Прочность бетона при осевом растяжении и на растяжение при изгибе

Обновлено: 02.05.2024

Разрушающая нагрузка на бетон: ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам.

Испытание бетона – важный и обязательный этап, необходимый для проверки качества используемого материала при реализации ремонтно-строительных работ. С целью подтверждения материала заявленным характеристикам и показателям, нормам СНиП и ГОСТ, его проверяют на прочность, сопротивление на изгиб/растяжение. Также дополнительно могут проверяться удобоукладываемость, плотность, морозостойкость, водонепроницаемость и т.д.

Основные контролируемые и нормируемые показатели качества бетона:

  • Прочность на сжатие – определяется в классах, обозначается буквой В
  • Прочность на осевое растяжение – также определяется классами, индекс Bt
  • Морозостойкость – исчисляется марками, обозначается F
  • Водонепроницаемость – также марка, буква W
  • Средняя плотность – указывают в марках, индекс D

Испытания бетона могут проводиться с использованием различных методов – исследуются только что залитые или вырубленные из монолита образцы, разрушающие и неразрушающие способы и т.д. Оптимальный вариант испытаний определяют специалисты или сам мастер, с учетом имеющегося в его распоряжении арсенала знаний, навыков, инструментов.

Благодаря своевременно и правильно выполненным мероприятиям по проверке и подтверждению качества бетона удается гарантировать надежность и прочность конструкций, зданий, соответствие выполненных работ всем нормативам и показателям.

От чего зависит и на что влияет прочность бетона

Показатель прочности бетона – самая важная характеристика материала, которая учитывается как в процессе проектирования и выполнения расчетов, так и при выполнении работ. Прочность бетона задает марка, обозначается классом В (измерение в МПа) или М (кг/см2), отображает максимальное давление сжатия, которое материал может спокойно выдержать без деформации.

Когда проводится испытание бетона на прочность, лаборатория или строительная организация (возможно, сам мастер) руководствуются требованиями основных нормативных документов – это ГОСТы 10180-2012, 22690-88, 18105-2010, 28570.

Способность бетона эффективно сопротивляться внешнему воздействию благодаря внутреннему напряжению напрямую зависит от марки цемента и компонентов, входящих в состав раствора. При проверке бетона на соответствие указанной марке, на исследуемом образце не должно быть деформаций, разрушений, расслоений, трещин, сколов и т.д.

Лабораторные испытания бетона на прочность должны проводиться обязательно, особенно в случае заливки важных конструкций, несущих элементов и т.д. Ведь даже минимальное несоответствие (которое часто становится результатом экономии на цементе, других компонентах) может стать причиной быстрого разрушения здания, элемента конструкции.

Прочность состава зависит от: марки цемента, соотношения наполнителей и цемента, фракции наполнителей, качества всех компонентов, чистоты воды, введенных в состав пластификаторов и присадок. Если планируется заливать конструкции, подвергаемые серьезным нагрузкам, бетон дополнительно упрочняют армированием стальными прутьями или сетками, проволокой.

Большое влияние на прочность бетона, испытание которого проводится, оказывают внешние условия, в которых выполняется заливка и сохнет бетон. Также существенно повышается прочность при использовании вибрации, которая удаляет пузырьки воздуха из монолита, делает его более плотным.

Если бетон заливается при минусовых температурах, то компоненты и сам материал либо прогревают, либо смешивают со специальными противоморозными добавками. Могут устанавливаться электроды в заливку, применяться укрытие основания теплоизоляционными материалами, опилками и т.д. Чтобы поверхность монолита не покрывалась трещинами, нужно ее после заливки увлажнять, препятствуя слишком быстрому испарению влаги.

Несмотря на то, что прочность бетона зависит от массы факторов, правильно и своевременно проведенные испытания раствора помогут исключить вероятность приготовления некачественной смеси и избежать вероятности разрушения всей конструкции.

При условии соответствия бетона указанным показателям прочности влияние других факторов на качество раствора можно уменьшить или нивелировать.

Классификация методов испытаний

Испытания бетона проводятся с использованием различных методов, выбор которых зависит от имеющихся мощностей, условий эксплуатации, давности заливки монолита, возможности коррекции состава смеси, исходных данных и требуемых результатов.

Основные методы испытания бетона на прочность:

  1. Испытание образцов бетона, которые отливаются в условиях лаборатории – из смеси создают цилиндры и кубики, конусы, потом проверяют с использованием пресса.
  2. Проверка образцов, которые были вырублены/выпилены из уже готового монолита – обычно бурят алмазными коронками, керны отправляют в лабораторию, там определяют прочность с использованием пресса.
  3. Неразрушающие методы – с применением приборов/инструментов, которые позволяют изучить свойства монолита без необходимости помещения их в определенные устройства и условия. Используются ультразвук, ударно-импульсный метод и т.д.

Несмотря на появление множества современных приборов и разнообразных методов, по-прежнему самым эффективным и популярным считается испытание образцов бетона под прессом (на сжатие).

Другие виды исследований бетона:

  • Осадка конуса – позволяет изучить консистенцию и однородность замешанного раствора. Металлический конус заполняют смесью, снимают форму и изучают показатели, изменения структуры материала.
  • Проверка на уплотнение – для определения коэффициента уплотнения партии раствора. Используется специальный аппарат с 2 мерными емкостями с воронками. В первую заливают бетон, потом через клапан пускают во вторую, откуда смесь уходит в специальный цилиндр.
  • Проверка на изменение формы/пластичность – смесь заливают в конус, его кладут на опорный стол, потом форму убирают и стол опускают, изучают характеристики растекшегося бетона.
  • Испытание на предмет наличия воздушных пустот – используют 2 метода: измерение веса до и после встряхивания/перемешивания бетона в специальном устройстве, испытание давлением.

Исследование бетона в бытовых условиях эмпирическим методом:

  • Цвет – бетон высокого качества должен быть зеленовато-серого оттенка и чем зеленее, тем лучше (желтый оттенок – признак плохого качества).
  • Появление цементного молочка на поверхности залитого бетона – чем гуще, тем лучше.
  • Непокрытые смесью фракции наполнителя – их не должно быть.
  • От затвердевшего монолита молоток при ударе должен отскакивать со звоном, оставляя небольшую вмятину.

Этапы проведения испытаний

Существует две основных группы методов исследований бетона, которые сегодня используются повсеместно для определения качества материала и соответствия его указанным характеристикам.

Разрушающие методы

Испытания проводятся с применением пресса и исследованием кубиков, цилиндров из бетона, полученных в условиях лаборатории либо выпиленных из уже готового монолита (что может сказаться на прочности всей конструкции). На куски бетона оказывают возрастающее давление, пока не удастся зафиксировать разрушение контрольного образца.

Использование такого воздействия на бетон является наиболее точным методом исследования его на прочность и считается обязательным при создании ответственных сооружений.

Неразрушающие методы

В данном случае речь идет об исследовании, которое не предполагает какого-либо разрушающего воздействия на образец или повреждения всей конструкции. Прибор взаимодействует с поверхностью монолита механическим способом посредством: отрыва, отрыва со скалыванием, а также скалывания ребра.

Если используется испытание посредством отрыва, на монолит эпоксидным клеем крепят стальной диск, потом отрывают его специальным устройством с фрагментом конструкции. Полученный показатель усилия по формуле переводят в нужную величину.

Когда проводится отрыв со скалыванием, прибор крепят в полость бетона. Лепестковые анкеры вкладывают в пробуренные шпуры, потом достают часть материала и фиксируют разрушающее усилие. Чтобы определить марочные характеристики, используют переводные коэффициенты.

Скалывание ребра используется там, где есть внешние углы (перекрытия, колонны, балки). Прибор (обычно ГПНС-4) крепят к любому выступающему сегменту анкером с дюбелем, нагружают плавно. В момент разрушения происходит фиксация глубины скола и усилия, прочность потом определяют по формуле, которая обязательно учитывает фракцию наполнителя.

Неразрушающие косвенные методы:

  • Исследование ультразвуком – скорость распространения продольных волн в монолите и эталонном образце сравниваются: УГВ-1 устанавливают на идеально ровную поверхность и прозванивают участки по плану, потом данные обрабатывают по имеющимся таблицам, электронным базам. Погрешность обычно составляет 5%.
  • Ударный импульс – применяется энергия удара бойка из металла сферической формы о монолит. Магнитострикционное или пьезоэлектрическое устройство преобразует удар в электрический импульс, время и амплитуда которых связаны с прочностью бетона.
  • Метод обратного отскока – используется склерометр, который фиксирует величину обратного отскока бойка, устанавливая твердость конструкции.
  • Пластическая деформация – измеряется след на бетоне после удара металлическим шариком, сравнение с эталонным образцом.

Порядок проведения проверки на удобоукладываемость

Чтобы изучить данное свойство бетона, в условиях лаборатории применяют специальный прибор – вискозиметр. Он дает возможность измерить в секундах время, которое нужно для укладки смеси. Укладку начинают и одновременно запускают вискозиметр, потом фиксируют получившиеся показатели. Чем меньше времени нужно для выполнения работ, тем лучше материал.

Порядок проведения испытаний на растяжение

Сначала готовят бетонный конус, его помещают горизонтально в специальный прибор, на средину образца оказывается разрушающая нагрузка по нарастающей. Шаг оказываемого воздействия составляет 0.5 МПа/с. Результат фиксируют после того, как структура бетона разрушилась в центре образца.

Порядок проведения испытаний на сжатие

Благодаря данному методу удается определять марку бетона. Сначала из материала отливают кубики (либо вырезают их из уже залитой смеси) размером 100-300 миллиметров по грани.

Также могут использоваться в испытаниях призмы и цилиндры. В лаборатории образцы отливаются на вибростоле, все испытания осуществляют на 3, 7, 28 (основная проверка) сутки после заливки.

Образец помещается под пресс, давящий на кубик с мощностью 140 кгс/м2 с шагом, равным 3.5 кгс/м2. Вектор силы должен быть строго перпендикулярным основанию бетона. По полученным данным определяют способность сопротивления бетона сжатию, марка записывается в протокол испытаний.

Марки прочности бетона и сфера их применения

Бетону присваивают марку по ГОСТу, которая обозначается буквой М и цифрой в соответствии со способностью сопротивления материала на сжатие. И чем больше значение, тем прочнее считается изделие. Как правило, марка прочности зависит от марки и объема цемента в растворе, качества и соотношения компонентов. Бетон бывает марок М100-М500. Есть марки и меньше, и выше, но они редко используются в строительстве.

Класс бетона определяет его способность работать в агрессивных средах. Бетоны марок М100-М250 относятся к ячеистым, легким. Обычно используются для заливки ненагруженных конструкций, в обустройстве фундаментов малых зданий, бордюров, пешеходных дорожек.

Бетоны марок М300-М350 применяются для обустройства фундаментов многоэтажных строений, для отливки плит перекрытия, монолитных стен. Наиболее прочные бетоны марок М400-М500 актуальны для производства железобетонных конструкций, которые эксплуатируются в сложных условиях, с повышенными нагрузками.

Испытание бетона – важный и обязательный этап контроля и оценки прочности материала, который лучше всего проводить до начала реализации работ, чтобы не разрушать конструкцию и иметь возможность откорректировать состав, предпринять меры для изменения свойств материала.

Заказывая материал в Москве или регионах, необходимо обязательно требовать сертификаты соответствия с результатами лабораторных проверок.

Расчетное сопротивление бетона сжатию - марка и класс на сжатие

Структура тяжелого бетона испытуемого образца

Расчетное сопротивление бетона сжатию – одна из ключевых характеристик, которые необходимо учитывать при проектировании какой-либо конструкции из данного материала, и в начале любого строительства. При этом, нужно обращать на нее внимание не только профессионалам, но и обычным мастерам-подсобникам, решившимся на возведение дома своими руками.

Определения

Прочность – основное качество, которое точно описывает его несущую способность. Определяется она пределом на сжатие – это наивысший предел нагрузки, при котором наступают разрушения образца. И это основной показатель, который и учитывают при его использовании.

Расчетное сопротивление – это показатель стойкости материала нагружающим воздействиям. Используется он при проектировочных расчетах, и неотъемлемо связан с нормативными показателями сопротивления сжатию.

До 2000−х годов ориентировались только на марки материала, которые и принимали как расчетный показатель, но по новым техническим документам, каждой марке присвоен новый критерий соответствия образца сжимающим нагрузкам.

Он выявлен в лабораторных условиях, узаконен специалистами и отражен в СП 52−101−2003. Согласно этому техническому документу, нормативное сопротивление материала осевому сжатию – это и есть класс на сжатие, заданный с 95%-ой обеспеченностью. Условие означает, что оно выполняется в 95% тестируемых случаев, и только в 5% может отклоняться от установленных показателей.

Но даже такой процент доказывает, что пользоваться при проектировании средними расчетными показателями неоправданно рискованно. А при выборе наименьшего значения, увеличится сечение конструкции или изделия, что в свою очередь отразится на перерасходе денежных и энергоресурсов.

Согласно СП 52−101−2003, нормативные значения сопротивления представлены на фото ниже.

Нормативные и расчетные значения сопротивления

Есть еще такое определение, как предел прочности на растяжение. По своей природе, данный материал в разы хуже выдерживает растягивающие нагрузки. Поэтому его и армируют в ЖБИ, стяжках пола большой толщины, фундаментах и прочее.

При расчетах используют в приоритете показатель при сжатии. В принципе, любое изделие или конструкция, испытывают большие нагрузки именно от сжимающих статических или динамических воздействий. Но сопротивление к изгибающим воздействиям учитывают при проектировании. В таких случаях, просто пользуются таблицей соответствия классов.

Таблица 6.7 из СП 63.13330.2012″СНиП 52-01-2003, в которой указаны марки сопротивление к сжатию, растяжению.

ВидБетонНормативные сопротивления МПа, и расчетные сопротивления для предельных состояний второй группы и МПа, при классе материалапо прочности на сжатие В1,5В2В2,5В3,5В5В7,5В10В12,5В15В20В25В30В35В40В45В50В55В60В70В80В90В100Сжатие осевое растяжениеТяжелый, мелкозернистый и напрягающий———2,73,55,57,59,5111518,52225,529323639,54350576471Легкий——1,92,73,55,57,59,5111518,52225,529————————Ячеистый1,41,92,43,34,66,99,010,511,5—————————————Растяжение осевоеТяжелый, мелкозернистый и напрягающий———0,390,550,700,851,001,101,351,551,751,952,102,252,452,602,753,003,303,603,80Легкий——0,290,390,550,700,851,001,101,351,551,751,952,10————————Ячеистый0,220,260,310,410,550,630,891,001,05————————————

От прочности в срезе при скалывании, зависит устойчивость к сжатию от корреляционных показателей.

Примечание. Сопротивление сжатию В25 наиболее часто встречающийся показатель при проектировании материала.

Осевое сжатие. Расчеты и значения

При расчетах нужно учитывать, что класс (В) напрямую зависит от его средней прочности R, МПа. Соответственно, используется следующая формула:

В= R (1−tV), где, t – класс обеспеченности, заложенный при проектировании, в основном берут значение 0,95, соответственно t=1,64; V – коэффициент вариации прочности. 1 – постоянная.

Если в расчетах использовался нормативный коэффициент V = 13,5% (0,135), то средняя прочность равна R = В/0,778.

Другое дело, когда рассчитываются всевозможные железобетонные конструкции. Особо тщательно просчитывается граничная высота оговариваемой зоны. Она выражает такую высоту, при которой перед разрушением напряжения в сжатом материале и растянутой арматуре, достигают своих максимальных значений одновременно. Только при таком условии можно считать сечение нормально армированным.

При этом относительная высота этой зоны (таблица), используется для определенного изделия своя. Их можно найти в нормативных документах, и применять данные при расчетах. В принципе, представленная информация вкратце разъяснила, что представляет собой зона сжатия и сопротивление осевому сжатию.

Методы определения прочности по контрольным образцам бетона

Разобравшись с тем, что такое сопротивление материала на сжатие, рассмотрим основные методы определения данного показателя.

Испытание бетона разрушающим способом

Проверка на сжатие проводится, как правило, в аккредитованных строительных лабораториях на поверенном оборудовании. Главное, что для него понадобится − пресс.

Также будут необходимы точные лабораторные весы, штангенциркуль и испытуемые образцы. Последние готовятся заранее из нужной партии. Форма стандартная – куб со сторонами 10 см. Согласно техническим документам, используют от 3 до 5 штук образцов для одной партии.

Совет. Изначально их нужно подготовить, отчищая от загрязнения и взвешивают для определения соответствия плотности, веса и проектной марки материала. Если эти значения в норме, то на 95% можете быть уверены в должном уровне устойчивости.

Абсолютно ровными гранями образец устанавливается на пресс, включается и начинается проверка. Максимальная нагрузка, при которой началось разрушение образца – это и есть предельное сжатие.

Среднее значение устанавливается по результатам контроля всех отобранных образцов. По конечной цифре определяется, соответствует или нет фактическая прочность нормативным и проектным значениям. После чего она заносится в журнал.

Галерея: процесс испытания разрушающим методом с помощью пресса.

Контроль неразрушающими методами

Предыдущий метод обязателен на любом строительном производстве и на любом этапе строительства.

Он считается наиболее достоверным:

  • На результаты протоколов, лабораторных разрушающих исследовании, опираются конструкторы и архитекторы при возведении зданий и изготовлении железобетонных изделий.
  • Когда же нет возможности определить прочность образцов разрушающим методом, или же требуется через определенное время повторный анализ характеристик, используют специальные устройства.
  • Они необходимы для того, чтобы протестировать материал на сжатие непосредственно на месте. Одним легким нажатием они определяют числовое значение и при желании другие необходимые характеристики, касающиеся однородности и уплотнения тела материала.
  • Существует масса подобного оборудования, но наиболее распространённый в строительных кругах – прибор ИПС − МГ различной модификации. Он прост в использовании, точен и цена на него вполне доступна.

Фото автоматизированного аппарата.

Преимущественно его используют на строительной площадке. Этот электронный измеритель позволяет в короткие сроки определить показатели плотности, прочности и упруго−пластические свойства методом ударного импульса. Этот способ хоть и не является приоритетным, но все же, предусмотрен ГОСТ 22690.

Совет. Обязательно перед «простреливанием» бетона необходимо выбрать или подготовить поверхность. Она должна быть ровной без шероховатостей, вмятин, пустот, трещин и прочих дефектов площадью не меньше 100 см2. При необходимости нужно зашкурить поверхность.

Количество участков должно приниматься по программе испытаний, но их должно быть не менее трех. Обычно для объемной железобетонной конструкции берут среднее значение 15 проб.

Это количество зависит от площади, так как точки контроля должны находиться на расстоянии друг от друга 15 мм и от края не менее 50 мм. Идеальные места – между гранулами щебня и крупными раковинами в бетонном теле.

Чтобы провести тестирование конструкции, необходимо:

  • включить прибор, при этом он сразу будет в режиме испытания;
  • ввести данные об испытываемом материале;
  • взвести рычаг на «пистолете»;
  • плотно прижать перпендикулярно к тестируемой поверхности и отпустить рычаг;
  • на табло появится результат, он запоминается с последующими испытаниями;
  • после 15 проб выводится автоматически среднее значение, если количество «прострелов» меньше, то можно заранее просмотреть средний результат.

Чем хорош такой прибор – все данные на нем могут сохраняться на компьютере и архивироваться. В любой момент можно просмотреть предыдущие испытания на компьютере и составить протокол.

Прочность бетона при осевом растяжении и на растяжение при изгибе

Методы определения прочности по контрольным образцам

Concretes. Methods for strength determination using reference specimens

____________________________________________________________________
Текст Сравнения ГОСТ 10180-2012 с ГОСТ 10180-90 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

Дата введения 2013-07-01

Предисловие

Сведения о стандарте

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона "НИИЖБ" - филиалом ФГУП "НИЦ "Строительство"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (приложение Д к протоколу от 4 июня 2012 г. N 40)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа государственного управления строительством

Государственный комитет градостроительства и архитектуры

Министерство архитектуры и строительства

Агентство по делам строительства и жилищно-коммунального хозяйства

Министерство строительства и регионального развития

Министерство регионального развития

Агентство по строительству и архитектуре при Правительстве

4 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 2071-ст межгосударственный стандарт ГОСТ 10180-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2013 г.

5 Настоящий стандарт соответствует основным нормативным положениям в части изготовления и испытания образцов бетона, приведенным в следующих европейских региональных стандартах:

Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

EN 12390-1:2009 "Испытание затвердевшего бетона. Часть 1: Форма, размеры и другие требования к испытуемым образцам и формам" ("Testing hardened concrete - Part 1: Shape, dimensions and other requirements of specimens and moulds", NEQ);

EN 12390-2:2009 "Испытание затвердевшего бетона. Часть 2: Изготовление и выдерживание образцов для испытания на прочность" ("Testing hardened concrete - Part 2: Making and curing specimens for strength tests", NEQ);

EN 12390-3:2009 "Испытание затвердевшего бетона. Часть 3: Прочность на сжатие испытуемых образцов" ("Testing hardened concrete - Part 3: Compressive strength of tests specimens", NEQ);

EN 12390-4:2009 "Испытание затвердевшего бетона. Часть 4: Прочность на сжатие. Технические условия для испытательных установок" ("Testing hardened concrete - Part 4: Compressive strength - Specification for testing machines", NEQ);

EN 12390-5:2009 "Испытание затвердевшего бетона. Часть 5: Прочность на растяжение при изгибе испытуемых образцов" ("Testing hardened concrete - Part 5: Flexural strength of tests specimens", NEQ);

EN 12390-6:2009 "Испытание затвердевшего бетона. Часть 6: Прочность испытуемых образцов на растяжение при раскалывании" ("Testing hardened concrete - Part 6: Tensile splitting strength of tests specimens", NEQ).

7 ПЕРЕИЗДАНИЕ. Июнь 2018 г.

1 Область применения

Настоящий стандарт распространяется на бетоны всех видов по ГОСТ 25192, применяемые во всех областях строительства, и устанавливает методы определения предела прочности (далее - прочность) бетонов на сжатие, осевое растяжение, растяжение при раскалывании и растяжение при изгибе путем разрушающих кратковременных статических испытаний специально изготовленных контрольных образцов бетона.

Настоящий стандарт не распространяется на специальные виды бетонов, для которых предусмотрены другие стандартизованные методы определения прочности.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 2.601-2006 Единая система конструкторской документации. Эксплуатационные документы

ГОСТ 8.326-89* Государственная система обеспечения единства измерений. Метрологическая аттестация средств измерений

* В Российской Федерации действуют ПР 50.2.006-94.

Вероятно ошибка оригинала. Следует читать: ПР 50.2.009-94. - Примечание изготовителя базы данных.

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 3749-77 Угольники поверочные 90°. Технические условия

ГОСТ 577-68 Индикаторы часового типа с ценой деления 0,01 мм. Технические условия

ГОСТ 6659-83 Картон обивочный водостойкий. Технические условия

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 7950-77 Картон переплетный. Технические условия

ГОСТ 9542-89 Картон обувной и детали обуви из него. Общие технические условия

ГОСТ 10181-2000 Смеси бетонные. Методы испытаний

ГОСТ 10905-86 Плиты поверочные и разметочные. Технические условия

ГОСТ 12730.1-78 Бетоны. Метод определения плотности

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 22685-89 Формы для изготовления контрольных образцов бетона. Технические условия

ГОСТ 24104-2001** Весы лабораторные. Общие технические требования

ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

ГОСТ 28840-90 Машины для испытаний материалов на растяжение, сжатие и изгиб. Общие технические требования

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Сущность методов

Определение прочности бетона состоит в измерении минимальных усилий, разрушающих специально изготовленные контрольные образцы бетона при их статическом нагружении с постоянной скоростью нарастания нагрузки, и последующем вычислении напряжений при этих усилиях.

4 Контрольные образцы

4.1 Форма, размеры и число образцов

4.1.1 Форма и номинальные размеры образцов в зависимости от метода определения прочности бетона должны соответствовать указанным в таблице 1.

Прочность бетона при осевом растяжении и на растяжение при изгибе

МЕТОДЫ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПО КОНТРОЛЬНЫМ ОБРАЗЦАМ

Concretes. Methods for strength determination using reference specimens

____________________________________________________________________
Текст Сравнения ГОСТ 10180-90 с ГОСТ 10180-2012 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

МКС 91.100.30
ОКП 58 0000

Дата введения 1991-01-01

Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Госстроя СССР

Всесоюзным научно-исследовательским институтом заводской технологии сборных железобетонных конструкций и изделий (ВНИИ-железобетон) Госстроя СССР

Министерством энергетики и электрификации СССР, Министерством транспортного строительства СССР, Государственным комитетом СССР по управлению качеством продукции и стандартам

2. ВНЕСЕН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Госстроя СССР

3. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 29.12.89 N 168

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

ВЗАМЕН ГОСТ 10180-78 в части определения прочности бетона по контрольным образцам

ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначения НТД, на который дана ссылка

Номер пункта, приложения

Вводная часть, 2.3.1, 6.7, приложение 11

2.2.4, 4.4, приложение 3

* Документ в информационных продуктах не содержится. За информацией о документе Вы можете обратиться в Службу поддержки пользователей. - Примечание изготовителя базы данных.

4. ПЕРЕИЗДАНИЕ. Сентябрь 2006 г.

Настоящий стандарт распространяется на бетоны всех видов по ГОСТ 25192, применяемые во всех областях строительства.

Стандарт устанавливает методы определения предела прочности (далее - прочности) бетонов на сжатие, осевое растяжение, растяжение при раскалывании и растяжение при изгибе путем разрушающих кратковременных статических испытаний специально изготовленных контрольных образцов бетона.

Стандарт не распространяется на специальные виды бетонов, для которых предусмотрены другие стандартизированные методы определения прочности.

При производственном контроле прочности бетона стандарт следует применять с учетом требований ГОСТ 18105*, в котором установлены правила оценки прочности бетона в конструкциях на основе результатов испытаний образцов бетона по настоящему стандарту.

* На территории Российской Федерации документ не действует. Действует ГОСТ Р 53231-2008, здесь и далее по тексту. - Примечание изготовителя базы данных.

Стандарт соответствует СТ СЭВ 3978. Степень соответствия приведена в приложении 1.

1. СУЩНОСТЬ МЕТОДОВ

Определение прочности бетона состоит в измерении минимальных усилий, разрушающих специально изготовленные контрольные образцы бетона при их статическом нагружении с постоянной скоростью роста нагрузки и последующем вычислении напряжений при этих усилиях в предположении упругой работы материала.

2. КОНТРОЛЬНЫЕ ОБРАЗЦЫ БЕТОНА

2.1. Форма, размеры и число образцов

2.1.1. Форма и номинальные размеры образцов в зависимости от метода определения прочности бетона должны соответствовать указанным в табл.1.

Прочность бетона (на растяжение, при сжатии): от чего зависит, как определить

Прочность бетона – определяющий показатель бетонного раствора, который обуславливает задачи и условия его использования. Бетонная смесь используется повсеместно в проведении ремонтно-строительных работ частных и промышленных объектов. Рецептов приготовления бетона существует множество, состав и пропорции компонентов напрямую влияют на свойства и характеристики, а также сферу использования цементного раствора.

Прочность бетона – определяющая характеристика, которая отображается в маркировке. Непосредственно прочность определяет марку и класс раствора. Данные показатели указываются в различных ГОСТах, СНиПах, нормативных документах, определяют эксплуатационные качества и свойства бетонных элементов, конструкций, зданий и т.д.

Знание показателей прочности бетона очень важно при выполнении любых работ, так как позволяет точно выполнить расчеты, верно подобрать смесь подходящих марки и класса для конкретной задачи, будучи уверенным в прочности, надежности и долговечности элемента, конструкции. Застройщики в обязательном порядке проверяют прочность бетона на растяжение, сжатие, изгиб и т.д. прежде, чем начинать работы.

испытания бетона на прочность на сжатие

Какие показатели определяют прочность бетона: Любой класс приравнивается к определенной марке (то же правило действует и наоборот). Обычно в проектных документах указывают класс прочности, а в заказах на покупку – марку.

Что это такое и основные виды

Пытаясь разобраться, от чего зависит прочность бетона, что это такое и какие есть основные виды показателя, необходимо изучить все основные аспекты процесса приготовления смеси, состав, условия и особенности.

Факторы, влияющие на прочность бетона: Качество цемента в составе Объем цемента в растворе Объем воды Качество заполнителей Качество перемешивания компонентов Порядок укладки Условия твердения Замерзание Основные виды прочности бетона: Нормативная Фактическая Распалубочная

Виды прочности касательно марки и качества: прочность бетона при сжатии, на изгиб, осевое растяжение, а также передаточная прочность.

прочность бетона на сжатие и предел прочности

Прочность на сжатие

В контексте данной характеристики бетон можно сравнить с камнем – он намного лучше сопротивляется сжатию, чем с растяжением. Основной критерий прочности бетона – это предел прочности на сжатие.

Данный показатель считается самым важным среди всех технических характеристик раствора – именно он влияет на сферу использования конструкции или элемента, обеспечивает надежность и долговечность.

Для определения значения из раствора заливают образцы в виде куба, их помещают под специальный пресс. Давление постепенно увеличивается и в момент, когда образец трескается, экран прибора фиксирует значение. Расчетный показатель прочности на сжатие определяет присвоение бетону класса. Высыхает и твердеет смесь в течение 28 суток (и больше), по завершению этого срока осуществляют проверку, так как смесь уже должна достичь расчетной/проектной прочности.

Прочность на сжатие представляет собой характеристику механических свойств материала, стойкости к нагрузкам и давлению. Это показатель границы сопротивления, которое оказывает застывший раствор механическому воздействию сжатия, отображенному в кгс/см2. Наименьшей прочностью на сжатие обладает смесь М15, наибольшей – М800.

Прочность на сжатие отображается и в марке, и в классе. Класс В – это кубиковая прочность, обозначается в МПа. Марка М – предел прочности на сжатие в кгс/см2. Данные соответствия марок, классов и показателей указаны ниже в таблице.

испытания бетона под прессом

Прочность на изгиб

Данный показатель повышается по мере увеличения цифрового обозначения марки. Обычно показатели прочности на изгиб и растяжение меньше в сравнении с нагрузочной способностью бетона. Молодой бетон демонстрирует значение 1/20, старый – 1/8. Прочность на изгиб обязательно учитывается в проектировании перед строительством.

Чтобы понять, какой уровень прочности на изгиб демонстрирует бетон, заливают заготовку в виде бруса с размерами, к примеру, 60 х 15 х 15 сантиметров (эталонный образец). Бетон заливают в формы, штыкуют, оставляют на несколько дней, потом извлекают из форм и дают полностью застыть в течение 28 суток при оптимальных условиях: температура минимум 15-20 градусов и влажность до 80-90%. Периодически образцы обкладывают сырыми опилками (их увлажняют регулярно) или поливают водой.

Когда заготовка полностью затвердевает, ее устанавливают на подпорки, которые находятся на определенном расстоянии, в центре же размещают нагрузку, постепенно ее увеличивая до тех пор, пока образец не будет разрушен.

Для этого может использоваться специальный гидравлический пресс. Размеры балки и расстояния между двумя подпорками могут отличаться.

Формула для подсчета прочности на изгиб:

R изг = 0.1 PL / bh2.

Существенно повысить значение до определенной величины можно с помощью армирования – это сравнительно недорогой и эффективный метод.

Осевое растяжение

Данный параметр при проектировании несущих конструкций, как правило, не учитывается вовсе. Он важен для определения способности бетона не покрываться трещинами в случае резких перепадов температуры/влажности. Растяжение – это некоторая составляющая прочности на изгиб.

Значение осевого растяжения определяется довольно трудно. Один из используемых способов – растяжение образцов балок на предусмотренном для этого специальном оборудования. Бетонный монолит разрушается и от воздействия двух противоположных растягивающих сил. Способность противостоять осевому растяжению играет важную роль в приготовлении бетона, который используется для дорожного покрытия и резервуаров, где трещины просто недопустимы.

Как правило, мелкозернистые составы демонстрируют более высокий показатель прочности на растяжение в сравнении с крупнозернистыми (при условии аналогичного показателя прочности сжатия).

Данный показатель обозначается буквами Bt, находится в диапазоне 0.4-6 МПа.

испытания бетона на прочность

Передаточная прочность

Данный вид прочности – это нормируемый показатель напряженных элементов при передаче на него напряжения от армирующих деталей. Прочность передаточная указывается в нормативных документах и ТУ для отдельного вида изделий. Обычно назначается минимум 70% проектной марки, напрямую зависит от свойств арматуры.

Рекомендуемым значением считается минимум 15-20 МПа с учетом вида армирования. Если обозначать передаточную прочность, то это показатель, который демонстрирует уровень, при котором армировочные стержни не проскальзывают с кондукторов при снятии.

Минимальная величина Rbp обеспечивает трещиностойкость и прочность изделия при обжатии, перевозке и подъеме. Чем ниже Rbp, тем большими будут потери от ползучести и выше сила обжатия. Но чем выше Rbp, тем длительнее должна быть термообработка, тем дороже обходится конструкция. По опыту многие мастера указывают, что оптимальной Rbp считается 0.7 В.

создание бетонных образцов для исследований

Методы определения прочности

Понимая, как определить прочность бетона, можно более точно составлять проектную документацию, выполнять расчеты для тех или иных конструкций. Как правило, прочность бетона определяют в условиях лаборатории, с использованием специальных приборов, на контрольных образцах и отобранных пробах. Испытания контролируются и регламентируются по ГОСТу, принятому для того или иного вида бетонной смеси.

Кроме того, прочность бетона определяется на строительном объекте в процессе выполнения работ, что позволяет контролировать качество смеси.

Основных методов определения прочности бетона существует два: разрушающие и неразрушающие. Обычно прочность бетона в промежуточном возрасте не определяется, чаще всего используют уже застывшие образцы или куски монолита.

прибор для проверки прочности бетона

Разрушающий способ

Данная группа методов требует разрушения опытного образца, который готовится из контрольной пробы бетонного раствора либо же изымается из монолита алмазным буром. Выпиленные цилиндры или залитые кубики раздавливаются под прессом. Нагрузку повышают непрерывно, равномерно в течение не очень длительного времени, пока контрольный образец не разрушится. Результаты критических нагрузок фиксируют, дальше считают показатели.

Разрушающий метод – наиболее точный из всех, используемых для определения прочности бетона. Так, обследование здания способом раздавливания бетонных проб позволяет определить прочность монолита на сжатие. По действующим СНиПам, это обязательная процедура до сдачи сооружения в эксплуатацию.

Неразрушающий способ

Эта группа методов не требует разрушения образцов и вообще может не предполагать их использования. Испытания осуществляют с применением разных инструментов и приборов.

Виды неразрушающих методов исследования по типу применяемых инструментов:
  1. Ударное воздействие
  2. Частичное разрушение
  3. Ультразвуковое обследование

Способ ударного воздействия базируется на применении силового воздействия ударного типа к бетонной поверхности.

виды прочности бетона

Три основных способа исследования прочности ударом: Упругий отскок Метод ударного импульса Пластическая деформация

Частичное разрушение предполагает местное воздействие на бетонный монолит и повреждает его несильно.

Методы частичного разрушения: Скалыванием Отрыв со скалыванием

Ультразвуковое исследование предполагает использование специального прибора, который выдает ультразвуковые волны. В процессе определяется скорость ультразвука, который проходит через бетонную конструкцию. Таким образом исследуются как поверхность бетона, так и его глубинные слои. Но есть погрешность в расчетах.

определение класса и марки бетона

Классификация и применение бетонов

Деление бетона на виды достаточно условное. Как правило, легкими считают бетоны марок М10-М200, обычными М250-М400, тяжелыми М450 и выше.

Читайте также: