Чем масса отличается от заземления

Обновлено: 25.04.2024

Фаза, ноль и земля в электрике

Если есть какой-то опыт работы в данной сфере, вопрос не поставит в тупик, однако для новичка может стать большой проблемой. Ниже пойдет речь о таких проводниках любой электрической сети питания как: «заземление», «фаза», «нуль», а также о том, как верно найти и отличить данные виды кабелей.

Разбираемся в основных терминах

С такими терминами, как «фаза» и «ноль» каждый сталкивается в своей жизни ежедневно. Все они тесно связаны, ведь относятся к электричеству, а это то, без чего жизнь современного человека не мыслима. Чтобы понять их природу и более или менее научиться разбираться в электрике, следует уяснить для начала ряд фундаментальных понятий.

Начинаем с основ

Электрический заряд — характеристика, определяющая способность различных тел быть источником электромагнитного поля. Носителем подобных волн является электрон. Создав электромагнитное поле можно «заставить» электроны перемещаться. Так образуется ток.

Ток — это четко направленное движение электронов по металлическому проводнику под действием существующего поля.

Виды тока

Ток может быть постоянным и переменным. Ток, по величине не изменяющийся во временном промежутке — ток постоянного значения. Ток, величина которого, как и направление, меняется с течением времени, называется переменным.

Постоянный и переменный ток

Постоянные источники тока — аккумуляторы, батарейки и так далее. Переменный же ток «подходит» к бытовым и промышленным розеткам домов и предприятий. Основная причина этого кроется в том, что данный тип тока намного легче получать физически, преобразовывать в разные уровни напряжений, передавать по электропроводам на огромные расстояния без существенных потерь.

Основная характеристика переменного тока


Переменный ток – как правило это синусоида, или синусоидальный ток. Его можно охарактеризовать следующим образом: сначала он увеличивается в одном направлении, достигая максимального своего значения (амплитуды), затем начинается спад. В некоторый момент времени он становится равен «0» и потом вновь начинает нарастать, но уже в совершенно противоположном направлении.

«Фаза», «ноль» и «земля»

Самый простой случай электроцепи, по которой перемещается синусоидальный ток — однофазная цепь. Она состоит, как правило, из трех электрокабелей: по одному из них электричество подходит к приборам и элементам освещения, а по второму – оно «уходит» в противоположном направлении — от потребителя. Третьим проводником является «земля».

Провод, по которому электричество подходит к электропотребителям, называется фазой, а кабель, используемый для возвратного движения — нулем.

Самая эффективная сеть для передачи электротока — трехфазная система. Она включает в себя три фазовых кабеля и один обратный — ноль. Такой тип тока подходит ко всем жилым кварталам. Непосредственно перед попаданием в квартиры, электроток делится на фазы. Каждым фазам «присваивается» один ноль. Преимущества такой системы в том, что при сбалансированной нагрузке ток через ноль (а он в такой системе один — общий) равен нулю.


Чтобы не перепутать провода и не допустить короткого замыкания, каждый провод окрашивают в разные цвета. Однако цвет провода не гарантирует его назначения!

«Земля» не несет никакой электрической нагрузки, а служит своего рода предохранительным элементом. В тот момент, когда что-либо в системе электропитания выходит из-под контроля, провод «земля» предотвратит поражение электротоком — по ней все избыточное напряжение будет «стекать», то есть, отводиться на землю.

Фаза и ноль: их значение в сети питания

Электроэнергия подается к потребительским розеткам от подстанций, которые уменьшают поступающее напряжение до 380 В. Вторичная обмотка такого трансформатора имеет соединение «звезда» — три его контакта связываются между собой в точке «0», остальные три вывода идут к клеммам «А»/«В»/«С».


Соединенные в точке «0» провода подсоединяются к «земле». В этой же точке происходит деление проводника на «ноль» (обозначен синим цветом) и защитный «РЕ»-кабель (желто-зеленая линия).

В домах, на предприятиях и зданиях старой застройки зачастую нет «РЕ»-проводника и поэтому, схема получается не пятипроводной, а четырех (она обозначается как «TN-C»).

Все электропровода с подстанций подсоединяются к щитку, образуя систему из трех фаз. Далее уже происходит разделение по отдельным подъездам. В каждую из квартир подъезда подается напряжение лишь одной фазы — 220 В (провода «О»/«А») и защитный «РЕ»-кабель.

Вся возникающая нагрузка на систему электроснабжения при такой схеме распределяется в равномерном количестве, поскольку на каждом этаже дома выполняется разводка и подключение конкретных щитков к определенной электролинии напряжением в 220 В.

Схема подводимого напряжения представляет собой «звезду», которая в точности повторяет все векторные характеристики питающей подстанции. Когда в розетках нет никаких потребителей, то ток в данной цепи не протекает.

Данная схема соединения отработана годами. Она подтвердила свое право на использование тем, что признана оптимальной из всех существующих. Однако, в ней, как и в любом приборе, механизме или устройстве, периодически могут появляться всевозможные поломки и неисправности. Как правило, они бывают связаны с плохим качеством электросоединения или же полным обрывом кабелей в каких-либо местах схемы.

Случаи обрывов в токопроводящей цепи

Если внутри отдельно взятой квартиры произошел разрыв нуля/фазы, то подключаемый прибор, как следствие, функционировать не будет.


Аналогичная ситуация возникнет и при обрыве контактов проводов любой из фаз питающих подъездный щиток. При этом все квартиры, получающие питание от данной электролинии, не будут получать электричество. Вместе с тем, в двух оставшихся цепях приборы будут функционировать, как и прежде.


Из этих схем видно, что полное отключение питания в квартирах связано с обрывом одного их проводов. Это не приводят к повреждению и выходу из строя приборов.

Самой же серьезной ситуацией является обрыв между заземляющим контуром и центральной точкой подключения всех потребителей.

В данном случае весь электроток перестает течь по рабочему нулю к «земле» (АО, ВО, СО) и начинает двигаться по пути АВ/ВС/СА к которым подведено 380 В.

Варианты определения проводников «фаза»/«ноль»


Итак, наступила, ситуация, когда необходимо, например, подключить новую розетку. Но совершенно не понятно, какой из проводов является фазным, а какой нулевым. Способов быстро решить проблему существует несколько — это можно сделать как с применением специальных приборов, так и без них.

Цветовая окраска проводов, как основной ориентир

Это самый легкий и быстрый способ. Для правильной классификации нуля и фазы следует знать, какой цвет провода к чему относится. Предварительно необходимо будет изучить информацию о том, где четко прописаны действующие стандарты для конкретной страны.

Данный метод весьма актуален в любых новостройках, поскольку сейчас вся электрическая проводка прокладывается специалистами, выполняющими свою работу согласно всем требованиям установленных стандартов. Так, например, в России еще в 2004 году был принят стандарт «IEC60446», в котором четко обозначена процедура разделения кабелей по цветам, а именно:

  • защитным нулем стал обозначаться провод желто-зеленого цвета;
  • рабочим нулем стали называть синий/сине-белый провод;
  • фазу — провода других цветов (например, черного, красного, коричневого и прочие).

Такое обозначение актуально в настоящее время.


Если проводка уже довольна старая или ее прокладкой занимались непрофессиональные специалисты, правильнее будет все же воспользоваться иными методами определения.

Отвертка-индикатор — незаменимое приспособление

Данный инструмент является неотъемлемым прибором в наборе домашнего электрика-умельца. Она применяется как при выполнении электромонтажных работ, так и при установке осветительных приборов в помещении или даже в процессе обыкновенной замены лампочек.



Принцип ее работы заключается в прохождении емкостного тока сквозь корпус отвертки через тело оператора.

  • корпус, выполненный из диэлектрического материала;
  • наконечник из металла в форме плоской отвертки, который прикладывают к проводам при проверке;
  • неоновый индикатор — лампочка, сигнализирующая о фазовом потенциале;
  • ограничитель тока — резистор, понижающий ток до минимального значения и выполняющий роль защитного механизма: защищает человека от поражения током, а само устройство от выхода из строя;
  • контактная металлическая площадка, создающая замкнутую цепь через человека на землю.



Работа с отверткой-индикатором в светлое время суток потребует некоторой внимательности — днем свечение лампы плохо заметно, поэтому придется приглядываться.

При работе с подобными приспособлениями нужно быть крайне осторожным — нельзя дотрагиваться до оголенных участков проводников и выводов индикатора, находящихся под напряжением.

На заметку! Профессиональные электрики пользуются более дорогими многофункциональными индикаторами, свечением которых управляет схема на транзисторах, питающаяся от встроенных аккумуляторов напряжением в 3 В. Еще одним их характерным отличием от простых аналогов является отсутствие контактной площадки, к которой нужно прикасаться при выполнении замеров.


Устройства, помимо своего прямого назначения — проверки фазового провода — выполняют и ряд других вспомогательных задач: определение полярности источников постоянного напряжения, места обрыва электроцепи и так далее.

Мультиметр — надежный помощник


Чтобы вычислить фазу, используя тестер, его необходимо переключить в режим «вольтметр» и мерить напряжение между всеми парными выводами кабелей. Соединение щупов с защитным нулем и заземлением должно показывать отсутствие напряжения. Напряжение между фазой и любым другим проводов должно составлять 220 В.

Способы определения проводов:


Так, в первом случае вольтметр отклоняется от нулевой отметки в цепи «ноль/фаза». На другом рисунке он показывает отсутствие напряжения между нулем и землей. И на третьем, вольтметр между фазой и землей показывает «0 В» поскольку проводник еще не подсоединен к земле. Третий случай — это скорее исключение из правил. Такое возможно, например, в случаях, когда старые кабеля здания находится на этапе реконструкции. В нормальной работающей системе электропроводки вольтметр тоже должен показывать 220 В.

Использование лампы накаливания

Перед началом работы необходимо будет собрать приспособление для тестирования. Оно будет состоять из обыкновенной лампочки, патрона и проводов. Лампа вкручивается в патрон, а к клеммам патрона крепятся проводники. Один из проводов необходимо будет заземлить, например, подсоединить к батарее отопления.

Сущность метода заключается в поочередном прикладывании второго (свободного) проводника ко всем тестируемым жилам. Если лампочка вспыхнет — найден фазный провод.


Метод позволяет установить приблизительно наличие фазного кабеля среди остальных. Сигнал лампы точно сигнализирует о том, что среди этих проводников какой-то фазовый, а какой-то нулевой. Если же лампа не горит, значит среди кабелей нет фазного. Но может случиться, что нет как раз именно нулевого.

Поэтому в большей степени данный метод целесообразен для определения работоспособности электрической проводки и правильности монтажа.

Определение сопротивления петли «ноль/земля»

Замер величины сопротивления петли является залогом бесперебойной работы электрических приборов. Время от времени это следует проводить, поскольку основные причины поломки техники кроются в замыканиях и перегрузках электросетей. Замер сопротивления позволит исключить подобные неприятности.

Что представляет собой эта петля

Данная петля является контуром, возникающим в результате соединения «нуля» с заземленной нейтралью. Как раз именно замыкание этой цепи и будет образовывать данную петлю.

Главная задача по измерению сопротивления данной петли — надежная защита оборудования и кабелей от перегрузок во время эксплуатации. Высокое сопротивление станет причиной чрезмерного повышения температуры электролинии, и как следствие, возникновения пожара. Значительное влияние на качество электропроводки оказывает влажность воздуха, температура, время суток — все это сказывается на состоянии электросети.

В заключении

Данный материал позволяет понять, что вообще такое фаза и ноль, какова их роль в современной электрике, каким образом можно установить, где располагается в проводке фазная и нулевая жилы. Ведь вопрос определения нуля, фазы и заземления весьма важен. Подключение некоторых видов приборов по результатам неправильной проверки может повлечь за собой негативные последствия — сгорание электроприборов, или, что еще опаснее, поражение током.

Чем отличается заземление от зануление, и что такое масса?


Прокомментируйте изображение

Голосование за лучший ответ

Заземление это соединение с заземляющим проводом. Зануление это соединение с нейтралью. "Масса" это корпус автомобиля в качестве проводника (жаргон).

Андрей R9UAKМудрец (12045) 6 лет назад

Не обязательно автомобиля.

Сергей Гаврилов Искусственный Интеллект (184672) Ну, может, экскаватора.

Хранитель времениУченик (3) 6 лет назад

Что дает масса?

Сергей Гаврилов Искусственный Интеллект (184672) Экономию 50% проводов.

заземление это соединение корпуса потребителя (прибора) через провода с заземляющим электродом вбитым в землю а зануление это соединение корпуса прибора (потребителя) с нулевым проводом сети

У всех слова разные, лучше прочитать в ПУЭ.
Систем заземления - много..
TN-C
TN-S
TN-C-S
TT

Разница в том, что заземление защищает людей от поражения электрическим током, зануление защищает электрическую машину. Масса-корпус машины.

на рисунке подписи не верны.

в норме и ноль и земля - соединены с одним и тем же, но не в розетке, а в щитке. смысл в том, что ноль используется для работы прибора как один из проводов, по нему в норме течет ток, а земля - только для защиты людей. если вы занулили в розетке - может отгореть ноль где-то раньше и на корпусе окажется фаза.

Заземление и зануление Как правильно понять и объяснить чем отличается заземление от зануления?


Заземление - это преднамеренное соединение нетоковедущих элементов оборудования, которые в результате пробоя изоляции могут оказаться под напряжением, с землёй. Заземление состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемое устройство с заземлителем.
Нейтральный (нулевой рабочий) провод — провод, соединяющий между собой нейтрали электроустановок в трёхфазных электрических сетях.

ДЕРВИШ_ _Ученик (98) 4 года назад

БРЕД полнейший.

Альтаир Гений (56939) Это не бред, уважаемый, а выдержки из нормативных документов, но для Вас это слишком сложно.

Остальные ответы

Средняя точка трансформатора - зануление - закапал среднюю точку транса в землю - заземление

заземление, это когда шунт, например на токарном станке тыкают в пол, грунт или к общей шине заземления, которая где-то тыкнута в грунт

ЗАЗЕМЛЕНИЕ - обеспечивает БЕЗОПАСНОСТЬ в миллион раз ЛУЧШЕ,
чем ЗАНУЛЕНИЕ.

Источник: Я СУПЕР-ЭЛЕКТРИК.

́§ MEGA VOLT § Оракул (89759) 4 года назад

заземление только может снизить потенциал корпуса установки

ДЕРВИШ_ _ Ученик (98) ХОРОШЕЕ, ПРАВИЛЬНОЕ заземление может снизить потенциал корпуса установки ДО НУЛЯ. ЗАНУЛЕНИЕ - может не сработать вообще (при обрыве нулевого провода на столбе, метров за 100 - 1000 от твоего дома или отгореть на ЩИТКЕ в подъезде) Более того на корпусе Холодильника, стиралки, СВЧ, сразу появится ФАЗА, и тебе кранты. Или комусь из семьи.

Ваш Корреспондент Мудрец (16577) 4 года назад

СУПЕР-БАЛАБОЛ!

kotМастер (1605) 4 года назад

Правильно ли считать что заземление это когда сооружение имеет свой заземляющий контур и к нему с ТФ приходит только 3ф и N, все оборудование заземляется на контур который имеет непосредственное соединение с землёй на коротком расстоянии, а при занулении до потребителя идёт с ТП уже либо объединённый PEN (идёт 4 жилы НА ВРУ земля глухозаземляется на ноль) либо когда они объедены между собой ещё на КТП но идут по всей делённое раздельными N и PE проводниками?

заземление - корпус соединен с землей
зануление - корпус соединен с нейтралью

Определение "зануление" и "заземление" дано в ПУЭ. Вольная трактовка этих понятий не допускается!

Земля и масса

Другими важными понятиями ЭМС являются понятия: земля и масса. С понятием "заземление" инженеры, работающие с сильноточными устройствами, связывают, как правило, вопросы техники безопасности и грозозащиты, например, устранение не­допустимо высоких напряжений прикосновения. Инженеры же, работающие в области электроники, - скорее электромагнитную совместимость их схем, например устранение контуров заземле­ния, влияние частоты 50 Гц, обращение с экранами кабелей и т. д.

Следует строго различать два понятия - защитное заземление (защитный про­вод) для защиты людей, животных и т. д. и массу, систему опор­ного потенциала, электрических контуров (это справедливо как для сильноточных, так и для слаботочных цепей). Земля и масса, как правило, в одном месте гальванически связаны друг с дру­гом, но между ними существует большое различие: провода за­земления проводят ток только в аварийной ситуации, нулевые провода - в нормальной рабочей ситуации и часто представляют общий обратный провод нескольких сигнальных контуров, веду­щий к источнику. Это различие существенно и характеризуется следующими понятиями:

Земля Масса
Защитный провод Нейтральный провод
Заземление Масса схемы
Защитное заземление Нулевая точка
Нулевой провод заземления Сигнальная масса
Провод заземленной системы опорного потенциала Измерительная земля
Заземленный корпус Нулевое напряжение ( 0 В)

Понятие «земля» поясняет рис. 1.4. .

В нормальном режиме по нейтральному проводу Н протекает обратный ток электроприемников и его потенциал вследствие падения напряжения на его сопротивлении отличается от потенциала земли (за исключением эквипотенциальной шины, где он равен потенциалу земли). Защитный провод ЗП в нормальном режиме тока не проводит и его потенциал равен потенциалу земли. Поскольку корпус оборудования присоединен к защитному проводу ЗП, то и его потенциал также равен потенциалу земли и не создает угрозы для людей и животных.

При замыкании одного из фазных проводов (на рис. 1.4. провода Л3 ) на корпус оборудования в фазном проводе возникает большой ток короткого замыкания и оборудование отключается предвключенным защитным автоматом Зз.


Рис. 1.4. Заземление в низковольтной сети:

Л1, Л2, Л3 – фазные провода сети; ЗПН – защитный провод нейтрали; ЗП – защитный провод; Н – нейтральный провод; Зз – защитный автомат; RА , RВ – сопротивление заземлителя потребителя и подстанции

Понятие «масса» поясняет рис. 1.5..


Рис. 1.5. К понятию «масса»

Под массой в схемотехнике понимают общую систему опор­ного потенциала, по отношению к которой измеряются узловые напряжения цепи (шина, провод опорного потенциала, корпус, нулевая точка). В простой цепи это просто обратный провод, в электронной схеме - общий обратный провод для всех электри­ческих контуров (рис. 1.5. а,б). Масса может, но не должна иметь потенциал земли. Однако, как правило, она в одном месте не­пременно соединена с защитным проводом и тем самым заземле­на. Масса выполняет те же функции, что и нейтральный провод. Прежде всего, на работу схемы не оказывает влияния заземле­ние массы. Однако если занимающая доста­точно обширное пространство масса заземлена в нескольких ме­стах, возникает контур заземления (см. рис. 1.3). Тогда при раз­личных потенциалах точек заземления могут протекать уравни­тельные токи, а на полных сопротивлениях массы возникать па­дения напряжения, которые накладываются на напряжения, дей­ствующие вдоль отдельных контуров цепи и являются противо­фазными помехами. При высоких частотах это даже не требует гальванического заземления, так как при наличии печатных плат с навесным монтажом и плоской массой контуры заземления могут образовываться благодаря их емкостям относительно мас­сы.

Земля (масса, заземление)

Земля (масса, заземление) - отрицательная клемма батареи или часть возвратной цепи через массу. Соединение с массой или землей. По определению – нулевой потенциал (напряжение). (Минус).


Земля в электронике — узел цепи, потенциал которого условно принимается за ноль, и все напряжения в системе отсчитываются от потенциала этого узла. Выбор земли произволен, однако на практике чаще всего за землю принимают один из выводов источника питания. При однополярном источнике обычно землёй считают его отрицательный вывод, при двуполярном источнике за землю принимают его среднюю точку. Иногда в англоязычной литературе на схемах обозначается GND (от англ. Ground, земля).

Содержание

Разновидности

Сигнальная земля

Сигнальная земля — узел цепи, относительно которого отсчитываются потенциалы сигналов в схеме. Соответственно, сигналы подаются в схему (и снимаются со схемы) таким образом, что один вывод источника (приёмника) сигнала подключен к сигнальной земле.

Виртуальная земля

В электронных схемах могут существовать такие узлы, потенциал которых равен потенциалу земли, притом, что они не имеют короткого соединения с землёй. Узел, обладающий такими свойствами, называют виртуальная земля. Классическим случаем виртуальной земли является инвертирующий вход операционного усилителя, включенного как инвертирующий усилитель.

«Мекка» заземления

В некоторых случаях даже сплошной медный проводник не обеспечивает достаточной эквипотенциальности по всей своей длине. Такая ситуация имеет место при протекании большого тока по земляному проводнику малого сечения. В результате потенциал в различных точках земли может отличаться на десятки милливольт. В некоторых случаях это может привести к нежелательным последствиям. Например, если несколько мощных нагрузок подключены к источнику напряжения через общую земляную шину, то изменение тока, потребляемого одной нагрузкой будет вызывать изменение напряжения на всех остальных нагрузках. Для минимизации подобного взаимного влияния земляные проводники, идущие к каждой нагрузке должны расходиться от одной точки, которая и получила название «мекка» заземления.

От этой же точки следует брать потенциал для обратной связи в стабилизаторе, который регулирует напряжение для нагрузок, подключенных к «мекке» заземления. При этом можно быть уверенным, что выходное напряжение стабилизатора стабилизировано относительно «мекки» заземления, а не какой-либо другой точки шин заземления.

Чем «земля» отличается от «нуля»? Разбираемся в сложностях электрики

Если вы знакомы с электрикой, наверняка знаете понятия «нуль» и «земля». В чем разница, или это практически одно и то же? Ответ в нашей статье.


Чем «земля» отличается от «нуля»? Разбираемся в сложностях электрики

В Советском Союзе была принята двухпроводная сеть, где были лишь фазный и нулевой проводник, а заземление выполнялось на батарею или трубу водоснабжения. Сейчас стал популярен монтаж трехпроводной сети, в котором есть нулевой и заземляющий проводники. В щитовой они оба садятся на заземляющую шину. Если они объединены в щитовой, тогда чем они вообще отличаются? Отвечаем, опираясь на нормативные документы.

Что такое «нуль» и «земля» согласно ПУЭ?

То, что мы привыкли называть «нулем» и «землей» в ПУЭ называется нулевым рабочим проводником (N) и нулевым защитным проводником (PE). Вот как они трактуются в нормативном документе:


1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.

1.7.18.а Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока.

Из этих формулировок понятно, что защитный нулевой проводник необходим для защиты от поражения электрическим током. То есть к нему должно заземляться электрооборудование, например, стиральная машинка, бойлер, котел и т.д. В то же время рабочий нулевой проводник необходим для питания оборудования, то есть по нему будет протекать ток.

В некоторых случаях допускается использовать «нуль» (PE) в качестве «земли», как это указано в ПУЭ 1.7.18.б. В этом случае провод становится совмещенным проводником, который сочетает функции нулевого защитного и нулевого рабочего проводников. Он будет называться PEN. Однако здесь есть один нюанс, который важно знать.

Дело в том, что согласно ПУЭ 1.7.83 «В цепи заземляющих и нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей». То есть нулевой защитный проводник («земля») должен идти непрерывно от щитка к розетке или осветительному прибору. Если мы, к примеру, посадим заземление на нуль, тогда «путь» прервется путем вынимания вилки из розетки. И если произойдет пробой, корпус остального оборудования, заземленного на этот провод, окажется под напряжением.

Далее в этом же пункте сказано: «В цепи нулевых рабочих проводников, если они одновременно служат для целей зануления, допускается применение выключателей, которые одновременно с отключением нулевых рабочих проводников отключают все провода, находящиеся под напряжением». Из этого следует, что «нуль» можно использовать в качестве «земли», если при его отключении, отключаются и все стальные проводники, находящиеся под напряжением. Осуществить такое в квартирных условиях довольно сложно.

Почему в США напряжение в сетях 110 В, а в России 220 В?

Как должно осуществляться заземление в трехпроводной сети?

На данный момент в большинстве новостроек укладывают именно трехпроводную сеть, в которой идет фаза, нуль и заземление (желто-зеленый провод). «Нуль» и «земля» присоединяются в щитке к одной заземляющей шине, но не под общий контактный зажим (ПУЭ 7.1.36). Затем заземление одним непрерывным проводом подводится к каждой розетке. У большинства современного электрооборудования уже есть третий заземляющий контакт на вилке, который обеспечивает заземление корпуса прибора при включении его в розетку.

Вывод

Главная отличительная особенность «нуля» и «земли» в их назначении. «Нуль» совместно с фазой предназначен для питания электроприборов, а «земля» для защиты людей и животных от поражения электрическим током, если случится пробой. Рабочий «нуль» можно использовать в качестве «земли», если не нарушаются условия ПУЭ 1.7.83. Мы же рекомендуем класть проводку сразу с заземляющим проводником, что исключает необходимость использовать «ноль» не по назначению.

Заземление и зануление: разбираемся в чем разница

Любая электроустановка должна быть заземлена. Это требование Правил устройства электроустановок (ПУЭ) одинаково распространяется на электроприборы с металлическим и пластиковым корпусом, устройства подключения и коммутации: распределительные и вводные щитки, розетки, выключатели.

Для чего необходимо заземление

Если энергоснабжение в помещении организовано в соответствии с ПУЭ, на входе, в распределительном щитке установлены защитные автоматы.

Эти выключатели срабатывают при превышении установленной силы тока: нагревается биметаллическая пластина, происходит ее деформация, и контакты автомата механически размыкаются.

Важно! Именно для этого, автоматы устанавливаются в разрыв фазного проводника. Нулевая шина может быть подключена напрямую.

Происходит разрыв цепи, находящейся под напряжением, электроустановка (или вся цепь) обесточивается, обеспечивая безопасность. Как это работает на практике, и что такое заземление в данной цепочке?

Заземление, это электрический контакт между линией, специально выделенной в электросети, и реальной (физической) землей. То есть шина заземления имеет электрический контакт с грунтом. Одновременно, любая установка, вырабатывающая или распределяющая электрический ток, соединена нулевым проводом с той же землей.

Мы с вами рассматриваем однофазные сети, в которых для питания используются две линии: ноль и фаза. Трехфазные системы в быту применяются редко, поэтому знание этих систем необходимо лишь профессионалам.

Даже если к вам в дом заведено три фазы (такое встречается в частном секторе), для конечного потребления все равно используется два провода: ноль и фаза.

Допустим, у вашей электроустановки (холодильник, бойлер, стиральная машина), особенно с металлическим корпусом, произошла утечка фазы. То есть, провод под напряжением касается корпуса (отсоединился контакт, нарушена изоляция, протекла вода). Прикоснувшись к электроприбору, вы будете поражены электрическим током. Кроме того, сопротивление в точке касания мизерное, вследствие чего произойдет мгновенный нагрев провода, и возгорание электроприбора.

Если ваш бойлер заземлен, электрический ток потечет по пути наименьшего сопротивления, то есть по контуру: фаза — «земля» — нулевая шина. Сила тока спонтанно возрастет, и сработает аварийное отключение в автомате защиты. Никто не пострадает, материальный ущерб не будет нанесен.

Если вы имеете поверхностные знания устройства электроустановок, возникает вопрос: а зачем нужно заземление, если то же самое произойдет между фазным и нулевым проводом? И собственно, чем отличается заземление от зануления?

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

Как отличить рабочий ноль и защитное заземление

Разумеется, проверять сопротивление между «нулевым» и «земляным» проводами не следует, особенно если энергосистема под напряжением. В общую щитовую вас тоже никто не пустит. Поэтому, проверять правильность разведения нуля и земли, будем с помощью мультиметра (бытового тестера).

Поскольку точки ввода заземляющих устройств (ноль на подстанции и шина заземления в доме) находятся на удалении друг от друга, между ними есть определенное сопротивление. Грунт, даже влажный, не является идеальным проводником. Если организовать электрическую цепь без нагрузки, мы увидим разницу в потенциалах.

Подключаем измерительный прибор к фазному контакту и рабочему нолю. На схеме это будет цепь «А». Фиксируем значение.

Сразу же подключаем тестер к фазному проводу и контакту защитного ноля. На схеме это цепь «Б». Разницы в потенциале нет: прибор зафиксирует одинаковое значение напряжения. Почему так произошло? При объединении рабочего и защитного ноля, ток в обоих вариантах измерения, фактически протекает по одному и тому же проводу. Сопротивление не меняется, потерь нет, падения напряжения не происходит.

Если ваши результаты измерения показали одинаковое напряжение – проводка подключена с нарушениями Правил устройства электроустановок.

Что произойдет при разнесенном рабочем ноле и защитном заземлении?

При подключении прибора к фазе и нолю, падения напряжения практически нет (на схеме это цепь «А»). Вы увидите действительное значение рабочего напряжения в сети. Подключив тестер к фазному проводу и защитному заземлению, вы замеряете потенциал в длинной цепи. Чтобы замкнуть круг, электрический ток (на схеме цепь «Б») проходит по реальному грунту между точками физических контактов «земли». Учитывая сопротивление грунта, произойдет падение напряжения от 5% до 10%. Прибор покажет более низкое напряжение.

Это говорит о том, что ваша электропроводка организована правильно, у вас имеется настоящее разнесенное защитное заземление. При наличии правильно подобранных автоматов, электрооборудование и пользователи надежно защищены.

Мы разобрались, в чем разница между заземлением и занулением. Польза от правильной организации электроснабжения очевидна.

А как быть, если в вашем доме вообще не предусмотрено защитное заземление

Понятное дело, при проведении капитального ремонта, электрики заменят проводку в соответствии с Правилами устройства электроустановок. Как минимум, в вашем вводном щитке появится три независимых провода: фаза, рабочий ноль и защитное заземление. Останется лишь заменить проводку в розеточной сети.

Но капитальный ремонт может быть выполнен через несколько лет, а вы уже сегодня пользуетесь бойлером и стиральной машинкой без заземления, или того хуже — с защитным занулением. Выход один: организовывать заземление самостоятельно. Если вы живете в частном доме — техническая сторона вопроса существенно упрощается. А вот для многоэтажек, стоимость и сложность работ зависит от этажа.

Как вариант — организовать вскладчину с соседями шину заземления, с распаячными коробками на каждой лестничной клетке.

Шина должна быть неразъемной до самого ввода в грунт. Вблизи фундамента, желательно не в дорожном покрытии, а на клумбе, организуется контур заземления согласно Правилам устройства электроустановок. Каждый жилец подъезда может подключится общей шине и завести «землю» в квартиру. Далее есть два варианта:

  1. Организовать контактную группу заземления в распределительном щитке, и заменить всю электропроводку на трехжильную.
  2. Внутри плинтуса, протянуть земляной кабель под каждую розетку, и завести его в монтажные коробочки.

При любом способе, вы защитите и свои электроприборы, и главное — свое здоровье.

Важно! Как нельзя организовывать защитное заземление

То, что «землю» нельзя брать из рабочего ноля, понятно из нашего материала. Есть любители заземлиться на трубы водоснабжения или отопления. Теоретически – стальная труба имеет связь с грунтом. На практике, по стояку могут быть вставки из полипропиленовых труб, и никакого контакта с «реальной землей» нет.

Кроме того, что вы не получаете надежного заземления, ставятся под удар соседи, которые могут получить удар током, просто взявшись за батарею отопления.

Заземление или зануление? Понятное объяснение, как они работают и что выбрать

Раз за разом общаясь с заказчиками я убеждаюсь, что большинство людей не понимают , что такое заземление и зануление . Кто-то думает, что это одно и то же, кто-то полагает, что заземление это хорошо, а зануление - категорически нет. Но и то и другое - заблуждения.

В статье дальше я разложу всё по полочкам и вы будете точно знать "что есть что" и какую систему лучше применить в вашем доме.

Коротко и по делу: что вам нужно знать

Схема заземления или системы защиты ТТ Схема заземления или системы защиты ТТ

Коротко: заземление это соединение корпусов приборов с землёй и только с ней . Иначе этот способ защиты называется система ТТ . При заземлении ноль и земля не соединяются нигде, это два совершенно разных провода.

Схема зануления или системы защиты TN-S Схема зануления или системы защиты TN-S

Зануление это соединение корпусов приборов с заземлённой нейтралью трансформатора или генератора, то есть это то, что применяется в 99% всех случаев и в вашем доме тоже. Иначе это называется система TN-S .

При занулении ноль соединяется с землёй, либо на подстанции, тогда это система TN-S , принятая, например, в Британии, либо непосредственно в щитке вашего дома, тогда это более дешёвая и стандартная для России система TN-C-S .

В этой удешевлённой системе, на протяжении линии электропередачи, воздушной или кабельной, ноль и земля объединены в одном проводе , который называется провод PEN (PE + N). И лишь в распределительном щитке провод PEN разделяется на PE (защитный ноль) и N (рабочий ноль).

Защитный ноль соединяется с контактами заземления розеток и корпусами всех приборов и светильников, а рабочий ноль используется для электропитания - по нему течёт рабочий ток. Через защитный ноль ток течёт только в случае утечки (неисправности) и в этом его принципиальное отличие от рабочего нуля.

Иногда занулением называют сомнительный способ защиты, который практиковался в СССР для экономии - корпуса приборов соединялись с рабочим нулём. Так делать я категорически не советую - на рабочем нуле часто появляется напряжение относительно земли (пола, на котором вы стоите), поэтому так занулённые корпуса будут постоянно биться током , иногда весьма сильно.

Ещё раз про заземление или систему ТТ

Система ТТ или "чистое" заземление это допустимый способ защиты, но со своими нюансами. Для того, чтобы при возникновении утечки тока питание надёжно отключалось, простых автоматов, как при занулении, недостаточно .

Поэтому придётся раскошелиться на установку УЗО на все линии, причём каждая линия должна подключаться через два УЗО последовательно, общее на вводе, на ток 100 или 300 мА и отдельное УЗО на одну-две линии, с током срабатывания 30 мА. Только при этом условии система ТТ или "чистое" заземление будет отвечать нормам электробезопасности .

Спасибо за то, что дочитали, если вам эта статья пригодилась, поставьте ей лайк и поделитесь ей в своей соцсети!

Читайте также: