Расчет в excel температурного графика отопления

Обновлено: 04.07.2024

Полезные программы - cтраница 3

Конвертор температур по шкалам: Цельсия, Келивина, Фаренгейта, Ранкина.

  • Полезные программы
  • Свободное распостранение
"AVLab" (199 кБ)

Программа преобразования физических величин.

  • Полезные программы
  • Свободное распостранение
"РАСЧЕТ РЕЗУЛЬТИРУЮЩЕЙ ТЕМПЕРАТУРЫ ПО МЕТОДУ С.А.ВИНОГРАДОВА" (222 кБ )

Расчет результирующей температуры по методу С.А.Виноградова (влажность + температура воздуха + радиационная температура).

  • Полезные программы
  • Свободное распостранение
"РАСЧЕТ РЕЗУЛЬТИРУЮЩЕЙ ТЕМПЕРАТУРЫ ПО ГОСТ 30494-96" (173 кБ )

Расчет результирующей температуры по методу С.А.Виноградова (температура воздуха + температура черного шара).

  • Полезные программы
  • Свободное распостранение
Пакет программ для вычисления свойств воды и водяного пара.

Vxwp - пакет программ для вычисления свойств воды и водяного пара. Свойства зависят давления и температуры. Функции vxwp могут использоваться в документах MathCAD, Excel и прикладных программах. Вычисления проводятся по следующим .

  • Теплофизические свойства веществ
  • Свободное распостранение
"НАУЧНЫЙ ИНЖЕНЕРНЫЙ КАЛЬКУЛЯТОР" (453 кБ )

Калькулятор для инженерных расчетов, преимущественно в области проектирования, строительства и эксплуатации инженерных сооружений и систем отопления, вентиляции, кондиционирования воздуха и охраны окружающей среды.

  • Полезные программы
  • Свободное распостранение
КОМПЛЕКС ПРОГРАММ ПО ГАЗОТУРБИННЫМ УСТАНОВКАМ

выполненные в Mathcad, (некоторые в Excel), включает в себя:расчёт оптимальных параметров цикла ГТУ; расчёт параметров цикла ГТУ с регенерацией;расчёт параметров цикла ГТУ с регенерацией и ПО; расчёт параметров цикла ГТУ с вторичным .

Расчет водяного отопления за 5 минут!

Сегодняшняя тема – система водяного отопления и основополагающие принципы ее расчета. Тема фундаментальная. Ознакомившись с материалом, вы получите ключ к пониманию как выполнять расчет водяного отопления любого объекта! Прочитайте очень внимательно.

. всю статью! Я попытался разложить весь материал на элементарные для простоты восприятия «ступени». Делая шаг за шагом по «ступеням» этой своеобразной «лестницы познания», вы сможете легко достичь «вершины»!

Информация, изложенная в этой статье, не является «открытием Америки». Если вам доступно рассказали об этом когда-то преподаватели, или вы прочитали по этой тематике хорошую книгу – и все поняли, то вам, несомненно, повезло. Так случилось, что мне пришлось доходить до понимания этих, в общем-то, элементарных моментов теплотехники через значительное количество книг с иногда противоречивой и запутанной информацией. В большей степени знания пришли через практические опыты на проектируемых и действующих системах отопления завода металлоконструкций, мебельной фабрики, встроенного магазина, двух больших торговых комплексов и десятка более мелких объектов.

Укрупненный расчет в Excel системы водяного отопления.

Рассмотрим принцип действия и расчет водяного отопления на достаточно абстрактном и простом примере. Идеализированные примеры позволяют, не отвлекаясь на рутинные громоздкие, но, по сути, элементарные вычисления, сосредоточить все внимание на главных принципиально важных вещах.

Есть в русском языке заимствованное из английского языка слово «бокс», которое очень хорошо подходит в нашем случае для названия широкого круга объектов. Итак, будем отапливать бокс!

Условия задачи:

Герметичный бокс (коробка, ящик, вагончик, гараж, помещение, здание, корпус, …) в виде параллелепипеда длиной l , шириной b и высотой h заполнен воздухом, температура которого tвр /внутренняя расчетная температура/. Стенки бокса имеют толщину δ и все сделаны из одного материала, имеющего коэффициент теплопроводности λ .

Со всех шести сторон бокс окружает воздушная среда с температурой tн /наружная температура/.

Слово «среда» в данном случае имеет следующий смысл: масса воздуха в боксе и размеры бокса настолько малы по сравнению с массой и размерами окружающей воздушной среды, что любые изменения внутренней температуры воздуха tв никак не могут повлиять на изменение температуры воздуха снаружи tн .

Внутрь бокса заведены две трубы, к которым подключен установленный внутри прибор отопления (радиатор, конвектор, регистр). По одной из труб в прибор отопления подается от котла — источника теплоснабжения — горячая вода с температурой tп /температура подачи/. По второй трубе вода, отдавшая часть тепла и остывшая до температуры tо /температура обратки/, возвращается в котел. Расход воды при этом постоянен и равен Gр /расчетный расход теплоносителя/ .

Рассматривать источник теплоснабжения и подводящие теплотрассы мы в этой задаче не будем, а примем, что на входе в бокс всегда тепловой энергии в избытке и мы можем брать ровно столько, сколько необходимо, например, при помощи автоматизированного узла подачи и учета тепловой энергии.

Дополнительно известны коэффициенты теплообмена на внутренних и наружных поверхностях ограждений α1 и α2 .

Задан и показатель нелинейности теплоотдачи приборов системы отопления n .

Схема задачи изображена на рисунке, расположенном ниже этого текста. Передняя стенка бокса условно не показана. Габаритные размеры бокса отличаются от расчетных на величину толщины стенок δ . То есть, расчетные плоскости находятся посередине толщины ограждений!

Бокс-параллелепипед с прибором водяного отопления внутри

Требуется:

1. Найти расчетные теплопотери бокса и соответствующую им расчетную мощность системы водяного отопления Nр .

2. При заданных расчетных температурах теплоносителя tпр и tор определить его расчетный расход через систему Gр .

3. Рассчитать теплопотери бокса и соответствующую им мощность водяной системы отопления N для температур наружного воздуха tн , отличных от расчетной температуры tнр .

4. Рассчитать температуры теплоносителя – воды – на подаче tп и в обратке tо , которые обеспечат поддержание внутри бокса неизменной расчетной температуры воздуха tвр , при неизменном расчетном расходе Gр для различных температур наружного воздуха tн .

Расчет будем выполнять в программе MS Excel или в программе OOo Calc.

С общими правилами форматирования — использования различных цветов для заливки ячеек и окраски шрифтов — таблиц MS Excel и OOo Calc , которые применяются мной во всех файлах с программами, можно ознакомиться на странице «О блоге».

Исходные данные:

1. Длину бокса l (м) заносим

в ячейку D3: 10,000

2. Ширину бокса b (м) записываем

в ячейку D4: 5,000

3. Высоту бокса h (м) вводим

в ячейку D5: 3,000

4. Толщину стенок бокса δ (м) вписываем

в ячейку D6: 0,250

При разности температур воздуха внутри бокса и снаружи начинается теплообмен, который включает в себя три этапа: передачу тепла от внутреннего воздуха внутренней стенке ограждения (характеризуется коэффициентом α1 ), передачу тепла через материал стенки (характеризуется коэффициентом λ ) и передачу тепла наружному воздуху от внешней стенки ограждения (характеризуется коэффициентом α2 ).

5. Коэффициент теплообмена на внутренней поверхности ограждения α1 (Вт/(м2*˚С)) заносим

в ячейку D7: 8,700

6. Коэффициент теплопроводности материала ограждения (древесина – сосна) λ (Вт/(м*˚С)) заносим

в ячейку D8: 0,140

7. Коэффициент теплообмена на внешней поверхности ограждения α2 (Вт/(м2*˚С)) заносим

в ячейку D9: 23,000

Термин «расчетная» температура внутреннего или наружного воздуха не означает, что их нужно рассчитывать. Он означает, что эти температуры задаются для расчетов, являются исходными данными для последующих расчетов!

8. Итак, мы хотим поддерживать внутри бокса неизменную температуру воздуха tвр (˚С). Записываем

в ячейку D10: 20,0

9. Расчетную температуру наружного воздуха (в данном примере — для г. Омска) tнр (˚С) вписываем

в ячейку D11: -37,0

Зная характеристики теплоисточника, записываем расчетные параметры теплоносителя, которые должны быть выданы при расчетной температуре наружного воздуха!

10. Расчетную температуру воды на подаче tпр (˚С) вводим

в ячейку D12: 90,0

11. Расчетную температуру воды на обратке tор (˚С) вводим

в ячейку D13: 70,0

Различные приборы, применяемые для систем отопления, – батареи, радиаторы, регистры, конвекторы – имеют различную теплоотдачу при разных схемах подключения и разных температурных режимах. Коэффициент n характеризует нелинейность теплоотдачи каждого конкретного типа прибора и определяется заводом-изготовителем. Чем больше коэффициент n , тем быстрее уменьшается теплоотдача прибора при низкотемпературных режимах и быстрее увеличивается при высокотемпературных режимах отопления!

12. Показатель нелинейности теплоотдачи приборов системы отопления (усредненное значение в нашем примере) n записываем

в ячейку D14: 1,30

Таблица Excel с программой расчета системы водяного отопления

Результаты расчетов:

13. Общую площадь стенок ограждения A (м2) вычисляем

в ячейке D16: =2*(D3*D4+D3*D5+D4*D5) =190,000

A =2*( l * b + l * h + b * h )

14. Коэффициент теплопередачи стенки ограждения k (Вт/(м2*˚С)) рассчитываем

в ячейке D17: =1/(1/D7+D6/D8+1/D9) =0,514

k =1/(1/ α1 + δ / λ +1/ α2 )

15. Расчетные теплопотери бокса Nр (КВт и ГКал/час) определяем

в ячейке D18: =D16*D17*(D10-D11)/1000 =5,571

и в ячейке D19: =D18*0,85985/1000 =0,004790

Nр = A * k *( tвр - t нр )

Для равновесия системы количество тепла, потерянного в окружающую среду должно быть равно количеству тепла, поступившему от источника теплоснабжения! Поэтому расчетная мощность системы отопления и расчетные потери тепла – это одна и та же величина!

16. Расчетный температурный напор θр (˚С) считаем

в ячейке D20: =(D12-D13)/LN ((D12-D10)/(D13-D10)) =59,4

θр =( tпр – tор )/ln(( tпр – tвр )/( tор – tвр ))

17. Расчетный расход воды через систему Gр (т/час) вычисляем

в ячейке D21: = D19/(D12-D13)*1000 =0,239

Gр = Nр /( tпр – tор )

Далее выполним моделирование работы системы отопления при различных температурах наружного воздуха.

18. Температуру наружного воздуха tн (˚С) заносим

в ячейку I15: -40,0

19. Теплопотери бокса и мощность системы отопления N (КВт и ГКал/час) при температуре наружного воздуха tн =-40˚С считаем

в ячейке I16: =$D$16*$D$17*($D$10-I15)/1000 =5,864

и в ячейке I17: =I16*0,85985/1000 =0,00504

N = A * k *( tвр — tн )

20. Температурный напор θ (˚С) считаем для температуры наружного воздуха tн =-40˚С

в ячейке I18: =$D$20*(I16/$D$18)^(1/$D$14) =61,8

θ = θр *( N / Nр )^(1/ n )

и просто пока записываем формулу

в ячейку I19: =(I20-I21)/LN ((I20-$D$10)/(I21-$D$10))

θ =( tп – tо )/ln(( tп – tвр )/( tо – tвр ))

В этом уравнении две неизвестные.

Первая — температура воды на подаче tп , которая при температуре наружного воздуха tн =-40˚С обеспечит при расчетном расходе Gр =0,239т/час расчетную температуру воздуха внутри бокса tвр =+20˚С.

Вторая - температура воды на обратке tо , которая в результате работы системы водяного отопления установится.

Чтобы найти эти две неизвестные, необходимо составить и решить систему из двух уравнений! Одно уравнение есть, составляем второе.

22. Температура воды на обратке tо (˚С), которая установится в результате остывания воды в системе отопления с расчетным расходом Gр =0,239т/час от пока неопределенной температуры воды на подаче tп . При этом расчетная температуру воздуха внутри бокса будет стабильно равной tвр =+20˚С при температуре наружного воздуха tн =-40˚С. Записываем формулу

в ячейку I21: =I20-1000*I17/$D$21

tо = tп — N / Gр

Это второе уравнение. В нем те же две неизвестные.

Итак, имеем систему из двух уравнений, одно из которых – нелинейное трансцендентное. Как решать такие уравнения я подробно рассказал в статье «Трансцендентные уравнения? «Подбор параметра» в Excel!». Но нам сейчас необходимо решить систему уравнений.

21. Делаем так:

— «становимся мышью» на ячейку I19 (активируем эту ячейку)

— вызываем: «Сервис» — «Подбор параметра…»

— пишем в окне «Подбор параметра»:

Установить в ячейке: I19

Значение: 61,8 (переписываем значение из ячейки I18)

Изменяя значение ячейки: I20

— жмем на кнопку ОК

— в появившемся окне «Результат подбора параметра» читаем:

Подбор параметра для ячейки I19.

Подбираемое значение: 61,8

Текущее значение: 61,8

— жмем ОК

Считываем результаты — температуру воды на подаче tп (˚С) и температуру воды на обратке tо (˚С) соответственно

в ячейке I20: =92,9

и в ячейке I21: =I20-1000*I17/$D$21 =71,9

Далее повторяем п.18 – п.22 для других температур наружного воздуха и на этом расчет в Excel завершаем.

Таблица и графики зависимости температуры теплоносителя от наружной температуры воздуха

Замечания и выводы:

Я постоянно напоминал по ходу статьи, что расход воды, определенный для расчетных температур не изменяется и при любых других температурах наружного воздуха! Изменение количества подаваемого тепла производится изменением температуры теплоносителя – воды – на подаче. Этот способ называется качественным регулированием теплоснабжения и является «правильным»! Однако, изменить количество подаваемого тепла можно и изменяя расход теплоносителя в системе. Этот способ называется количественным регулированием и является «не совсем правильным» или «совсем не правильным».

Если система отопления сложная, разветвленная, то, конечно, проще просчитать и отрегулировать гидравлику системы на один постоянный расход! При значительных изменениях расхода во время эксплуатации иногда вообще невозможно сбалансировать систему. Поэтому практику регулировки отопления закрыванием-открыванием задвижек считаю порочной и могу рекомендовать к использованию лишь в исключительных случаях! (Вы скажите — «У нас у многих вся страна – исключительный случай!», и я буду вынужден согласиться.)

Бокс из примера я умышленно со всех сторон оградил однотипным (деревянным) ограждением одной толщины для простоты расчета потерь тепла. В реальных жизненных примерах у объектов, как правило, ограждения имеют сложную геометрию, вырезы под окна, двери и сами сделаны из нескольких слоев различных материалов. К тому же часть ограждающих конструкций может примыкать к другим объектам или земле. Примеры расчета теплопотерь реального здания, помещения постараемся рассмотреть в ближайших статьях рубрики «Теплотехника».

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу Вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» не забудьте подтвердить подписку кликом по ссылке в письме , которое тут же придет к вам на указанную почту (иногда — в папку «Спам» зависит от ваших индивидуальных настроек почты)!

Я не упомянул в статье ни одного СНиПа или ГОСТа, регламентирующего расчеты в рассмотренной области, хотя они, конечно, есть. Специалисты – теплотехники их знают, для них они «настольные книги». Неспециалисты из жизненного опыта решат, какая расчетная температура наружного воздуха для их географического района и какой должна быть расчетная температура воздуха внутри интересующего их объекта, или найдут легко эти значения в Интернете (включая коэффициенты теплопроводности материалов ограждений)…

Прошу уважающих труд автора скачивать файл после подписки на анонсы статей!

Температурный график отопления

Компьютеры уже давно и успешно работают не только на столах офисных работников, но и в системах управления производственными и технологическими процессами. Автоматика успешно управляет параметрами систем теплоснабжения зданий, обеспечивая внутри них.

. заданную необходимую температуру воздуха (иногда для экономии меняющуюся в течение суток).

Но автоматику необходимо грамотно настроить, дать ей исходные данные и алгоритмы для работы! В этой статье рассматривается оптимальный температурный график отопления – зависимость температуры теплоносителя водяной системы отопления при различных температурах наружного воздуха.

Эта тема уже рассматривалась в статье о водяном отоплении. Здесь мы не будем рассчитывать теплопотери объекта, а рассмотрим ситуацию, когда эти теплопотери известны из предшествующих расчетов или из данных фактической эксплуатации действующего объекта. Если объект действующий, то лучше взять значение теплопотерь при расчетной температуре наружного воздуха из статистических фактических данных предыдущих лет эксплуатации.

В упомянутой выше статье для построения зависимостей температуры теплоносителя от температуры наружного воздуха решается численным методом система нелинейных уравнений. В этой статье будут представлены «прямые» формулы для вычисления температур воды на «подаче» и на «обратке», представляющие собой аналитическое решение задачи.

Предложенный далее расчет в Excel можно выполнить также в программе OOo Calc из пакета Open Office.

О цветах ячеек листа Excel, которые применены для форматирования в статьях, можно прочесть на странице « О блоге ».

Расчет в Excel температурного графика отопления.

Итак, при настройке работы котла и/или теплового узла от температуры наружного воздуха системе автоматики необходимо задать температурный график.

Возможно, правильнее датчик температуры воздуха разместить внутри здания и настроить работу системы управления температурой теплоносителя от температуры внутреннего воздуха. Но часто бывает сложно выбрать место установки датчика внутри из-за разных температур в различных помещениях объекта или из-за значительной удаленности этого места от теплового узла.

Рассмотрим пример. Допустим, у нас имеется объект – здание или группа зданий, получающие тепловую энергию от одного общего закрытого источника теплоснабжения – котельной и/или теплового узла. Закрытый источник – это источник, из которого запрещен отбор горячей воды на водоснабжение. В нашем примере будем считать, что кроме прямого отбора горячей воды отсутствует и отбор тепла на нагрев воды для горячего водоснабжения.

Для сравнения и проверки правильности расчетов возьмем исходные данные из вышеупомянутой статьи «Расчет водяного отопления за 5 минут!» и составим в Excel небольшую программу расчета температурного графика отопления.

Исходные данные:

1. Расчетные (или фактические) теплопотери объекта (здания) Qр в Гкал/час при расчетной температуре наружного воздуха tнр записываем

в ячейку D3: 0,004790

2. Расчетную температуру воздуха внутри объекта (здания) tвр в °C вводим

в ячейку D4: 20

3. Расчетную температуру наружного воздуха t нр в °C заносим

в ячейку D5: -37

4. Расчетную температуру воды на «подаче» tпр в °C вписываем

в ячейку D6: 90

5. Расчетную температуру воды на «обратке» tор в °C вводим

в ячейку D7: 70

6. Показатель нелинейности теплоотдачи примененных приборов отопления n записываем

в ячейку D8: 0,30

7. Текущую (интересующую нас) температуру наружного воздуха tн в °C заносим

в ячейку D9: -10

Значения в ячейках D3 – D8 для конкретного объекта записываются один раз и далее не меняются. Значение в ячейке D8 можно (и нужно) изменять, определяя параметры теплоносителя для различной погоды.

Таблица Excel с расчетом температурного графика отопления

Результаты расчетов:

8. Расчетный расход воды в системе Gр в т/час вычисляем

в ячейке D11: =D3*1000/(D6-D7) =0,239

Gр = Qр *1000/( tпр — tор )

9. Относительный тепловой поток q определяем

в ячейке D12: =(D4-D9)/(D4-D5) =0,53

q =( tвр — tн )/( tвр — tнр )

10. Температуру воды на «подаче» tп в °C рассчитываем

в ячейке D13: =D4+0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12^(1/(1+D8)) =61,9

tп = tвр +0,5*( tпр – tор )* q +0,5*( tпр + tор -2* tвр )* q (1/(1+ n ))

11. Температуру воды на "обратке " tо в °C вычисляем

в ячейке D14: =D4-0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12^(1/(1+D8)) =51,4

tо = tвр -0,5*( tпр – tор )* q +0,5*( tпр + tор -2* tвр )* q (1/(1+ n ))

Расчет в Excel температуры воды на «подаче» tп и на «обратке» tо для выбранной температуры наружного воздуха tн выполнен.

Сделаем аналогичный расчет для нескольких различных наружных температур и построим температурный график отопления. (О том, как строить графики в Excel можно прочитать здесь.)

Температурный график отопления в Excel

Произведем сверку полученных значений температурного графика отопления с результатами, полученными в статье «Расчет водяного отопления за 5 минут!» — значения совпадают!

Итоги.

Практическая ценность представленного расчета температурного графика отопления заключается в том, что он учитывает тип установленных приборов и направление движения теплоносителя в этих приборах. Коэффициент нелинейности теплоотдачи n , оказывающий заметное влияние на температурный график отопления у разных приборов различный:

у чугунных радиаторов n =0,15…0,30 (зависит от способа подключения);

у конвекторов n =0,30…0,35 (зависит от марки прибора).

Для любых приборов отопления коэффициент нелинейности теплоотдачи n можно найти в технической документации заводов-изготовителей.

По величине относительного теплового потока q можно понять, что, например, при температуре наружного воздуха tн =-8 °С в нашем примере котел или система должны работать на 50% номинальной мощности для поддержания в помещении температуры внутреннего воздуха tвр =+20 °С.

Используя температурный график отопления, можно быстро выполнить экспресс-аудит системы и понять есть недогрев «подачи» или перегрев «обратки», а так же оценить величину расхода теплоносителя.

Конечно, теплопотери здания зависят от переменных в течение суток и месяцев силы ветра, влажности воздуха, инсоляции, однако главнейшим влияющим фактором все-таки на 90…95% является температура наружного воздуха.

Прошу уважающих труд автора скачивать файл после подписки на анонсы статей!

Ссылка на скачивание файла: temperaturnyy-grafik-otopleniya (xls 26,0KB).

Расчет в excel температурного графика отопления

Здравствуй.. Чтото я запутался в температурах.
Т1 и Т2 график теплосети со срезкой Т1=65 для гвс? Т.е. отопление и ГВС, общее на выходе Т2? Или это с учетом сезонного перегрева отопления из-за срезки?
Т1отопл. и Т2отоп. это уже график теплосети без срезки на гвс, только для отопления?
Интересует график для циркуляции ГВС, т.е. на выходе Т4. Какая она должна быть в открытой системе? Как бы раздельно для отопления и гвс графики "обраток". Както нигде нету

Да, Т1 и Т2 график теплосети со срезкой по Т1 = 65 С для ГВС. Т1 отопл. и Т2отопл. - это чистый отопительный график без учета ГВС, эти столбцы можно в принципе, и скрыть. Насчет графика для циркуляции ГВС ничего сказать не могу, не интересовался специально этой темой


Altelega



Просмотр профиля 21.4.2012, 14:17

Помоему не помешает чистый график Т3, т.е. без учета срезки гвс. У вас в графике Т3 со срезкой, наверное для элеваотров с постоянным коэфицинтом подмеса 2,2.
Встречаются узлы с циркуляционными насосами вместо элеватора, где реально без вреда отоплению "убрать" существующую срезку ГВС, т.е. увеличить коэффициент смешивания с 2,2 до 5 где-то. С элеватором такой фокус проблематично сделать, даже с регулируемым соплом.

На практике встрачался с таким вопросом, указывают что мол по графику температура выше должна быть. Начинаешь доказывать, что это график для элеваторного узла и в нем вынужденный сезонный перегрев. Зачем топить улицу? А по графику нужно топить. Хотя узел тот уже не элеваторный. Как-то неопределенно с этими графиками, вот и для ГВС нету графика

ЗЫ может заблуждаюсь в чем-то? нельзя так сети эксплуатировать, сильно менять коэффициенты? с другой сороны, зачем людям отапливать улицу за свой счет?


denis1976



Просмотр профиля 21.4.2012, 14:27

Помоему не помешает чистый график Т3, т.е. без учета срезки гвс. У вас в графике Т3 со срезкой, наверное для элеваотров с постоянным коэфицинтом подмеса 2,2.
Встречаются узлы с циркуляционными насосами вместо элеватора, где реально без вреда отоплению "убрать" существующую срезку ГВС, т.е. увеличить коэффициент смешивания с 2,2 до 5 где-то. С элеватором такой фокус проблематично сделать, даже с регулируемым соплом.

На практике встрачался с таким вопросом, указывают что мол по графику температура выше должна быть. Начинаешь доказывать, что это график для элеваторного узла и в нем вынужденный сезонный перегрев. Зачем топить улицу? А по графику нужно топить. Хотя узел тот уже не элеваторный. Как-то неопределенно с этими графиками, вот и для ГВС нету графика

ЗЫ может заблуждаюсь в чем-то? нельзя так сети эксплуатировать, сильно менять коэффициенты? с другой сороны, зачем людям отапливать улицу за свой счет?

Вы правы в том, что в температурном графике со срезкой на ГВС изначально предусмотрен вынужденный сезонный перегрев. Как раз от точки излома и до +8 С. Вообще то в этом диапазоне данных кроме качественного регулирования необходимо и количественное. Либо электронный элеватор с регулируемым соплом, либо насос с разными режимами работы. К сожалению, в немногих ИТП есть такое. Вот и топится, как вы говорите, улица. Так что на "полочке" графика однозначно количественно-качественное регулирование, и здесь я с вами согласен. Насчет графика ГВС интересная тема, надо будет заняться как нибудь.


denis1976

Проектирование отопительных систем в MS Excel


Состав теплотехнических расчетов включает теплотехнический расчет теплозащитных свойств ограждающих конструкции, определение потребностей в теплоте каждого помещения (теплопотери), определение типоразмеров и количества нагревательных приборов, потребных для размещения в каждом помещении. Количество помещений обусловливается назначением здания, этажностью, место расположения здания в городе, архитектурно-строительным его решением, пожеланиями заказчика и т.п. Кроме того, теплопотери помещения зависят от расположения помещения в здании: подвал, цокольный, первый, последний этажи, с экерами и без, и мансардные.

Что касается применения нагревательных приборов, то это, помимо назначения помещения и проходящих в нем технологических процессов, в значительной степени зависит от эстетических предпочтений заказчиков. Такое количество факторов, влияющих на выбор нагревательных приборов, существенно увеличивает объемы расчетных работ, а уровень добросовестности их выполнения сказывается на качестве проекта.

Ранее теплотехнические и гидравлические расчеты делались при помощи логарифмической линейки, а в учебных целях проводились с использованием шаблонных таблиц, которые, несколько облегчая расчетный процесс, обеспечивали возможность подробного анализа поэтапных результатов расчетов и позволяли осуществлять соответствующую корректировку как планировочных, так и инженерных решений.

В наше время, при широком внедрении персональных компьютеров, процесс расчетов значительно формализовался и ускорился, что практически полностью исключило фактор инженерного творчества и влияния проектировщика в расчетном процессе с целью поиска альтернативных инженерных решений. Затрудняется дифференцированное изменение типоразмеров и количеств нагревательных приборов, учет корректировок в процессе проектирования ограждающих конструкций, температурного режима и т.п.

Несомненно только одно, что составленные расчетные таблицы как шаблоны должны быть тщательно продуманы и защищены от несанкционированного вмешательства и специально копироваться для каждого конкретного случая применения. Такое обращение с таблицами-шаблонами дает возможность проводить детальный анализ результатов расчета и вносить желаемые изменения в ручном режиме.

Гидравлический расчет — серьезный фактор, гарантирующий работоспособность системы отопления и качество обогрева помещений. Именно им обеспечивается количественный и скоростной режимы распределения теплоносителя по нагревательным приборам, определяется напор побудителя движения теплоносителя, подбираются гидравлические характеристики регулирующих устройств, диаметры трубопроводов и т.п.

Основные понятия и определения

Анализ систем водяного отопления позволил установить, что любую систему отопления можно представить в общем случае как сочетание формализованных самостоятельных конструктивных элементов:

  • разводящих магистралей — подающих и обратных трубопроводов, соединяющих тепловые пункты с отопительными кольцами;
  • отопительных колец, т.е. систем подающих и обратных трубопроводов, обеспечивающих подачу теплоносителя непосредственно к потребителям и состоящих из следующих отопительных конструктивных элементов — магистралей (подающих и обратных трубопроводов, соединяющих стояки), стояков и подводок к нагревательным приборам.

В качестве формализованных конструктивных элементов для составления в дальнейшем расчетных таблиц принимаем: разводящие магистрали, магистрали, стояки и подводки к нагревательным приборам. Конкретизация каждого элемента осуществляем следующим образом. Разводящие магистрали — все участки трубопроводов между тепловым пунктом и отопительными кольцами. Общие участки обозначаются «ПАД» и «ОБР», участки после первого разветвления «П-1-2», «П-3-4», «О-1-2», «О-3-4», где цифры обозначают номера отопительных колец, для которых предназначено данное ответвление.

Последующие разветвления, которые, как правило, осуществляются для присоединения к магистралям отопительных колец, именуются «П-1», «П-2», «П-3», «П-4», «О-1», «О-2», «О-3», «О-4». Четная цифра в данном обозначении указывает только на то, что ответвление по ходу подающего теплоносителя направлено вправо. Технологически на каждом таком ответвлении необходимо устанавливать запорную арматуру, а также балансировочный клапан или дроссельную шайбу.

После них трубопроводы отопительных колец классифицируются как магистрали. Укажем также, что на участках разводящих магистралей «П-1-2», «П-3-4», «О-1-2» и «О-3-4» следует монтировать, по крайней мере, балансировочные краны или дроссельные шайбы — для гидравлической согласованности различных разветвлений. Далее формализуем магистрали отопительных колец. После запорной арматуры участков «П-1», «П-2», «П-3», «П-4», «О-1», «О-2», «О-3» и «О-4» идут магистрали, к которым присоединены стояки.

Расчетными гидравлическими участками являются участки между точками присоединения стоков к магистрали. Обозначение участков по магистрали осуществляем по номерам стояков, причем против движения теплоносителя по подающей магистрали. Первый участок — это трубопровод, подсоединенный к первому стояку, и отвод. Стояки — это трубопроводы транспортирующие теплоноситель между магистралями по этажам через нагревательные приборы.

Стояки, с точки зрения формализации гидравлического расчета, представляют собой системы трубопроводов, расположенных между подводками к нагревательным приборам смежных этажей. Расчетные гидравлические участки обозначаются по порядковому номеру этажа с индексами «П» и «О». Подводки к нагревательным приборам — это система трубопроводов через нагревательный прибор от подающего стояка до обратного трубопровода. На каждой подводке между прибором и стояком установлены краны.

Терморегулирующие вентиля подлежат определению при гидравлическом расчете. Нагревательные приборы могут располагаться как с двух сторон стояка, так и с одной. Для создания Excel-таблицы выбран принцип двухстороннего присоединения нагревательных приборов, причем при взгляде на стояк подводки подразделяются на левую и правую. Для наглядности на рис. 1–4 дана графическая интерпретация. Из рисунков видно, что все разнообразие конструктивного исполнения рассмотренных выше элементов может быть отмечено типом разводки и стояков.

Они по характеру транспортировки по ним теплоносителя различаются на элементы с попутным (П) и тупиковым (Т) движением теплоносителя. В связи с этим, в общем случае системы отопления по гидравлическим особенностям движения теплоносителя по трубопроводам можно подразделить на системы: с попутным движением в магистралях и стояках («П-П»); с попутным движением в магистралях и тупиковым в стояках («П-Т»); с тупиковым движением в магистралях и стояках («Т-Т»); с тупиковым движением в магистралях и попутным в стояках («Т-П»). Разводящие магистрали по характеру движения теплоносителя для всех систем отопления практически одинаковы.

Местные сопротивления

Анализ конструктивного выполнения элементов системы отопления с точки зрения наличия местных сопротивлений показывает, что местные сопротивления складываются из сопротивлений двух видов: типовых элементарных сопротивлений, присущих в любом случае, и характеристических, свойственных конкретному исполнению системы (например, какие либо повороты, нестандартное размещение задвижек, различные обходы конструкций зданий).

Учет местных сопротивлений производится на специальных листах, дифференцировано, по каждому гидравлическому участку для упомянутых выше конструктивных элементов системы. Первый вид местных сопротивлений (КМС) может быть учтен сразу и занесен в расчетные Excel-таблицы. Второй вид местных сопротивлений (КМС) подлежит учету индивидуально на конкретном участке, где они возникают.

При желании использовать Excel-таблицы с учетом ранее занесенных значений типовых КМС возникает некоторая особенность в использовании этой таблицы. Так, необходимо при любой системе отопления первым этажом считать этаж, принятый в Excel-таблице подвальным («п»), а последним этажом считать 30 этаж. Обязательно при расчетах магистралей должны быть использованы стояки 1 и 50.

Персональное определение КМС позволяет отказаться от перечисленных ограничений. Но в этом случае увеличивается объем работ по определению количеств КМС, хотя, используя указанную классификацию КМС, можно значительно облегчить эту работу. Итак, Excel-таблицы составлены:

  • для зданий до 30 этажей, подвалом и цокольным этажом (последние можно также считать этажами, тогда здание 32-этажное);
  • для систем отопления до четырех сочетаний движений теплоносителя: «П-П», «П-Т», «Т-Т», «Т-П»;
  • четырьмя отопительными кольцами;
  • с отопительным кольцом, содержащим до 50 стояков;
  • с двухсторонним присоединением нагревательных приборов.

Excel-таблицы включают листы (рис. 5): исходных данных; результатов расчета; гидравлического расчета разводящих магистралей; гидравлического расчета магистралей; гидравлического расчета стояков; гидравлического расчета подводок к нагревательным приборам; соответственно листам гидравлических расчетов — листы подсчета КМС; на подающих и обратных участках трубопроводов. В лист «Исходные данные…» заносятся:

  • температурные параметры теплоносителя, на которые рассчитывается система отопления, допустимые скорости теплоносителя в магистралях и в трубопроводах стояков, превышение которых нежелательно;
  • тепловая нагрузка нагревательных приборов, привязанная к стоякам рассчитываемой системы отопления, Вт;
  • длина трубопроводных подводок [м] от подающего стояка через нагревательный прибор до обратного стояка;
  • длины гидравлических участков подающих и обратных стояков, м;
  • длины гидравлических участков подающих и обратных трубопроводов магистралей, м;
  • длины гидравлических участков подающих и обратных трубопроводов раздающих магистралей, м;
  • отсутствие этажа, нагревательного прибора, гидравлического участка отмечается «0».

Если в дальнейшем предполагается воспользоваться типовыми КМС, и количество этажей и стояков отлично от табличных, то необходимо заполнение таблиц исходных данных осуществлять с учетом оговоренных выше указаний. Тогда на этом ввод данных считается законченным, и пользователь может перейти на лист «Результаты расчета…», получив окончательные данные. При наличии местных сопротивлений, не подпадающих под типовые, необходимо внести соответствующие коррективы в таблицы КСМ соответствующих элементов системы отопления, и только после этого обратиться к листу «Результаты расчета…». Лист «Результаты расчета…» представляет собой итоги гидравлического расчета и содержит:

  • диаметры трубопроводов гидравлических участков, их длину, скорость теплоносителя, гидравлическое сопротивление, гидравлические характеристики устанавливаемых вентилей или диаметров дросселирующих шайб;
  • гидравлическое сопротивление всей системы отопления.

Листы гидравлических расчетов в общем случае могут быть скрыты, т.к. они, выполнив свои функции, не нужны, однако для проектировщиков они могут представлять определенный интерес. Этот интерес обусловливается профессиональной квалификацией проектировщика и позволяет проводить детальный анализ, проводя ручную корректировку: направленного местного изменения скоростного режима, диаметров трубопроводов, местных сопротивлений, подбор желаемого гидравлического сопротивления системы отопления и т.п.

Так, например, используя свойства, предоставляемые Excel, можно установить, что сопротивления стояков для нагревательных приборов разных этажей сильно различаются между собой и могут составлять величину, соизмеримую с общим сопротивлением всей системы отопления. Анализируя скоростной режим теплоносителя по участкам, нетрудно правильно решить вопросы обезвоздушивания стояка и системы в целом.

Кроме того, возможность практически одновременно получить результаты расчетов четырех систем отопления позволяет проектировщику дать оценку энергетической эффективности каждой системы, и позволяет применить наиболее целесообразную. В процессе проектирования систем отопления составляются поэтажные планы с размещением нагревательных приборов, стояков, прокладки трубопроводов. Неотъемлемой частью проектной части является схема системы отопления.

Расчеты в Excel предоставляют возможность значительно повысить информационную насыщенность проектной документации. Для этого поэтажные планы следует снабдить таблицами подбора нагревательных приборов, которые содержат экспликацию помещений с указанием типов и количеств устанавливаемых нагревательных приборов и их тепловой нагрузки.

Аксонометрические схемы следует обогатить представлением на чертежах таблиц из «Результатов расчета…», которые содержат необходимые при наладке расчетные значения скоростного режима теплоносителя, диаметров трубопровод на каждом участке, требуемые гидравлические характеристики регулирующих гидравлический режим устройств. Как раз это, в ряде случаев, позволяет отказаться от графической интерпретации схемы отопления.

Кроме того, как для монтажа и наладки систем отопления, так и при ее эксплуатации, должное значение имело бы наличие портативного носителя информации (например, «флэшки») с расчетами, в особенности гидравлического расчета.

Теплотехнический расчет

Пример таких таблиц, составленных авторами, приведен выше, на второй страницы данной статьи. Таблицы составлены для условного здания, состоящего из 100 помещений. Таблицы состоят из листов: экспликация помещений и конструкции ограждающих конструкций; теплотехнический расчет ограждающих конструкций; расчет теплопотерь помещениями; подбор нагревательных приборов по помещениям.

На листе «Экспликация помещений и конструкции…» производится перенос экспликации помещений из архитектурных чертежей в систему таблиц, также в этот лист в определенные графы заносятся ограждающие конструкции, в зависимости от предъявляемых к расчету требованиям, т.е. либо расчет величин коэффициентов теплопередачи определенной конструкции ограждения, или определение толщины слоя теплоутеплителя в ограждении с последующим установлением коэффициента теплопередачи, или простое использование нормативных значений коэффициентов теплопередачи.

На листе «Теплотехнический расчет ограждающих конструкций…» осуществляется подбор теплотехнических характеристик материалов, образующих ограждающие конструкции, определяются коэффициенты теплопередачи, которые следует использовать в дальнейшей работе. Лист «Расчет теплопотерь помещениями…» содержит электронную таблицу-шаблон, рассчитанную для обсчета 100 помещений, каждое из которых может включать: четыре зоны потери теплоты через полы на грунте, на лагах, утепленных и неутепленных; два перекрытия; два наружных ограждения; два световых проемов.

Для пользования этими таблицами необходимо дополнить их расчетными климатическими параметрами наружного и внутреннего воздуха, выбрать коэффициенты теплопередачи, ориентацию, геометрические размеры элементов ограждений и т.п. Результаты автоматически переносятся в лист «Подбор нагревательных приборов по помещениям…». Здесь имеются данные по теплотехническим характеристикам различных нагревательных приборов.

Используя эти данные, и определившись с количеством приборов, которое желательно разместить в помещении, и их типом, находим номенклатурный размер и тепловую нагрузку. Данный лист можно поместить как информацию в рабочие чертежи.

Расчет отопительных нагрузок зданий

Программа выполнена в в среде Excel. В ней осуществляется расчет отопительных нагрузок зданий по значениям их объемов и удельной отопительной характеристики. Данная табличка создавалась в помощь инженерам - теплотехникам.

Автор разработчик - Черняев А.А.

Последние программы

Audytor ENERGO RUS версия 2.0

Audytor ENERGO 2.0 - программа для определения теплоэнергетических характеристик тепловой защиты вновь строящихся и реконструируемых зданий различного назначения. Итогом расчетов программы является теплоэнергетический .

  • Тепловой расчёт конструкций и помещений
  • Платная программа
Audytor OZC 7.0

Внимание! Всем пользователям программ Audytor CO 6.0 или Audytor OZC 6.9 (это касается бессрочных и срочных лицензий) БЕСПЛАТНО предоставляются ключи на программы Audytor SET 7.2 модуль СО или Audytor OZC 7.0. Для владельцев бессрочных .

  • Тепловой расчёт конструкций и помещений
  • Платная программа
Audytor SDG версия 2.0
  • Тепловой расчёт конструкций и помещений
  • Платная программа
Расчет времени установления внутренней температуры объекта

В данной программе расчеты основаны на приближенной математической моделитеплового баланса между подачей количества тепла и тепловыми потерями объекта.Автор разработчик - Курмангалиев З.Ш.

  • Тепловой расчёт конструкций и помещений
  • Свободное распостранение
Расчет тепловых потерь в пластинчатых теплообменниках

Программа расчета тепловых потерь в пластинчатых теплообменниках позволяет определить значения толщины накипи (мм) и тепловых потерь (%) по данным коэффициента теплопередачи теплообменника (Вт/(м2*град.С) и температур на .

  • Тепловой расчёт конструкций и помещений
  • Свободное распостранение
"TE" (840 кБ)

Теплотехнический расчет ограждающих конструкций ( программный комплекс ). Теплотехнический расчет ограждающих конструкций жилых, административных и общественных зданий для любого региона России и стран бывшего СHГ с .

  • Тепловой расчёт конструкций и помещений
  • Свободное распостранение
Расчет отопительных нагрузок зданий

Программа выполнена в в среде Excel. В ней осуществляется расчет отопительных нагрузок зданий по значениям их объемов и удельной отопительной характеристики. Данная табличка создавалась в помощь инженерам - теплотехникам. .

  • Тепловой расчёт конструкций и помещений
  • Свободное распостранение
Программный модуль к AutoCAD "Расчет годовых и часовых расходов тепла и топлива"

Программный модуль "ТеплоГазСтрой" .Программа "Расчет годовых и часовых расходов тепла и топлива" Программа выполняет расчет и оформление годовых и часовых расходов тепла и топлива на основании рекомендаций .

Читайте также: