Почему гудят провода линий электропередач в доме

Обновлено: 01.05.2024

Почему гудят провода линий электропередач?

Как гудят высоковольтные провода?

Это гудит воздух вокруг них

Он вспыхивает и гаснет вокруг провода с переменным током 100 раз в секунду — с частотой нарастания и спада напряжения в силовой сети. При каждом таком разряде воздух нагревается и расширяется. Периодическое расширение и сжатие воздуха порождает гудение.

Почему гудят телефонные провода?

Можно ли трогать лэп?

В чем вред лэп?

Так, шведские ученые установили, что у людей, проживающих на расстоянии до 800 м от ЛЭП напряжением 200 кВ, статистически чаще встречаются лейкозы, опухоли мозга, онкология молочной железы. У мужчин снижается репродуктивная функция, снижается процент рождения мальчиков.

Почему сильно гудит трансформатор?

Почему гудит электричество?

Частота в сети у нас 50Гц, соответственно, ток в каждом проводе 100раз в секунду переходит через ноль, на этой частоте и вибрируют(гудят) провода.

Почему гудит ветер?

Но когда ветер дует быстро, давление воздуха на препятствия растет, потоки ветра о них рассекаются, образуя вихри, которые заставляют провод или ветку мелко дрожать. И мы слышим свист.

Почему гудят провода на морозе?

Почему дрожат провода?

При воздействии ветра на провод с односторонним гололедом скорость воздушного потока в верхней части увеличивается, а давление уменьшается. В результате возникает подъемная сила Vy, вызывающая пляску провода.

Что делать если на человека упал высоковольтный провод?

Первое, что следует сделать – это покинуть опасную зону, то есть необходимо удалиться от оборванного провода на расстояние более 8 м. Передвигаться в зоне действия токов замыкания на землю нужно «гусиным шагом», не отрывая ноги друг от друга.

Что делает лэп?

Ли́ния электропереда́чи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока. Также электрическая линия в составе такой системы, выходящая за пределы электростанции или подстанции.

Что делать если рядом с человеком упал оборванный провод?

Что делать если рядом с человеком упал оборванный провод

Почему нельзя жить рядом с лэп?

По словам энергетиков, жить рядом с ЛЭП не опаснее, чем находиться рядом с обычной розеткой — напряжённость электромагнитного поля у них одинаковое. Правда, это не касается линий в 500 кВ — они действительно очень опасны для здоровья, поэтому их устанавливают далеко от городов и посёлков.

На каком расстоянии от высоковольтной линии можно жить?

ЛЭП в жилых районах

Согласно СанПиН, их расположение разрешено в 5 метрах от участка. Изолятор обязательно устанавливают за пределами жилого дома на высоте 2,75 метров над землей. Провисание проводов над пешеходными дорожками должно составлять не менее 3,5 метров, а между столбами над проезжей частью не менее 6 метров.

На каком расстоянии от линии электропередач можно строить дом?

для ВЛ с напряжением 330кВ длина защитной зоны должна быть не меньше 20 м; для ВЛ 500кВ длина безопасной зоны должна быть не меньше 30 м; для ВЛ 750кВ – критическое расстояние 40 м; для ВЛ 1150кВ – дом должен стоять не ближе, чем на расстоянии 55 м.

masterok


Разные линии электропередач — ЛЭП — отличаются по напряжению, под которым находятся их провода по отношению к земле. Высоковольтные ЛЭП с напряжением больше 100 кВ создают звук, похожий на громкий шелест или потрескивание. Он возникает при коронном разряде воздуха вблизи мест крепления проводов к опорам через изоляторы. Не эти звуки нас интересуют. В нашей стране огромная протяженность ЛЭП между деревнями и небольшими поселками, они передают электроэнергию при напряжениях порядка 10 кВ. А к домам в таких поселках ЛЭП несут энергию при напряжениях 220–380 В. Вот к их-то гудению чаще всего и прислушиваются жители этих поселений и городские отдыхающие.

Причин, которые могут вызвать звук, несколько.

Начнем с механической. Действительно, натянутый провод представляет собой струну или стержень, и на проводе могут возникать резонансные стоячие волны.

Теперь рассмотрим магнитную причину возможного гудения проводов. Каждый провод ЛЭП, по которому течет ток, находится во внешнем магнитном поле Земли, которое в наших (российских) широтах имеет вертикальную составляющую индукции магнитного поля, направленную вниз, т.е. перпендикулярно горизонтальным (почти) проводам ЛЭП.

Если в проводе течет переменный ток с частотой 50 Гц, то сила Ампера толкает провод в горизонтальном направлении, перпендикулярном проводу. Если, например, опоры ЛЭП — это деревянные столбы, то провода крепятся к опоре через изоляторы на так называемых крюках и располагаются по одну или по разные стороны от опоры на разных уровнях по вертикали. Поскольку фазы токов в проводах отличаются, то опора (деревянный столб) испытывает изгибные напряжения на частоте 50 Гц, а это не те 100 Гц, которые нас интересуют.

Однако силы действуют не только между проводами ЛЭП, разделенными большими промежутками, но и внутри каждого провода, который состоит из стальной центральной жилы и намотанных на нее алюминиевых жил. Алюминий, как известно, окисляется на поверхности, и пленка окисла плохо проводит ток. Если, например, не по всем алюминиевым жилам течет одинаковый ток, то в этом случае система жил в одном проводе получается несимметричной и в месте расположения железного сердечника периодически изменяется магнитное поле. Частота изменения силы, действующей на стальной сердечник, равна как раз 100 Гц. При этом стальной сердечник притягивается к тем алюминиевым жилам, по которым течет наибольший ток. Расстояния между серединами жил небольшие (≈ 0,5 см), и они не всегда прижаты друг к другу так, чтобы нигде не было зазоров. Кроме того, стальной сердечник имеет немалую магнитную восприимчивость (μ ≈ 103), поэтому силы возникают большие, а тряска и столкновения жил приводят к появлению звука именно на частоте 100 Гц (и на более высоких гармониках, кратных 100 Гц).

Вот он механизм возникновения звука, который может «бегать» вдоль проводов!

Ровно по такой же причине на частоте 100 Гц гудят трансформаторы и дроссели люминесцентных ламп в нашей стране. (Кстати, в США они гудят на частоте 120 Гц.) Звук на этой частоте передается опорам через изоляторы. Сухое дерево, из которого сделаны опоры, является хорошим резонатором, поэтому оно и само трясется на частотах 50 и 100 Гц и трясет окружающий воздух. Таким образом и возникает звук, который называют гудением проводов или опор ЛЭП.

Почему шумят провода ЛЭП

Почему гудят провода ЛЭП? Вы когда-нибудь задумывались об этом? А ведь ответ на этот вопрос может быть отнюдь не тривиальным, хотя и вполне бесхитростным. Давайте рассмотрим несколько вариантов объяснения, каждый из которых имеет право на существование.

Коронный разряд

Чаще всего приводят такую идею. Переменное электрическое поле вблизи провода ЛЭП электризует воздух вокруг провода, разгоняет свободные электроны, которые ионизируют молекулы воздуха, а они в свою очередь порождают коронный разряд. И вот, 100 раз в секунду загорается и гаснет коронный разряд вокруг провода, при этом воздух возле провода нагревается — остывает, расширяется - сжимается, и таким вот образом получается звуковая волна в воздухе, которая воспринимается нашим ухом как гудение провода.

Вибрируют жилы

Еще есть вот такая идея. Шум происходит от того, что переменный ток с частотой 50 Гц рождает переменное магнитное поле, которое вынуждает отдельные жилы в проводе (особенно стальные - в проводах марок типа АС-75, 120, 240) вибрировать, они как-бы соударяются друг с другом, и мы слышим характерный шум.

Кроме того, провода разных фаз расположены друг возле друга, их токи находятся в магнитных полях друг друга, и согласно закону Ампера на них действуют силы. Поскольку частота изменений полей 100 Гц — вот и вибрируют провода в магнитных полях друг друга от сил Ампера на этой частоте, и мы ее слышим.

Резонанс механической системы

И такая гипотеза кое-где встречается. Колебания частотой 50 или 100 Гц передаются на опору, и при определенных условиях опора, входя в резонанс, начинает издавать звук. На громкость и на резонансную частоту влияют плотность материала опоры, диаметр опоры, высота опоры, длина провода в пролете, а также его сечение и сила натяжения. Если в резонанс попадание есть — слышен шум. Если нет попадания в резонанс — шума нет или он тише.

Вибрация в магнитном поле Земли

Рассмотрим еще одну гипотезу. Провода вибрируют с частотой 100 Гц, а это значит, что на них постоянно оказывает действие переменная поперечная сила, связанная с током в проводах, с его величиной и направлением. Где же внешнее магнитное поле? Гипотетически, это может быть то магнитное поле, что всегда под ногами, которое ориентирует стрелку компаса, - магнитном поле Земли.

Действительно, токи в проводах высоковольтных ЛЭП достигают в амплитуде нескольких сотен ампер, при этом протяженность проводов линий немала, и магнитное поле нашей планеты хоть и относительно мало (его индукция в средней полосе России составляет всего около 50 мкТл), тем не менее действует оно всюду по планете, и везде имеет не только горизонтальную, но и вертикальную составляющую, которая пересекает перпендикулярно как провода ЛЭП проложенные вдоль силовых линий магнитного поля Земли, так и те провода, что сориентированы поперек них или вообще под любым другим углом.

Для понимания процесса каждый может провести такой несложный эксперимент: возьмите автомобильный аккумулятор и гибкий акустический провод, сечением 25 кв.мм, длиной хотя бы 2 метра. Присоедините его на миг к клеммам аккумулятора. Провод подпрыгнет! Что это, если не импульс силы Ампера, подействовавшей на провод с током в магнитном поле Земли? Разве что провод подскочил в собственном магнитном поле.

Почему шумят провода ЛЭП

Почему гудят провода ЛЭП? Вы когда-нибудь задумывались об этом? А ведь ответ на этот вопрос может быть отнюдь не тривиальным, хотя и вполне бесхитростным. Давайте рассмотрим несколько вариантов объяснения, каждый из которых имеет право на существование.

Коронный разряд

Чаще всего приводят такую идею. Переменное электрическое поле вблизи провода ЛЭП электризует воздух вокруг провода, разгоняет свободные электроны, которые ионизируют молекулы воздуха, а они в свою очередь порождают коронный разряд. И вот, 100 раз в секунду загорается и гаснет коронный разряд вокруг провода, при этом воздух возле провода нагревается — остывает, расширяется - сжимается, и таким вот образом получается звуковая волна в воздухе, которая воспринимается нашим ухом как гудение провода.

Вибрируют жилы

Еще есть вот такая идея. Шум происходит от того, что переменный ток с частотой 50 Гц рождает переменное магнитное поле, которое вынуждает отдельные жилы в проводе (особенно стальные - в проводах марок типа АС-75, 120, 240) вибрировать, они как-бы соударяются друг с другом, и мы слышим характерный шум.

Кроме того, провода разных фаз расположены друг возле друга, их токи находятся в магнитных полях друг друга, и согласно закону Ампера на них действуют силы. Поскольку частота изменений полей 100 Гц — вот и вибрируют провода в магнитных полях друг друга от сил Ампера на этой частоте, и мы ее слышим.

Резонанс механической системы

И такая гипотеза кое-где встречается. Колебания частотой 50 или 100 Гц передаются на опору, и при определенных условиях опора, входя в резонанс, начинает издавать звук. На громкость и на резонансную частоту влияют плотность материала опоры, диаметр опоры, высота опоры, длина провода в пролете, а также его сечение и сила натяжения. Если в резонанс попадание есть — слышен шум. Если нет попадания в резонанс — шума нет или он тише.

Вибрация в магнитном поле Земли

Рассмотрим еще одну гипотезу. Провода вибрируют с частотой 100 Гц, а это значит, что на них постоянно оказывает действие переменная поперечная сила, связанная с током в проводах, с его величиной и направлением. Где же внешнее магнитное поле? Гипотетически, это может быть то магнитное поле, что всегда под ногами, которое ориентирует стрелку компаса, - магнитном поле Земли.

Действительно, токи в проводах высоковольтных ЛЭП достигают в амплитуде нескольких сотен ампер, при этом протяженность проводов линий немала, и магнитное поле нашей планеты хоть и относительно мало (его индукция в средней полосе России составляет всего около 50 мкТл), тем не менее действует оно всюду по планете, и везде имеет не только горизонтальную, но и вертикальную составляющую, которая пересекает перпендикулярно как провода ЛЭП проложенные вдоль силовых линий магнитного поля Земли, так и те провода, что сориентированы поперек них или вообще под любым другим углом.

Для понимания процесса каждый может провести такой несложный эксперимент: возьмите автомобильный аккумулятор и гибкий акустический провод, сечением 25 кв.мм, длиной хотя бы 2 метра. Присоедините его на миг к клеммам аккумулятора. Провод подпрыгнет! Что это, если не импульс силы Ампера, подействовавшей на провод с током в магнитном поле Земли? Разве что провод подскочил в собственном магнитном поле.

Почему под ЛЭП бьет током

Одно дело, когда речь идет о шаговом напряжении, это было бы вполне понятно если бы оторвавшийся от ЛЭП провод контактировал бы с грунтом, и тогда стоя на земле кто-нибудь мог бы, случайно оказавшись не в то время не в том месте, попасть под опасное напряжение шага.

Итак, велосипед на резиновых шинах изолирован от поверхности земли, следовательно ток с земли на велосипед попасть не может, и даже если бы по воле несчастного случая велосипедист оказался бы на месте аварии, где по поверхности земли был бы распределен какой-то реально измеряемый потенциал, его бы и в этом случае не ударило бы током.

Если предположить, что напряжение наводится на велосипед магнитной составляющей, то вспомнив закон Био-Савара-Лапласа, мы тут же обнаружим, что даже если в момент, когда велосипедист проезжал под проводом, по высоковольтной линии тек переменный ток максимальной величиной, скажем, в 2000А, то уже на расстоянии 5 метров от провода длиной 5 метров, магнитная индукция в своей амплитуде составила бы всего лишь около 40 мкТл, этого хватит разве что на то, чтобы слегка дезориентировать стрелку магнитного компаса. А уж о способности навести напрямую без трансформации сколь-нибудь ощутимое напряжение на велосипедную раму длиной 1 метр… об этом даже говорить уже не приходится. Вариант с электромагнитной индукцией отбрасывается как невозможный.

Остается электростатическая индукция. А вот для этого все возможности есть. Если предположить, что высоковольтная линия с напряжением 220000 вольт проходит над поверхностью земли на высоте 8 метров, надежно изолирована от нее, значит между проводом и землей есть переменное электрическое поле, напряженность которого распределена примерно линейно по высоте, и в амплитуде может достигать 27500 вольт на метр, то есть 275 вольт на сантиметр.

И хотя велосипед не контактирует с землей — это как раз то условие, когда от него велосипедиста все равно будет дергать током. Велосипед здесь выступает нижней обкладкой конденсатора, а велосипедист — верхней обкладкой. Этот конденсатор, с диэлектриком в виде воздуха и одежды велосипедиста, внесен в переменное электрическое поле и все время этим полем перезаряжается. И стоит велосипедисту случайно в момент, когда этот конденсатор заряжен, соприкоснуться с велосипедом, как он почувствует разряд. Убить — не убьет, но неприятные ощущения однозначно будут.

Если бы человек стоял под ЛЭП голыми ногами на земле, то он бы ничего похожего не почувствовал, так как все его тело приобрело бы нулевой потенциал земли. А стоя на земле под ЛЭП на тонком резиновом коврике, он бы получил похожий удар, коснувшись пальцем земли возле коврика. Так и с велосипедом, где слой диэлектрика (читай — костюм велосипедиста) довольно тонок, следовательно электроемкость получившегося конденсатора не так мала, как может показаться с первого взгляда.

Почему трещат высоковольтные провода лэп

Чаще всего приводят концепцию коронного разряда. Она заключается в том, что около провода ЛЭП электризуется воздух переменным электрическим полем. Вследствие этого разгоняются свободные электроны. Уже они ионизируют молекулы воздуха, приводя к возникновению коронного разряда. Частота его появления составляет около сотни раз в секунду! Именно столько раз он загорается и гаснет около провода.

При этом нагревается и остывает, расширяется и сжимается воздух, пребывающий в непосредственной близости. В результате этого получается звуковая волна, которая человеческим ухом воспринимается как гудение провода. Единственное что мешает её безоговорочно принять – коронный разряд сопровождается слабым свечением, которое не наблюдается (возможно, его просто не видно).

Вибрация жил

Следующая гипотеза опирается на вибрацию жил. Она гласит, что переменный ток, у которого частота составляет 50 Гц, может создавать переменное магнитное поле. Оно влияет на отдельные жилы в проводах (особенно это относится к стальным маркам), вынуждая их вибрировать, соударяя их друг с другом. В результате этого и создаётся характерный шум.

На этом гипотеза не заканчивается. В случае с ЛЭП необходимо учитывать, что рядом расположены провода разных фаз. Их токи пребывают в соседних магнитных полях и, как гласит закон Ампера, наблюдается взаимное действие силы. Частота изменений полей составляет 100 Гц. Поэтому, при вибрации проводов с учетом соседних магнитных полей и можно услышать звук около высоковольтных проводов.

Резонанс механической системы

Почему гудят ЛЭП

На самом деле провода не издают звуков. Вокруг них создается электрическое поле, в котором свободные электроны, разгоняясь, сталкиваются с молекулами воздуха, выбивая из них электроны. В этом резко неоднородном поле столкновения происходят непрерывно. Явление получило название коронный разряд.

Почему возле высоковольтных проводов слышно гул тока (4 фото видео)


Голубоватое свечение — признак коронного разряда

При каждом таком разряде воздух нагревается и расширяется, а затем сжимается. Постоянное сжатие и расширение воздуха порождает гудение вблизи электродов. Можно сделать вывод о том, что «поет» воздух, а не высоковольтные провода.

Кроме того, провода могут «петь на ветру». Диапазон звука зависит от диаметра шнура и скорости ветра.

Почему иногда мы слышим шум из розетки, смотрите в видео.

Почему возле высоковольтных проводов слышно гул тока (4 фото + видео)

Почему возле высоковольтных проводов слышно гул тока (4 фото видео)

Вблизи трансформатора можно услышать достаточно громкий шум. Но как такое возможно, ведь в конструкции данных устройств не предусмотрены движущиеся механизмы, таких как двигатели или генераторы?

На первый взгляд может показаться, что гул возникает из-за соприкосновения плохо закрепленных металлических деталей, удерживающих сердечник, радиатор, низковольтные или высоковольтные вводы устройства. Возможно, площадь сердечника не соответствует требуемым значениям или слишком много вольт на виток пришлось при обмотке магнитопровода. Но на самом деле, причиной гула в электромагнитных устройствах является магнитострикция.

Почему возле высоковольтных проводов слышно гул тока (4 фото видео)


Трансформатор — преобразователь тока

Почему гудят провода

А провода? Они висят высоко над землей и издали похожи на толстые монолитные тросы. На самом деле высоковольтные провода свиты из проволоки. Обычный и повсеместно применяемый провод имеет стальной сердечник, который обеспечивает конструктивную прочность и находится в окружении алюминиевой проволоки, так называемых внешних повивов, через которые передается токовая нагрузка. Между сталью и алюминием проложена смазка. Она нужна для того, чтобы уменьшить трение между сталью и алюминием — материалами, имеющими разный коэффициент теплового расширения. Но поскольку алюминиевая проволока имеет круглое сечение, витки прилегают друг к другу неплотно, поверхность провода имеет выраженный рельеф. У этого недостатка есть два последствия. Во‑первых, в щели между витками проникает влага и вымывает смазку. Трение усиливается, и создаются условия для коррозии. В результате срок службы такого провода составляет не более 12 лет. Чтобы продлить срок службы, на провод порой надевают ремонтные манжеты, которые также могут стать причинами проблем (об этом чуть ниже). Кроме того, такая конструкция провода способствует созданию вблизи воздушной линии хорошо различимого гула. Происходит он из-за того, что переменное напряжение 50 Гц рождает переменное магнитное поле, которое заставляет отдельные жилы в проводе вибрировать, что влечет их соударения друг с другом, и мы слышим характерное гудение. В странах ЕС такой шум считается акустическим загрязнением, и с ним борются. Теперь такая борьба началась и у нас.

«Старые провода мы сейчас хотим заменить на провода новой конструкции, которую разрабатываем, — говорит представитель ПАО «Россети». — Это тоже сталь-алюминиевые провода, но проволока там применяется не круглого сечения, а скорее трапециевидного. Повив получается плотным, а поверхность провода гладкая, без щелей. Влага внутрь попасть почти не может, смазка не вымывается, сердечник не ржавеет, и срок службы такого провода приближается к тридцати годам. Провода схожей конструкции уже используются в таких странах, как Финляндия и Австрия. Линии с новыми проводами есть и в России — в Калужской области. Это линия «Орбита-Спутник» длиной 37 км. Причем там провода имеют не просто гладкую поверхность, но и другой сердечник. Он выполнен не из стали, а из стекловолокна. Такой провод легче, но прочнее на разрыв, чем обычный сталь-алюминиевый».

Однако самым последним конструкторским достижением в данной области можно считать провод, созданный американским концерном 3M. В этих проводах несущая способность обеспечивается только токопроводящими повивами. Там нет сердечника, но сами повивы армированы оксидом алюминия, чем достигается высокая прочность. У этого провода прекрасная несущая способность, и при стандартных опорах он за счет своей прочности и малого веса может выдерживать пролеты длиной до 700 м (стандарт 250−300 м). Кроме того, провод очень стоек к тепловым нагрузкам, что обусловливает его использование в южных штатах США и, например, в Италии. Однако у провода от 3M есть один существенный минус — слишком высокая цена.

Оригинальные «дизайнерские» опоры служат несомненным украшением ландшафта, однако вряд ли они получат широкое распространение. В приоритете у электросетевых компаний надежность передачи энергии, а не дорогостоящие «скульптуры».

Почему гудят преобразователи напряжения

Магнитострикция характеризуется тем, что при изменении магнитного состояния физического тела, оно меняет объем и другие линейные характеристики. В мощных трансформаторах может быть установлена система охлаждения или вентиляция, тогда к дополнительным причинам шума можно отнести работу масляных насосов и деталей системы вентиляции.

В большей степени громкость шума зависит от мощности и размера трансформаторного блока. Основной гул исходит во время смены состояний ферромагнитных элементов катушек, в процессе магнитострикции. Эти колебания зависят от силовой характеристики магнитного поля, качества и свойств стали, из которой изготовлены детали.

Изменение длины сердечника в процессе магнитострикции

Центральным звеном системы является сердечник. Под воздействием переменного магнитного поля он испытывает частотные деформации. Частота этих изменений непостоянна, поэтому возникает шум с высокими гармониками. Сердечник может вступить в резонанс с вибрациями магнитопровода. Во время их звучания в унисон шум нарастает, звук подается волнообразно, с чередованием глухого гула и высоких пиков.

Кроме шумов из сердца трансформатора, его издают Ш-образные пластины, предназначенные для возбуждения соседних обмоток. Эти вибрации возникают, потому что в качестве передатчиков используются отличные друг от друга по длине и высоте пластины. Это обстоятельство способствует их неравномерной деформации, что приводит к появлению зазоров в местах соединений. В данных воздушных зазорах возникает шум, вызванный притяжением напряженных магнитных полей.

Почему ЛЭП гудят?

Разные линии электропередач — ЛЭП — отличаются по напряжению, под которым находятся их провода по отношению к земле. Высоковольтные ЛЭП с напряжением больше 100 кВ создают звук, похожий на громкий шелест или потрескивание. Он возникает при коронном разряде воздуха вблизи мест крепления проводов к опорам через изоляторы. Не эти звуки нас интересуют. В нашей стране огромная протяженность ЛЭП между деревнями и небольшими поселками, они передают электроэнергию при напряжениях порядка 10 кВ. А к домам в таких поселках ЛЭП несут энергию при напряжениях 220–380 В. Вот к их-то гудению чаще всего и прислушиваются жители этих поселений и городские отдыхающие.

Причин, которые могут вызвать звук, несколько.

Начнем с механической. Действительно, натянутый провод представляет собой струну или стержень, и на проводе могут возникать резонансные стоячие волны.

Теперь рассмотрим магнитную причину возможного гудения проводов. Каждый провод ЛЭП, по которому течет ток, находится во внешнем магнитном поле Земли, которое в наших (российских) широтах имеет вертикальную составляющую индукции магнитного поля, направленную вниз, т.е. перпендикулярно горизонтальным (почти) проводам ЛЭП.

Если в проводе течет переменный ток с частотой 50 Гц, то сила Ампера толкает провод в горизонтальном направлении, перпендикулярном проводу. Если, например, опоры ЛЭП — это деревянные столбы, то провода крепятся к опоре через изоляторы на так называемых крюках и располагаются по одну или по разные стороны от опоры на разных уровнях по вертикали. Поскольку фазы токов в проводах отличаются, то опора (деревянный столб) испытывает изгибные напряжения на частоте 50 Гц, а это не те 100 Гц, которые нас интересуют.

Однако силы действуют не только между проводами ЛЭП, разделенными большими промежутками, но и внутри каждого провода, который состоит из стальной центральной жилы и намотанных на нее алюминиевых жил. Алюминий, как известно, окисляется на поверхности, и пленка окисла плохо проводит ток. Если, например, не по всем алюминиевым жилам течет одинаковый ток, то в этом случае система жил в одном проводе получается несимметричной и в месте расположения железного сердечника периодически изменяется магнитное поле. Частота изменения силы, действующей на стальной сердечник, равна как раз 100 Гц. При этом стальной сердечник притягивается к тем алюминиевым жилам, по которым течет наибольший ток. Расстояния между серединами жил небольшие (≈ 0,5 см), и они не всегда прижаты друг к другу так, чтобы нигде не было зазоров. Кроме того, стальной сердечник имеет немалую магнитную восприимчивость (μ ≈ 103), поэтому силы возникают большие, а тряска и столкновения жил приводят к появлению звука именно на частоте 100 Гц (и на более высоких гармониках, кратных 100 Гц).

Вот он механизм возникновения звука, который может «бегать» вдоль проводов!

Ровно по такой же причине на частоте 100 Гц гудят трансформаторы и дроссели люминесцентных ламп в нашей стране. (Кстати, в США они гудят на частоте 120 Гц.) Звук на этой частоте передается опорам через изоляторы. Сухое дерево, из которого сделаны опоры, является хорошим резонатором, поэтому оно и само трясется на частотах 50 и 100 Гц и трясет окружающий воздух. Таким образом и возникает звук, который называют гудением проводов или опор ЛЭП.

Коронный разряд

Такой вариант объяснения приводится чаще всего. Наличие переменных электрических полей вокруг проводов ЛЭП приводит к электризации воздуха, это в свою очередь порождает разгон свободных электронов, которые ионизируют молекулы воздуха. Последние и порождают коронный разряд. Каждую секунду вокруг провода ЛЭП гаснет и загорается коронный разряд. При этом во время постоянной смены состояния воздуха – от нагрева к остыванию, от расширения к сжиманию, происходит образование звуковой волны, которое наше ухо воспринимает как гудение.

Что такое вибрация и пляска проводов ЛЭП и как с ними бороться

Непосредственно возле опор провода фиксируются довольно жестко, но в пролетах между опор провода могут достаточно свободно колебаться.

Так вот при определенных погодных условиях может возникать крайне неприятные эффекты: пляска или же вибрация проводов, которые могут просто разрушить линии.

Сегодня я хочу рассказать вам об этих явлениях и способах борьбы с ними поподробнее.

Что такое вибрация и пляска

Что такое вибрация и пляска проводов ЛЭП и как с ними бороться

Итак, для начала давайте поймем, что подразумевается под пляской и вибрацией проводов.

Пляска проводов - это их вертикальное перемещение, частота которых лежит в пределах 0,2-2 Гц. При этом амплитуда подобных колебаний может достигать от 0,3 до 5 метров. А при значительных пролетах в 500 метров пляска может достигать 14 метров.

Такому явлению подвержены абсолютно все классы ЛЭП, но в линиях с напряжением 6-10 кВ за счет того, что расстояние между проводами незначительное, этим эффектом пренебрегают.

А вот вибрация проводов - это то же самое перемещение проводов в вертикальной плоскости, вот только их амплитуда лежит в пределах нескольких сантиметров. А их частота лежит в пределах от 3 до 150 Гц.

Так чем же отличается вибрация от пляски

По своей сути вибрация и пляска проводов - это одно физическое явление. Разница заключена лишь в том, что у этих явлений разная частота колебания. Да и у вибрации существенно меньшая амплитуда колебания.

Из-за чего возникают данные явления

Что такое вибрация и пляска проводов ЛЭП и как с ними бороться

Существуют три основных фактора, которые способствуют проявлению вибрации и пляски, а именно:

  • Ветер. По сути самая частая и наиболее опасная причина возникновения. А все потому, что продолжительное воздействие может вызвать рост амплитуды и частоты.
  • Коммутация и сопутствующие переходные процессы. При включении напряжения либо же подсоединения мощной нагрузки происходит скачок электромагнитного поля. Это и приводит в движение провода.
  • Разного рода механическая нагрузка.

Хочу подчеркнуть, что коммутация механического воздействия в основном имеют разовый характер, а это значит, что возникшие колебания постепенно начинают самостоятельно угасать. Поэтому главной причиной явления является воздействие воздушного потока.

Чем опасна пляска и вибрация проводов

Что такое вибрация и пляска проводов ЛЭП и как с ними бороться

По сути эти два явления несут следующую опасность для проводов ЛЭП:

  1. Распушивание. Это повреждение отдельных жилок проводов или же стальных тросов за счет потери механической прочности.
  2. Междуфазное короткое замыкание за счет перекрытия воздушного промежутка. Этот фактор возникает, когда отдельные фазы линии колеблются с разной амплитудой.
  3. Схлестывание проводов, которое также приводит к КЗ междуфазного типа.
  4. Обрыв проводов. Может возникнуть и из-за КЗ, и из-за механического обрыва.

Как видно все вышеописанные факторы ведут к нарушению нормальной работы энергосистемы, поэтому вполне логично, что с этим явлением активно ведут борьбу.

Как борются с пляской и вибрацией проводов

Итак, для того, чтобы не допустить такого нежелательного явления уже давно разработаны конкретные меры, которые подробно изложены в РД 34.20.182-90. В частности для гашения возникающих вибраций и плясок используют специальные устройства.

Что такое вибрация и пляска проводов ЛЭП и как с ними бороться

Существуют три вида гасителей вибраций, а именно:

  1. Петлевые. В основном используются на линиях 6-10 кВ и представляют собой гибкую распорку.
  2. Спиральные. Считаются лучшими для гашения как низкочастотной, так и высокочастотной вибраций. Но за счет своей дороговизны их довольно редко используют.
  3. Мостовые. В конструкции применяются специализированные грузики, которым и предается вибрация от провода и в них же гасятся. Просты в монтаже и эксплуатации.

Как видите на первый взгляд очень простая ЛЭП оказывается сложным инженерным сооружением. Если же вам понравилось узнать что-то новое и полезное, то не забудьте оценить материал лайком, подпиской и комментарием. Спасибо, что прочитали до конца!

Почему возле высоковольтных проводов слышно гул тока (4 фото + видео)

Почему возле высоковольтных проводов слышно гул тока (4 фото + видео)

Вблизи трансформатора можно услышать достаточно громкий шум. Но как такое возможно, ведь в конструкции данных устройств не предусмотрены движущиеся механизмы, таких как двигатели или генераторы?

На первый взгляд может показаться, что гул возникает из-за соприкосновения плохо закрепленных металлических деталей, удерживающих сердечник, радиатор, низковольтные или высоковольтные вводы устройства. Возможно, площадь сердечника не соответствует требуемым значениям или слишком много вольт на виток пришлось при обмотке магнитопровода. Но на самом деле, причиной гула в электромагнитных устройствах является магнитострикция.

Почему возле высоковольтных проводов слышно гул тока (4 фото + видео)

Трансформатор — преобразователь тока

Почему гудят преобразователи напряжения

Магнитострикция характеризуется тем, что при изменении магнитного состояния физического тела, оно меняет объем и другие линейные характеристики. В мощных трансформаторах может быть установлена система охлаждения или вентиляция, тогда к дополнительным причинам шума можно отнести работу масляных насосов и деталей системы вентиляции.

В большей степени громкость шума зависит от мощности и размера трансформаторного блока. Основной гул исходит во время смены состояний ферромагнитных элементов катушек, в процессе магнитострикции. Эти колебания зависят от силовой характеристики магнитного поля, качества и свойств стали, из которой изготовлены детали.

Почему возле высоковольтных проводов слышно гул тока (4 фото + видео)

Изменение длины сердечника в процессе магнитострикции

Центральным звеном системы является сердечник. Под воздействием переменного магнитного поля он испытывает частотные деформации. Частота этих изменений непостоянна, поэтому возникает шум с высокими гармониками. Сердечник может вступить в резонанс с вибрациями магнитопровода. Во время их звучания в унисон шум нарастает, звук подается волнообразно, с чередованием глухого гула и высоких пиков.

Кроме шумов из сердца трансформатора, его издают Ш-образные пластины, предназначенные для возбуждения соседних обмоток. Эти вибрации возникают, потому что в качестве передатчиков используются отличные друг от друга по длине и высоте пластины. Это обстоятельство способствует их неравномерной деформации, что приводит к появлению зазоров в местах соединений. В данных воздушных зазорах возникает шум, вызванный притяжением напряженных магнитных полей.

Почему гудят ЛЭП

На самом деле провода не издают звуков. Вокруг них создается электрическое поле, в котором свободные электроны, разгоняясь, сталкиваются с молекулами воздуха, выбивая из них электроны. В этом резко неоднородном поле столкновения происходят непрерывно. Явление получило название коронный разряд.

Почему возле высоковольтных проводов слышно гул тока (4 фото + видео)

Голубоватое свечение — признак коронного разряда

При каждом таком разряде воздух нагревается и расширяется, а затем сжимается. Постоянное сжатие и расширение воздуха порождает гудение вблизи электродов. Можно сделать вывод о том, что «поет» воздух, а не высоковольтные провода.

Кроме того, провода могут «петь на ветру». Диапазон звука зависит от диаметра шнура и скорости ветра.

Почему гудят линии электропередачи?

Когда вы проходите под высоковольтными вышками — то часто слышите пронзительное гудение. Как будто очень сильные радиопомехи. В целом, этот звук знаком каждому. Но какова причина возникновения такого эффекта?

Высоковольтные провода Высоковольтные провода

Дело в том, что такой эффект возникает со всем, что связано с электрическим током. Даже маленький провод в вашей квартире издает такие звуки, только вы не можете их слышать. Самые типичные звуки высоковольтных проводов — треск и гудение.

Природа треска заключается в плохом соединении контактов. В месте, где контакты соединяются возникают небольшие разрядики. Они и создают характерный треск. Если вы услышите такой звук дома — то вам срочно нужно позаботиться о смене контактов.

Опасная поломка Опасная поломка

Гудение возникает из-за магнитного поля, создаваемого вокруг проводов. Но, поскольку это поле не одно, то взаимодействуя с другими полями, оно создает гудение. Кроме гудения может появляться вибрация. Механическая сила, возникающая из-за тока, постоянно меняет направление. Это тоже становится причиной появления звука.

Читайте также: