурой и т.д.

Одним из перспективных направлений гидрофобизации является использование различных кремнийорганических составов, обладающих способностью к гидрофобизации. Кремнийорганические жидкости, основу которых составляет кремнекислородная цепочка (-O- Si-O-Si-O-Si-)n регулируемой длины, содержат около атомов кремния гидрофобные углеводородные радикалы разной величины: С2Н5, С3Н7, С nH2n-1, что сообщает им в зависимости от назначения как разную степень гидрофобизирующих свойств, так и различную способность проникновения в материал. Вариации этих сочетаний позволяют получать водоотталкивающие системы, применяемые в самых разнообразных целях, связанных с проблемой гидрофобизации. Это краски, покрытия, пропитки, гидрофобизующие добавки в бетоны и растворы и ряд других направлений.

Существенно важным обстоятельством при этом является способность кремнийорганических жидкостей не закрывать, а выстилать поры, создавая на их поверхности тончайшую водонепроницаемую пленку.

Пропитка гидрофобизирующая Гидрофиб

Гидрофобизатор Гидрофиб, 10 лит.

Полиуретановое и акриловое защитное покрытие

Полиуретановые и акриловые покрытия являются высокоэффективным средством защиты поверхностей, даже при крайне небольших толщинах слоя при расходе от 0,25 кг/м2. При обработке камня или бетона подчеркивает структуру поверхности, создаёт эффект мокрого камня. Малая рабочая толщина слоя делает покрытие пожаробезопасным. При воздействии на него источника пламени покрытие не горит, а лишь разлагается под воздействием температуры, не создавая при этом опасности распространения пожара.

Указанные покрытия обладают высочайшей адгезией к обрабатываемым поверхностям, имеют большой срок службы (внутри помещений до 50 лет, в условиях открытой атмосферы не менее 15 лет), не наносят вреда здоровью человека даже при непосредственном постоянном контакте с питьевой водой и продуктами питания.

Полиуретановые покрытия обеспечивают гидрофобность строительным материалам (бетон, раствор, кирпич, гипс, картон, древесина и т.п.), а, соответственно, не дают впитываться в них водным субстанциям, соляным растворам, маслам, нефтепродуктам, кислотам, щелочам и другим материалам, которые могут повлиять на целостность и долговечность этих материалов.

Защитное покрытие представляет собой двухкомпонентный состав. Применяется в качестве прозрачного защитного лакокрасочного покрытия для поверхностей из бетона, металла, дерева. Полностью высохшее покрытие обладает высоким глянцем, прочностью, эластичностью, а также стойкостью к истиранию и химическому воздействию и полностью сохраняет все декоративные качества.

Полиуретановое покрытие S-COMPOSIT CRYSTAL

Полиуретановое покрытие S-COMPOSIT CRYSTAL, 6,74 кг.

Акриловая смола для литьевого камня

Акриловая смола (базовая), 10 кг.

Полипропиленовые волокна (фиброволокно)

В 1998 году исполняется 15 лет с того момента, как полипропиленовые волокна (фиброволокно, ППВ) для бетона стали широко использоваться во всем мире. Сегодня в США 10% всего товарного бетона содержит ППВ, а в Великобритании уложены миллионы кубометров такого бетона. В настоящее время волокна используются в конструкционном бетоне для морских укреплений, мостов и водохранилищ, а также в сборном бетоне и торкрет-бетоне. Новые разработки включают антибактериальный бетон, тонкий бетон для покрытия асфальтированных дорог, бетон с обнаженным заполнителем - с шуршащей поверхностью, бетон, менее подверженный взрывному откалыванию при воздействии огня.

Полипропиленовые волокна - это олефиновые волокна, изготовленные из полимеров или сополимеров пропилена. Расплавленный полипропилен подвергается штамповке с вытяжкой, образуя ровные листы или волокна. Затем из него можно получить два типа ППВ. Ровные листы расщепляются на мелкие волокнистые элементы, из которых состоит основная структура, и разрезаются на части различной длины. Эти фибриллированные волокна в поперечном сечении имеют форму, близкую к прямоугольной. Волокна с круглым поперечным сечением также разрезаются на части различной длины для получения моно- и мультифиламентных волокон. ППВ - чистое, безопасное, простое в использовании, химически нейтральное и совместимое со всеми вяжущими веществами и добавками волокно.

Количество, тип и длина используемых волокон зависит от требований проекта. Обычная дозировка составляет 0,1% по объему или 0,6 - 0,9 кг/м3 бетона. Для удобства в применении ППВ поставляется в растворимых мешках по 0,6 - 0,9 кг. На каждый кубометр бетона добавляется один мешок - или в смесительную установку на бетонном заводе или прямо в автобетономешалку. Достаточно всего 5 минут смешивания в автобетономешалке для равномерного рассеивания без образования комков и скоплений. Более высокая дозировка, особенно фибриллированных волокон, используется в сборном бетоне, торкрет-бетоне и других видах бетона, где важна прочность и устойчивость к раскалыванию.

При дозировке 0,1-1% ППВ не обеспечивает первичного армирования. Теория показывает, что количество волокна, которое выдерживает нагрузку после растрескивания - критический объем волокна - для ППВ составляет примерно 2% по объему. Такое количество трудно ввести в бетонную смесь и оно неприемлемо с коммерческой точки зрения. Однако, дозировка 0,1-1% ППВ по объему действительно дает определенные преимущества бетону как в пластичном, так и в затвердшем состоянии. Волокна оказывают эффект немедленно, повышая сцепление бетонной смеси, препятствуя оседанию крупных, тяжелых частиц при уплотнении и облегчая подачу бетонной смеси насосом. ППВ повышает способность бетона к деформации без разрушения в критический период схватывания, что мешает образованию микротрещин внутри застывшего бетона, а также сдерживает расширение видимых поверхностных трещин, возникших при пластической усадке. ППВ препятствует перемещению и последующему испарению воды, повышая гидратацию цемента на поверхности, но не заменяет надлежащих процедур выдерживания бетона. 16 лет независимого тестирования по всему миру, теперь подкрепленного сертификатом ВВА, показали, что ППВ в количестве 0,1% по объему обеспечивает устойчивость к выступанию воды, оседанию, растрескиванию при пластической усадке, истиранию, циклам замораживание/оттаивание, сопротивление удару, а также огнестойкость, остаточную прочность, антимикробную защиту и пониженную проницаемость.

Вышеописанные преимущества означают, что ППВ можно использовать во всех областях применения бетона. Выгода ППВ видна при анализе затрат даже на такие сооружения как мосты, водохранилища и стенки набережных. Но с наибольшим успехом этот материал использовался в бетонных плитах покрытий, особенно там, где он служил заменой вторичной стальной проволочной арматуры. Расчеты для бетонных плит покрытия с ППВ ничем не отличаются от обычных, изложенных в техническом отчете N 34 Общества Бетона. ППВ не увеличивает допустимую нагрузку бетонной плиты заданной прочности и толщины. Простота в применении, устранение стальной арматурной проволочной сетки и беспрепятственный доступ для выгрузки бетонной смеси делают укладку бетона с ППВ более быстрой и экономичной. Учитывая уже описанные преимущества поверхности такого бетона, нетрудно понять, почему он с таким успехом используется в плитах покрытий. Преимущества торкрет-бетона с ППВ заключаются в лучшем сцеплении бетонной смеси, что cнижает отскок и ускоряет укладку.

При высокой дозировке более длинных фибриллированых волокон его прочность может сравниться с бетоном, содержащим 25-30 кг стальной арматуры. Преимущества сборного бетона с ППВ заключаются в уменьшении опасности случайного повреждения при распалубке и последующей транспортировке, пониженной проницаемости и, следовательно, меньшей подверженности коррозии. Преимущества бетона с ППВ при использовании скользящих опалубок заключаются в лучшем сцеплении бетонной смеси, что способствует повышению темпов строительства и снижению объемов ремонтных работ.

Бетон с высокими рабочими характеристиками, обладающий прочностью 60-100 МПа и более, приобретает все большую популярность во всей Европе. Однако, как показал пожар в туннеле под Ла-Маншем, такой бетон подвержен взрывному откалыванию при температуре выше 200 гр.С. ППВ обеспечивает безопасный выход перегретого пара через капилляры на поверхность, когда плавится полипропилен при температуре 160-170 гр.С, и в настоящее время ППВ вводится в спецификации бетона для туннелей и других областей применения, где взрывное откалывание может угрожать жизни.

Фиброволокно полипропиленовое

Фиброволокно полипропиленовое, 12 мм.

Фиброволокно полипропиленовое

Фиброволокно полипропиленовое, 20 мм.

Омагничивание воды затворения

Без воды невозможно начало химической реакции, превращающей разрозненные компоненты бетонной смеси в единый монолит. Её роль в этом процессе сложно переоценить. Поэтому вполне объяснимо стремление модифицировать многие химические процессы, происходящие в присутствии воды, в том числе и образование цементного камня, именно по пути изменения некоторых её свойств.

В бетоноведении роль модифицированной воды – одна из самых скандальных и мало изученных тем. При всем притом, что с периодичностью примерно в 10 лет, ученые-бетоноведы всего мира вновь и вновь возвращаются к этой теме, факторы, влияющие на изменение характеристик бетонов, обусловленные применением модифицированной воды остаются еще во многом не ясными. Все это обусловило разделение ученых-бетоноведов на два противоборствующих лагеря. Одни, с пеной у рта, утверждают, что шаманить над водой – чистой воды шарлатанство, недостойное серьезных исследователей. Другие, столь же ожесточенно, доказывают обратное. Истина, как всегда, где-то посредине.

Говоря о роли внешних факторов внешних наводок при омагничивании водных систем, нельзя обойти молчанием так называемую сезонную зависимость результатов (хотя этот вопрос рассматривается учеными – геоцентристами неизменно скептически). Так, например, неоднократно подтверждался тот факт, что омагничивание воды, применяемой для затворения цементных растворов, наименее эффективно в мае-июле. Многократно проводившиеся эксперименты убедительно и однозначно свидетельствуют, что в абсолютно идентичных условиях прирост прочности образцов затворенных омагниченной водой составил в январе 50 – 60%, мае 2 – 5%, сентябре 20 – 25%, октябре – 40%. Причины таких проявлений сезонности, точно не установлены. Можно только предполагать, что в эксперимент “вмешивалось” геомагнитное воздействие солнца. Во всяком случае, их нельзя связать с поступлением талых вод, поскольку опыты проводились с использованием бидистилятов.

В любом случае даже не зная как “ЭТО” работает, человечество давно и очень эффективно научилось использовать магнитное воздействие на вещества, в том числе и воду, в своих целях.

В СССР начало применения омагниченной воды при затворении бетонов относится к 1962 г. (Нейман Б.А. свид. СССР № 237664, от 1962 г.). С тех пор велись и по сей день ведутся значительные исследования в этом направлении. Известно, что в процессе твердения цементного камня одновременно протекает ряд сложных процессов: растворение и гидратация цементных минералов с образованием пересыщенных растворов, самопроизвольное диспергирование этих минералов до частиц коллоидных размеров, образование тиксотропных коагуляционных структур и, наконец, возникновение, рост и упрочнение кристаллизационных структур. И омагничивание воды влияет на все эти процессы. Следовательно, влияние магнитной обработки воды, используемой для растворения, на твердение и свойства цементного камня является вполне закономерным.

Опытами установлено, что затворение цемента омагниченной водой приводит к значительному повышению прочности камня. Причем зависимость прочности от напряженности поля имеет экстремальный характер.

Все улучшения прочностных характеристик бетона обусловлены несколькими факторами, на которые влияет омагничивание воды. Главные из них, это ускоренное нарастание пластической прочности цементного камня, измеряемой по предельному напряжению сдвига. При затворении обычиой водой имеется значительный индукционный период выкристаллизовывания цемента. В случае же затворения омагниченной водой пластическая прочность начинает активно расти почти сразу же после затворения. При этом отмечается более быстрое диспергирование частиц до микронных размеров.

Микроскопические исследования также показали увеличение скорости гидратации цемента в омагниченной воде. Причем значительно возрастает количество кристаллов сульфоалюмината кальция и гидроокиси кальция, а размеры их уменьшаются. Кристаллы находятся не только на поверхности зерен гидратирующегося цемента, как обычно, но и в объеме всей массы. Исследование цементного камня трехдневного возраста под электронным микроскопом показало, что в омагниченмой воде структура камня гораздо более мелкозернистая. Кроме того многочисленные эксперименты показали, что эффект магнитной обработки воды, во многом зависит, также и от её химического состава. Примеси ионов железа и хлоридов чаще всего оказывают положительное влияние. Некоторые газы – остаточный хлор, аммиак – отрицательное. Очень большую роль играют соли жесткости как сами по себе, так и их взаимное соотношение. Достоверно установлено, что наилучшие результаты достигаются при следующих концентрациях солей: сульфата магния – 1.2 г/л, сульфата кальция – 1.2 г/л, хлорида магния – 2.8 г/л.

Многочисленные эксперименты по оценке влияния омагниченной воды на бетоны однозначно свидетельствуют – эффект магнитообработки носит экстремальный характер. Существует некий оптимум, как по напряженности магнитного потока, так и по скорости протекания воды, а также её минералогическому составу. Для каждой отрасли промышленности, использующей омагниченную воду, он разный. Глубоко ошибочной, порочной и даже вредной следует признать практику бездумного использования омагничивающих приборов, ориентированных на работу в других технологических цепочках.

Самое интересное в конструкции омагничивающего устройства – она, абсолютно не нуждается в какой либо защите от копирования. Можно прибор распилить, измерить, хоть на вкус попробовать. Пока не разгадаете магнитосилу применённых магнитов – все ваши потуги изготовить аналогичный прибор будут тщетны – просто не получите нужного эффекта.

Как ускорить застывание бетона

Основной вопрос при изготовлении бетона: как достичь расчетной прочности в оптимальные сроки.

Представим в общих чертах, как протекают процессы затвердевания и набора прочности, и какие факторы могут привести к изменениям в них.

Химия процесса

В составе бетонной смеси цементный камень – продукт реакций гидратации, происходящих при смешивании цемента с водой.

Цемент – основной компонент смеси; от его марки и соотношения с водой зависит прочность готового бетона и скорость его отвердевания.

Важно!

Водоцементное отношение (В/Ц) – это отношение количества воды затворения к количеству цемента. Оно обычно составляет 0,3-05 и выше.

В состав цемента входят такие соединения, как кальциевые силикаты, алюминаты и алюмоферриты. При смешивании этих соединений с водой начинаются химические реакции, сопровождающиеся выделением тепла (благодаря чему увеличивается скорость протекания реакций гидратации).

Важно!

Чем быстрее водный раствор насыщается, тем лучше и быстрее происходит кристаллизация, то есть схватывание цемента. Вот почему бетоны с пониженным содержанием воды схватываются быстрее.

Процесс твердения бетона состоит из двух фаз:

Схватывание бетона в условиях оптимальной температуры и влажности окружающей среды начинается через 2 часа и протекает довольно быстро, в течение часа. В этой фазе на бетон можно воздействовать, он остается подвижным.

После окончания первой фазы начинается отвердевание. В оптимальных условиях распалубочная прочность достигается на 7-10-е сутки, расчетная – по истечении 28 дней, затем набор прочности продолжается еще несколько месяцев, но с очень низкой скоростью.

От чего зависит скорость твердения

Ускорители твердения требуются при необходимости продолжить строительство раньше, чем через 4 недели

Факторы, влияющие на скорость застывания:

температура, при которой происходит застывание;

наличие тепловлажностной обработки;

Когда нужно ускорить затвердевание

Ускорители в бетон требуются при зимних строительных работах

Процессы схватывания и набора прочности требуют ускорения:

При необходимости производить строительные работы зимой, чтобы уменьшить затраты на прогрев бетона.

Когда нужна ранняя распалубка.

В случае необходимости продолжить строительство раньше, чем через 28 суток.

Для изготовления большого количества мелких бетонных изделий (производство брусчатки, тротуарной плитки).

Для оптимизации прочности.

Добавка-ускоритель нужна при ранней распалубке и при изготовлении штучных бетонных изделий (тротуарной плитки)

Как ускорить твердение бетонной смеси

Есть разные способы увеличить скорость твердения.

Снижение водоцементного соотношения

Уменьшение воды затворения способствует быстрому образованию концентрированного раствора, в котором кристаллизация происходит лучше, что сокращает время схватывания.

Застывание бетона с высоким и низким В/Ц

снижение подвижности раствора, из-за чего он тяжелее поддается обработке, хуже заполняет подготовленный объем, а готовый бетон может иметь полости, что значительно снизит его качество;

слишком сильное снижение В/Ц приводит к изменению характеристик готового изделия (хрупкости, снижению прочности);

удорожание работ из-за повышенного расхода цемента.

Снижение водоцементного соотношения с одновременным добавлением пластификатора

Для предотвращения негативных характеристик раствора с низким В/Ц, в него добавляют пластификатор. Он позволяет снизить В/Ц и одновременно увеличить подвижность смеси, повысить скорость отвердевания и прочность готового изделия.

Тепловлажностная обработка заливки

Согласно формуле Ван Гоффа, повышение температуры на каждые 10°С (в диапазоне от 0° С до 100°С) влечет увеличение скорости процессов в 2-4 раза.

Бетон, который набирает расчетную прочность при 20°С за 28 суток, теоретически при температуре 60°С и влажности 90% должен набрать таковую за 8 часов. На практике этот процесс при указанной температуре занимает 12 часов.

Напротив, при снижении температуры бетон отвердевает более медленно вплоть до полного торможения процессов.

Недостатки метода: обработка удорожает стоимость производства бетон а .

Добавление присадок и принцип их действия

Для увеличения скорости набора прочности в раствор добавляют химические вещества:

хлористые соли (хлористый кальций, натрий);

Ускорители твердения бетона повышают растворимость компонентов цемента; вода в растворе быстрее насыщается, и кристаллизация идет активнее.

Согласно требованию ГОСТ, ускорители должны увеличивать скорость отвердевания в первые сутки не менее, чем на 30%.

Сезонная специфика

Процесс набора прочности напрямую зависит от температуры.

Оптимальной является температура 20°С и влажность 90%.

В России такая температура бывает недолго. Летом воздух прогревается сильнее; начиная с середины осени температура уже может опускаться до 0°С и ниже.

Учитывая, что бетон набирает прочность в течение почти месяца, работы могут затрудняться.

Важно!

Некоторые соли-ускорители твердения бетона одновременно являются противоморозными добавками.

Добавки-ускорители для твердения бетона используются в соответствии с погодными условиями, чтобы обеспечить оптимальное ускорение твердения.

Например, поташ нельзя применять при положительных температурах, поскольку он резко ускоряет схватывание цемента, делая невозможной работу с ним. Применение поташа при плюсовых температурах допустимо совместно с лигносульфонатами, которые оказывают пластифицирующее действие. В этом случае получаются подвижные бетоны с выраженными антиморозными свойствами, без излишне быстрого схватывания.

Добавление поташа целесообразно при низких температурах: холод замедляет отвердевание, а поташ ускоряет его.

Углекислый натрий (сода) работает как ускоритель для бетона для быстрого схватывания. Его активное воздействие может приводить к хрупкости готовых изделий.

Таблица схватывания бетона

Недостатки распространенных ускорителей твердения бетона

Добавление ускорителей схватывания бетона и ускорителей твердения бетона зависит от температурных условий, используемых добавок, назначения бетона и имеет массу нюансов.

некоторые присадки способствуют коррозии бетона;

хлориды не рекомендуются в армированных бетонных конструкциях, так как способствуют коррозии арматуры;

могут появляться высолы на поверхности бетона;

поташ нельзя использовать в бетонах с электро проводкой;

некоторые соли увеличивают скорость схватывания, но в дальнейшем снижают прочность бетона по сравнению с бетоном без добавок.

Влияние соды на прочность бетона

В серьезном строительстве лучше использовать готовые комплексные добавки для ускорения схватывания и ускорения набора прочности. Они эффективные, экономичные (вносятся в количестве 0,5-1%, некоторые до 4,5% от массы цемента), а их действие предсказуемо и надежно.

Комплексные добавки выпускаются как в виде порошка, так и в жидкой форме.

Распространенные добавки для быстрого твердения:

линейка пластифицирующих добавок-ускорителей Реламикс,

По характеру воздействия на цементное тесто различают следующие виды добавок:

Добавки, не вступающие в реакцию с компонентами цемента, но повышающие их растворимость и снижающие температуру замерзания воды.

Активизирующие процессы гидратации цемента посредством смешивания добавки с частицами цемента, которые разрушают силикатные составляющие цемента и повышают их растворимость в воде и снижают температуру замерзания воды.

Ускоряющие процессы гидратации цемента, вызываемые реакциями обмена, которые приводят к образованию гелей гидроксидов кальция и снижают температуру замерзания воды.

Способствующие выделению тепла при гидратации цемента и понижающие температуру замерзания воды.

Эти добавки можно разделить на следующие основные группы:

Ускорители схватывания

Добавки, обеспечивающее очень быстрое первичное схватывание бетонной смеси. Например, при проведении срочных ремонтных работ, быстрой заделки течей в бетонных резервуарах и т.д.
К ним относят жидкое стекло, в ассортименте компании этот материал представлен средством CEMMIX Liqui.

Ускорители набора прочности

Это добавки для бетона и растворных смесей комплексного действия, позволяющие в два раза сократить набор начальной эксплуатационной прочности и конечной марочной прочности. Их использование ускоряет набор распалубочной прочности и оборот оснастки и опалубки, что дает дополнительную выгоду в виде сокращения времени строительства. Также большой плюс – это способность активации лежалого цемента, что позволяет использовать цемент, долго пролежавший на хранении и потерявший свою активность (способность адгезии с прочими компонентами раствора) без потерь итоговой прочности бетонной конструкции.

Среди наших добавок это комплексный ускоритель твердения CEMMIX CemFix.

Пено- и газообразователи

Обеспечивают вовлечение воздуха в бетон и создание его пористой структуры (газобетон). Приводят к снижению веса конструкции, но и значительному снижению её прочности.

Самый распространённый представитель – алюминиевая пудра.

Во время смешивания бетонной смеси с использованием алюминиевой пудры, сразу производят её виброобработку. Под воздействием вибрации алюминиевая пудра мгновенно вступает в реакцию с цементом и водой. Образующийся при этом алюминат кальция (очень мощный ускоритель схватывания цемента) связывает часть свободной воды из пенобетонной матрицы в кристаллогидрат, с выделением водорода и тепла. Схватывание и твердение такой бетонной смеси происходит за несколько минут.

Количество любых вводимых добавок устанавливают по имеющимся указаниям или на основании лабораторных испытаний. При работе с ними надо соблюдать точные рекомендованные дозировки, и тогда результат работы будет самым высоким!

Если Вам нужна помощь в вопросе использования ускорителей твердения для бетона, подбора оптимального варианта или другие консультации – обращайтесь на горячую линию CEMMIX по телефону на сайте!

Подвижность бетона - что это, и для чего определяется

Подвижность бетона (осадка конуса) - способность смеси растекаться только за счет веса материала. Чем более текучий бетон, тем лучше он заполняет объемную и густую арматуру в опалубках сложных конфигураций. Данное свойство ключевое при оценке допуска раствора к использованию на конкретном объекте.

Растворы разделяются на малоподвижные и высокоподвижные. Первые не применяются без вибропрессования и добавления пластификаторов. Малоподвижными считаются композиции, в составе которых меньше упомянутых компонентов.

Подвижность бетонной смеси определяется маркой цемента, плотностью цементного теста, водно-цементным содержанием, фракцией и формой зерна наполнителей (песка и щебня), чистотой наполнителей (воды, песка и щебня), соотношением компонентов (песка, цемента, воды, извести, щебня), качеством и количеством добавок. Также она зависит от условий заливки в опалубку на объекте.

При подборе бетонного состава по степени подвижности (жесткости и связности) следует знать требования к несущей конструкции сооружения (особенно важно для фундамента) и конкретные условия его заливки (сложность формы опалубки и плотность арматурного каркаса).

Области применения бетонных смесей различных степеней подвижности

Подвижность бетонной смеси обозначается символом «П», который в зависимости от градаций подвижности имеет соответствующий цифровой показатель (марку).

Необходимая марка удобоукладываемости определяется на стадии проектирования строительной конструкции и зависит от ее назначения. Чем выше текучесть бетона, тем лучше он заполняет опалубки сложных форм с густым расположением арматуры. В случае густого армирования вибрирование смеси невозможно или затруднительно.

Необходимая текучесть состава в зависимости от области применения:

  • Малоподвижные составы марки П1 и жесткие Ж1 . Устройство бетонных подушек под фундаменты и стяжек для пола.
  • П1 . Покрытия дорог и аэродромов, плитные железобетонные фундаменты с редким расположением арматурных стержней или плиты без армирования.
  • П1, П2 . Железобетонные балки и плитные фундаменты с умеренным количеством стальной арматуры.
  • П2 . Крупногабаритные колонны.
  • П2, П3 . Горизонтально расположенные железобетонные конструкции с плотным армированием.
  • П3, П4 . Вертикально расположенные строительные конструкции с густым расположением арматурных прутьев – колонны, высокие фундаменты.
  • П5 . Производство плит перекрытий и монтаж трубопроводов. Смеси с таким высоким показателем подвижности можно заливать только в полностью герметичные опалубки.

Таблица подвижности бетонной смеси

Согласно таблице усадка состава до 5 см - жесткие бетонные растворы (П1). Если показатель снижения высоты составляет от 50 до 150 мм - это малоподвижные (используются для заливки фундаментов) составы. Марки подвижности более высокие, вплоть до П5, получают усадку в диапазоне от 150 мм и больше.

Регуляторы подвижности бетонных смесей

Простейший способ повышения текучести пластичной массы – добавление воды – приводит к снижению прочности отвердевшего продукта. Нарушение оптимального водоцементного соотношения становится причиной недобора марочной прочности на несколько классов. Такой вариант применим только при устройстве монолитных конструкций, не запланированных для серьезных нагрузок.

Больше всего прочность готового элемента снижается при добавлении воды в уже готовую смесь.

Для регулирования подвижности бетонной смеси и экономии цемента в ответственных конструкциях применяют химические присадки, вводимые в малых количествах (0,1-2,0%), и тонкомолотые лигатуры (до 20%), позволяющие сократить расход вяжущего с сохранением нормативного качества пластичной массы и готового продукта. Наиболее эффективными химическими добавками являются пластификаторы и суперпластификаторы , которые обеспечивают:

  • увеличение подвижности с одновременным снижением водопотребности;
  • снижение времени вибрирования, что сокращает расход электроэнергии;
  • возможность применения смеси в литьевом методе;
  • экономию цемента;
  • повышение прочности отвердевшего продукта – актуально не для всех химических присадок;
  • продление времени технологической текучести материала;
  • возможность бетонирования строительных конструкций сложных форм;
  • улучшение технологических свойств бетона.

Суперпластификаторы – полимерные вещества, вводимые в количестве 0,1-1,2% от общего объема вяжущего. Активное действие присадки продолжается в течение 2-3 часов с момента ее введения. В индивидуальном строительстве часто вместо дорогостоящих промышленных пластификаторов применяют жидкое мыло или моющее средство для посуды в пропорции: примерно столовая ложка на ведро бетонной смеси.

Подвижность бетона

Подвижность бетона что это — осадка конуса, как измерить?

Подвижность бетона это — способность готовой бетонной смеси растекаться и заполнять собой пустоты и полости конструкции, в которую его заливают.
Данные свойства бетона так же называют «пластичностью». В описаниях бетона производители пишут условное обозначение параметров смеси П1, П2, П3 и так далее. В общей сложности существует пять степеней подвижности бетона. Купить бетон с доставкой от производителя.

Осадок конуса как измерить?

Как измерить подвижность бетонной смеси?

Усеченный конус Абрамса Усеченный конус Абрамса
  • Высота 30 см
  • Больший диаметр 20 см.
  • Меньший диаметр 10 см.

Чтобы определить подвижность того или иного вида бетона, поэтапно заливаем его в нашу ёмкость, слой за слоем протыкая металлическим штырем, для надежного и равномерного распределения по поверхности ведра. Послойная заливка и процесс помешивания смеси предотвращает образование пустот в конечном изделии.
Следующим этапом переворачиваем заполненную тару широким горлом вниз, снимая ведро вертикально (по аналогии с изготовлением детского кулича из песка), оставляя на поверхности только бетон. Вытащенная из тары масса постепенно начинает растекаться вниз под собственным весом (давать осадку). Разница между изначальной высотой конуса и итоговой высотой полученной максимально растекшейся массы называется «осадка конуса» и обозначается аббревиатурой ОК.

Норма удобоукладываемости Норма удобоукладываемости

2. Испытания в форме (Лабораторный способ)

  • Есть более сложный способ определить подвижность бетона, для этого вам понадобится обратиться аккредитованную лабораторию – залить готовую смесь в кубические формы и ждать полного затвердевания. После готовности изделия изучить полученный монолит. Важно чтобы возраст заготовок перед исследованием был не менее двадцати восьми дней.
  • Испытания в форме — Берется стальной куб 20 на 20 см. (подойдет только для бетонных смесей с фракцией не более 7 см.), в куб помещается конус бетона. Устанавливается все на специальный вибростол, измеряется время. Стол начинает вибрировать и под воздействием вибрации конус начинает заполнять стальной куб (квадратную форму). Бетонный конус должен заполнить стальной куб, полностью а поверхность стать горизонтальной. Время за которое конус полностью заполнил стальной куб, умножается на 0,7. После оценивается подвижность бетонной смеси.

Подвижность П1, П2, П3, П4, П5 — характеристики

Сухой бетон, в составе которого нет воды, обладает осадком конуса всего от одного до четырех сантиметров и обозначается П1, где цифра один – самое низкое значение для пластичности бетона.

Полусухой бетон за счет того, что содержит немного влаги, обладает подвижностью П2 (это от пяти до девяти сантиметров осадок конуса).

  • Подвижность П3, П4, П5

Далее идут товарные, то есть уже готовые бетонные смеси, где в составе уже достаточное воды, количество которой зависит от вида и назначения конкретного бетона. Таким смесям ставят параметр П3, если осадок конуса от десяти до пятнадцати сантиметров, П4 если от шестнадцати до двадцати сантиметров или П5 при значении от двадцати до двадцати пяти сантиметров.

Минимальная подвижность бетона для работы бетононасоса

Бетонная смесь с высокой подвижностью П4 и П5 легка и удобна в эксплуатации. За счет своих свойств пластичности бетон проникает во все уголки опалубки, максимально заполняя собой всё необходимое пространство. Это исключает образование полостей в готовой конструкции и даёт гарантию качественного результата заливки. Только бетон П4 и П5 возможно заливать с помощью бетононасоса. Помощь спецтехники существенно экономит время, деньги и силы при строительстве, а зачастую, при затрудненном доступе к опалубке это единственно возможный вариант заливки готовой смеси.

Бетон П1 и П2 мы возим до объекта клиента в самосвалах (либо навалом, либо в мешках). Товарный бетон П3-П5 отгружается в бетоносмесителях, а П4-П5 можно взять сразу в Пуме и сократить расходы на отдельный бетононасос.

Читайте также: