Бросок тока намагничивания трансформатора при включении

Обновлено: 05.10.2022

Токи намагничивания силовых трансформаторов и автотрансформаторов при включении их под напряжение

Одной из важнейших характеристик трансформатора тока является его характеристики намагничивания. Это зависимость напряжения на выводах вторичной обмотки от тока, протекающего по ней. Поэтому характеристику еще называют вольт-амперной (ВАХ).
При этом выводы первичной обмотки остаются разомкнутыми, а напряжение на вторичную обмотку подается от независимого источника с регулируемым выходом.

Характеристики эти снимают как при приемо-сдаточных испытаниях, так и в процессе эксплуатации.

Цель проверки: выявить возможные витковые замыкания во вторичной обмотке проверяемого трансформатора. Обычное измерение сопротивления этот дефект выявить не может, так как замыкание нескольких витков между собой изменяют общее сопротивление настолько незначительно, что это соизмеримо с погрешностью проведенных измерений.

Проверка производится для всех трансформаторов тока без исключения: и на напряжение до 1000 В, и высоковольтных. При наличии у трансформатора нескольких обмоток, использующихся для разных целей (релейной защиты, измерения, учета электроэнергии) ВАХ снимается для каждой из них.

Понятие намагничивающего тока

Внезапное возрастание, то есть бросок тока намагничивания (БТН), объясняется насыщением сердечника магнитной индукцией. Трансформаторы динамически устойчивы к броскам благодаря изготовлению обмоток с учетом больших по кратности токов, как правило, возникающих при замыканиях накоротко. В среднем намагничивающий ток превышает номинальное значение прибора в 6-8 раз.

Схема

Рис. 1. Условия появления БТН

В режиме короткого замыкания напряжение силового агрегата характеризуется предельным понижением до нуля, а после отключения зоны повреждения устанавливается на зажимах устройства скачкообразно.

Восстановление магнитного потока происходит неравномерно и не сразу, что обуславливает возникновение переходного процесса, в течение которого образуются два потока – установившийся ФУ и свободный ФСВ. Для определения общего значения используется формула:

В точке отсчета, характеризующей начальный момент времени при t = 0, ФТО также приравнивается к нулю, поэтому справедливым представляется равенство ФСВ = – ФУ. Знаки полярности магнитных потоков совпадают во втором полупериоде, и, соответственно, результирующая величина достигает пикового максимума (ФТмакс).

Магнитные потоки в сердечнике под нагрузкой

Рис. 2. Магнитные потоки в сердечнике под нагрузкой

Схематически наблюдается отставание ФУ от UТ на 90 градусов, что говорит о зависимости ФСВ и ФТмакс от фазы напряжения. Данные величины достигают наибольших значений при включении – в момент прохождения UТ через ноль. Если не брать во внимание постепенное затухание, ФТмакс ≈ 2ФУ. Но пиковая величина потока может быть и выше, когда в толще сердечника присутствует остаточное намагничивание Фост, по знаку совпадающее с ФСВ.

Описание процесса

Намагничивание трансформатора изза включения его под напряжение считается самым неблагоприятным случаем, вызывающим БНТ наибольшей амплитуды. Когда производится отключение трансформатора, напряжение намагничивания оказывается равным нулю, ток намагничивания снижается до нуля, в то время как магнитная индукция изменяется согласно характеристике намагничивания сердечника. Указанное обуславливает наличие остаточной индукции в сердечнике. Когда, по истечении некоторого времени, производится повторное включение трансформатора под напряжение, изменяющееся по синусоидальному закону, магнитная индукция начинает изменяться по тому же закону, однако со смещением на значение остаточной индукции. Остаточная индукция может составлять 80–90% номинальной индукции, и, таким образом, точка может переместиться за излом характеристики намагничивания, что, в свою очередь, обуславливает большую амплитуду и искажение формы кривой тока.


На рисунке представлена характерная форма БНТ. Данная осциллограмма отображает наличие длительно затухающей апериодической составляющей, может быть охарактеризована содержанием различных гармоник и большой амплитудой тока в начальный момент времени (до 30 раз превышающей значение номинального тока трансформатора). Кривая значительным образом затухает через десятые секунды, однако полное затухание характерно через несколько секунд. При определенных обстоятельствах БНТ затухает лишь спустя минуты после включения трансформатора под напряжение.

Почему происходит бросок при включении

Кратковременный скачок характеризуется броском намагничивающего тока трансформатора (БТН). Его значения на одном и том же приборе могут отличаться по величине при разных включениях. Причиной образования БТН в силовых устройствах является внезапное изменение уровня напряжения намагничивания. Помимо нагрузки, передаваемой на обмотку, скачок может быть вызван и другими причинами:

  • внешнее короткое замыкание (КЗ);
  • восстановление напряжения в контуре;
  • преобразование КЗ;
  • несинхронное подключение генератора.

Ток намагничивания вносит дисбаланс на выводах трансформатора. Защита прибора воспринимает БТН как дифференциальный ток. Но чтобы она корректно выполняла свое назначение, система должна эффективно функционировать и отстраиваться с учетом БТН путем включения в цепь таких вспомогательных устройств, как промежуточные трансформаторы.

Чтобы скачки не повлияли на эксплуатационный ресурс службы агрегата, нежелательно допускать отключение трансформатора в результате бросков.

При включении обмотки на полную нагрузку вследствие асинхронного распределения мощности и переходных волновых процессов возникает высокое перенапряжение, способное вызвать внутреннее короткое замыкание.

броски трансформатора

Важно! Перенапряжения по причине БТН являются безопасными только при правильной организации дифференциальной защиты системы.

Оборудование и схема для проверки вольт-амперной характеристики трансформаторов тока

В качестве регулируемого источника напряжения для снятия ВАХ используется лабораторный автотрансформатор (ЛАТР), или устройства, содержащие его в своем составе. Напряжение должно быть абсолютно синусоидальным, поэтому тиристорные источники питания для испытаний непригодны.

Для фиксации величин токов и напряжений потребуются лабораторный амперметр и вольтметр.

При использовании встроенных в источник питания приборов важно учесть, что амперметр должен измерять среднеквадратичное значение, а вольтметр – средневыпрямленное.


Важен и порядок включения приборов в измерительную цепь. Амперметр должен измерять только ток непосредственно в проверяемой обмотке. Вольтметр подключается до него, ток через обмотку прибора не должен учитываться, чтобы не вносить в измерения дополнительную погрешность.

Самым точным вариантом измерений является подключение измерительного комплекса непосредственно к выводам трансформатора тока.

Но, если это невозможно, допускается вариант с использованием специальных токовых клемм на панелях ячейки с проверяемым трансформатором тока.

Измерение с клеммников, находящихся на значительном удалении и соединенных с объектом измерения контрольными кабелями, недопустимо. В этом случае к сопротивлению обмотки добавляется сопротивление жил кабельной линии, соизмеримое с ней по величине.

Проверить трансформатор тока на напряжение до 1000 В с помощью одного только ЛАТРа не представляется возможным.

Слишком при малых напряжениях у них начинается горизонтальный участок характеристики, поэтому насыщение наступит уже при незначительном повороте рукоятки ЛАТРа.

Поэтому между источником регулируемого напряжения и проверяемой обмоткой можно подключить разделительный трансформатор 220/36 В или любой другой. При этом предел регулирования расширяется.

В целях безопасности в цепи подключения ЛАТРа к сети питающего напряжения должен быть защитный аппарат – автоматический выключатель. А также предусмотрена возможность создания видимого разрыва при переключениях между трансформаторами или их обмотками. Достаточно вилки, которая втыкается в розетку удлинителя, положение которой видно с границ рабочего места.

Интересное видео о снятии ВАХ с ТТ с помощью ретома-21 смотрите ниже:

Способы блокировки на вторичной обмотке

Исключить ложные срабатывания на БТН можно несколькими способами. Опытным путем проверена эффективность метода замедления защиты (недостаток – потеря быстродействия), торможения, блокировки, которые не дали хороших результатов. Наиболее рациональными способами отстройки от токов намагничивания являются:

  1. Использование быстронасыщающихся трансформаторов.
  2. Отстройка дифференциальной отсечки.

Методы на практике доказали свою эффективность, отличаются высокой надежностью, простотой и сохранением важнейшего параметра защиты – быстродействия.

Влияние гармоник и бросков тока намагничивания на ДЗТ трансформаторов

Отстройка дифференциальной защиты силового трансформатора от бросков тока намагничивания (БТН) — это одна из сложнейших проблем при разработке алгоритма ее функционирования. Эта проблема заключается в том, что ток намагничивания потребляется внутри зоны защиты, вследствие чего режим БТН имеет много общего с режимом внутреннего короткого замыкания (КЗ). Искажения вторичных токов вследствие насыщения трансформаторов тока (ТТ) во время переходных процессов существенно усугубляют проблему. Поэтому алгоритмы функционирования дифзащит трансформаторов должны предусматривать специальные средства, выявляющие в дифференциальном токе отличительные признаки качественного характера. Считается, что в дифференциальном токе в режиме БТН высшие гармонические составляющие содержатся в большей степени, чем при внутренних КЗ.

Поэтому нашло широкое распространение торможение гармоническими составляющими дифференциального тока (преимущественно второй гармоникой) в качестве средства отстройки дифзащит трансформаторов от БТН.

Пригодность такого средства отстройки обосновывается результатами гармонического анализа дифференциального тока в режиме БТН с учетом искажений, о которых имеются публикации.

Однако публикации о гармоническом анализе дифференциальных токов при внутренних КЗ, причем именно искаженных токов вследствие насыщения ТТ, практически отсутствуют. Поэтому целью настоящей работы является исследование гармонических слагающих дифференциального тока и, как следствие, оценка эффективности самых распространенных способов отстройки от БТН.

Принципы торможения высшими гармониками можно разделить на две группы: торможение величиной (амплитудой) высшей гармонической составляющей и торможение коэффициентом гармоники (относительной гармоникой). Под коэффициентом гармоники понимается отношение амплитуды высшей гармоники к амплитуде первой гармоники; это отношение обычно выражается в процентах. Основным недостатком торможения величинами высших гармоник является то, что при изменении величины токового сигнала при одном и том же режиме изменяются и величины гармонических слагающих. При искажении дифференциального тока вследствие насыщения ТТ резко изменяется его форма, а значит, и его спектр. В этом отношении коэффициент гармоник имеет преимущество перед их амплитудами, заключающееся в следующем. С изменением токового сигнала по величине, а может даже и по форме, в каком-либо одном режиме величины гармонических слагающих изменяются в какой-то мере пропорционально друг другу. Значит, коэффициенты гармоник в этом режиме претерпят значительно меньшие изменения, чем просто величины гармонических слагающих.

Во многих современных цифровых защитах силовых трансформаторов отстройка от БТН основывается именно на использовании коэффициентов гармоник, а не просто их величин. В литературе и технических описаниях дифференциальных защит трансформаторов, как правило, не приводится точного описания способов отстройки реле от БТН с помощью торможения высшими гармониками. Максимум, что в редких случаях указывается, это величины коэффициентов гармоник, по которым следует отличать внутреннее от БТН. Например, в защите, описанной в, в качестве такой уставки принято значение коэффициента второй гармоники 17,7 %, в защитах RET316 и RET521 — 12 %, в цифровой защите ШЭ1111 фирмы ЭКРА — 10 %. Но кроме самих коэффициентов гармоник очень важным фактором в эффективности отстройки дифзащиты оказывается способ выделения гармонических слагающих.

В работе проведено сопоставление многих применяемых способов, и в ней указывается, что дискретное преобразование Фурье является самым точным и самым эффективным для отстройки дифзащиты трансформатора от БТН.

Приведенные значения коэффициентов высших гармоник, выявленных методом преобразования Фурье, для различных искаженных кривых дифференциального тока в режиме БТН.

Значения коэффициентов гармоник для приведенных случаев БТН лежат в очень широких пределах: постоянная слагающая — от 4 до 73 %; вторая гармоника — от 17 до 102 %; третья гармоника — от 1 до 39 %.

При проведении гармонического анализа дифференциальных токов в переходных процессах внутренних применялась модель трехфазных групп ТТ «звезда» и «треугольник», созданная в пакете MatLab [4]. Кривая намагничивания магнитопроводов в этой модели задана в виде усредненной монотонно изменяющейся характеристики (без учета гистерезиса), что обеспечивается функциями ускоренной интерполяции пакета MatLab. Для определения величин гармонических слагающих используется функция «fft», реализующая алгоритм быстрого преобразования Фурье.

При исследованиях моделировались внутренние для защиты блочного двухобмоточного трансформатора ТД 80000/220/10. Проведенные исследования справедливы (применимы) для дифзащиты любого силового трансформатора, так как характер искажений токов в группах трансформаторах тока «звезда» и «треугольник» слабо зависит от их типа. На рис. 1 приведен пример внутреннего трехфазного с двухсторонним питанием.

Начальные условия для этого случая принимались следующими:

  • кратности тока КЗ с обеих сторон равны 4;
  • остаточные индукции для группы ТТ «звезда» 1,0, 0,2 и 0,8 Тл для фаз А, В и С соответственно,
  • для группы ТТ «треугольник» — 1,0, 1,0 и 1,2 Тл для фаз А, В и С соответственно.

Для каждой фазы в верхней части рисунка показаны первичные и вторичные токи для стороны низшего напряжения с группой ТТ «звезда», в средней части — для стороны высшего напряжения с группой ТТ «треугольник», в нижней части рисунка — дифференциальный ток.

На рис. 2 приведен пример внутреннего трехфазного КЗ, но с односторонним питанием со стороны низшего напряжения. Поэтому на рис. 2 приведены только первичные и вторичные токи плеча с группой ТТ «звезда»; в таком случае дифференциальный ток в каждой фазе равен вторичному току.

Величины относительных гармонических слагающих в процентах указаны в табл. 1 и 2. Здесь продемонстрированы такие случаи внутренних КЗ, при которых коэффициенты второй гармоники оказываются наибольшими, хотя не максимально возможными.

Более высокие значения относительной второй гармоники могут наблюдаться при гораздо менее вероятных искажениях вторичных токов, а приведенные примеры искаженных токов являются наиболее характерными.

Следует отметить, что в обоих приведенных случаях в фазе В ток практически не искажается, кроме того, первичный ток не содержит апериодической слагающей, поэтому коэффициенты высших гармоник в ней составляют единицы процентов и приводить их точные значения не имеет смысла.

На рис. 3 показан один из возможных режимов БТН при включении силового трансформатора на холостой ход со стороны обмотки НН, имеющей схему соединения «треугольник», а вторичные обмотки ТТ — схему «звезда». Коэффициенты гармонических слагающих для дифференциального тока в этом режиме приведены в табл. 3. При анализе результатов исследований видно, что диапазоны величин относительных гармонических слагающих, характерных внутренним и режиму БТН, очень сильно пересекаются. Величины коэффициента второй гармоники, появляющейся при внутренних КЗ, могут в несколько раз превышать принятые уставки в современных дифференциальных защитах, по которым они идентифицируют бросок тока намагничивания. Особое внимание следует уделить коэффициенту второй гармоники в первом периоде, так как именно с первого периода начинается выявление БТН, а в первом периоде ТТ еще не столь глубоко насыщены, как в последующих периодах.

При таких обстоятельствах в режиме БТН вторая гармоника может оказываться больше, чем при внутренних КЗ. Но из таблиц 1 и 2 видно, что при внутренних относительная вторая гармоника уже в первом периоде может существенно превышать принятые в защитах трансформаторов уставки.

В таких случаях внутренних возможны задержки в срабатывании защит, поскольку в самом начале переходного процесса возможно неверное распознавание режима работы защищаемого трансформатора. Во втором и последующих периодах насыщение ТТ усиливается, что влечет к увеличению высших гармонических слагающих, а вследствие этого задержка в срабатывании защиты будет продолжаться.

Наоборот, в случае апериодического БТН, при отсутствии искажений в дифференциальном токе во время первого и второго периодов, относительная вторая гармоника может быть на уровне 14-15% (см. табл. 3, фаза А), что может оказаться только лишь на уровне или даже ниже уставки.

Относительные значения третьей и четвертой гармоник при БТН оказываются несколько большими, чем при внутренних КЗ, но провести четкую границу по их значениям между этими двумя режимами также очень сложно. Относительные значения пятой и шестой гармоник как при внутренних КЗ, так и при БТН составляют единицы процентов, поэтому они также не представляют никакой ценности для отстройки от БТН. В заключение можно констатировать низкую эффективность любых способов отстройки от БТН, которые используют высшие гармонические слагающие.

Низкая эффективность таких способов также указывается в работе.

Если гармонические слагающие выделяются из выпрямленного дифференциального тока или из его производной по времени, то такой подход вносит дополнительные сложности и дополнительно снижает устойчивость функционирования дифференциальной защиты трансформатора.

Источник:Журнал «ЭЛЕКТРО. Электротехника. Электроэнергетика. Электротехническая промышленность.» № 3 за 2007 год.

Автор: Купарев Михаил Анатольевич, к.т.н., доцент Новосибирского государственного технического университета.

Силовой трансформатор: формулы для определения мощности, тока, uk%

Силовой трансформатор представляет собой сложную систему, которая состоит из большого числа других сложных систем. И для описания трансформатора придумали определенные параметры, которые разнятся от машины к машине и служат для классификации и упорядочивания.

Разберем основные параметры, которые могут пригодиться при расчетах, связанных с силовыми трансформаторами. Данные параметры должны быть указаны в технических условиях или стандартах на тип или группу трансформаторов (требование ГОСТ 11677-85). Сами определения этих параметров приведены в ГОСТ 16110.

Номинальная мощность трансформатора

— указанное на паспортной табличке трансформатора значение полной мощности на основном ответвлении, которое гарантируется производителем при установке в номинальном месте, охлаждающей среды и при работе при номинальной частоте и напряжении обмотки.

Числовое значение мощности в кВА изначально выбирается из ряда по ГОСТ 9680-77. На изображении ниже приведен этот ряд.

ряд мощностей трансформаторов по ГОСТ 9680

Значения в скобках принимаются для экспортных или специальных трансформаторов.

Если по своим характеристикам оборудование может работать при разных значениях мощностей (например, при различных системах охлаждения), то за номинальное значение мощности принимается наибольшее из них.

К силовым трансформаторам относятся:

  • трехфазные и многофазные мощностью более 6,3 кВА
  • однофазные — более 5 кВА

Номинальное напряжение обмотки

— напряжение между зажимами трансформатора, указанное на паспортной табличке, на холостом ходу.

Номинальный ток обмотки

— ток, определяемый мощностью, напряжением обмотки и множителем, учитывающим число фаз. То есть если трансформатор двухобмоточный, то мы будем иметь ток с низкой стороны и ток с высокой стороны. Или же ток, приведенный к низкой или высокой стороне.

Как происходит процесс

При подаче нагрузки намагничивание прибора из-за включения рассматривается как негативное явление, способное спровоцировать БТН максимальной амплитуды. При отключении ток намагничивания сокращается до нулевой отметки, а магнитная индукция корректируется в зависимости от степени намагничивания стального сердечника, в результате чего в магнитопроводе сохраняется остаточная индукция.

Если через время повторить включение токопреобразующего устройства под напряжение, подчиненное синусоидальному закону изменения, магнитная индукция меняется со смещением остаточной величины до 90% от номинального значения. В результате возникает высокая амплитуда намагничивания и изменение формы кривой.

Описание

Длительность затухания броска тока намагничивания составляет от нескольких секунд (в большинстве случаев) до нескольких минут (редко).

Основной причиной возникновения броска тока намагничивания трансформатора является резкое изменение величины напряжения на вводах трансформатора. В качестве основных причин изменения напряжения можно выделить следующие:

  • включение отключенного трансформатора в работу;
  • возникновение и отключение внешнего короткого замыкания;
  • асинхронный ход в энергоситсеме.

Максимальное значнеие амплитуды броска тока намагничивания определяется величиной изменения напряжения и конструктивными особеностями трансформатора. В нормальных режимах работы величина тока намагничивания трансформатора не превышает 2-3% от номинального тока, а при включении трансформатора под напряжения его величина может превышать номинальный ток в 6-8 раз [1] . Наибольшее значение ток намагничивания имеет когда трансформатора включается в момент перехода мгновенного значения напряжения через нуль.

Ток намагничивания содержит большую долю высших гармоник большую часть которых составляет вторая гармоника, а также апериодическую составляющую.

Вследствие того, что броско тока намагничивания может иметь достаточно большую амплитуду, то релейная защита трансформатора должна иметь блокировку от броска тока намагничивания.

Отключение транформатора при протеканиии в нём тока намагничивания является не желательным, так как может привести к перенапряжениям на выводах трансформатора.

1 Тема от RIN 2017-06-28 13:15:50 (2017-06-28 13:19:42 отредактировано RIN)

Тема: Ток намагничивания силовых тр-ро 6/0,4кВ

Здравствуйте господа релейщики,

Вопросы возникли в связи с тем, что на КЛ-6кВ подключены 3 силовых тр-ра 1000 кВА. Одна из защит линии это токовая отсечка 1500А, с выдержкой времени равной 0,3 сек. Хотим убрать выдержку времени на отсечке, но сомневаемся, не сработает ли защита ложно, при кратковременном перерыве электроснабжения, например при работе АВР на головной подстанции.

Подскажите пожалуйста для выбора времени срабатывания токовой отсечки выключателя фидера:

— какая примерно величина тока намагничивания силового тр-ра 6/0,4кв? и её длительность; — если на одной линии 3 одинаковых тр-ра, то можно взять ток намагничивания одного тр-ра и умножить на 3? ; — как изменится величина тока протекающего через выключатель линии на которой подключены 3 силовых тр-ра 6/0,4кВ, при их одновременном включении например если длина КЛ-6кВ 1 км или длина КЛ-6кВ 5км.

— как отстроить защиту от тока намагничивания тр-ров, увеличением уставки по току?

Включение ненагруженного трансформатора в сеть

ПЕРЕХОДНЫЕ РЕЖИМЫ ТРАНСФОРМАТОРОВ

Общая характеристика переходных процессов

Переходные процессы возникают в трансформаторах при всяком изменении режима его работы: включение трансформатора в сеть, резкое изменение нагрузки, короткое замыкание в первичной или на выходе вторичной обмотки, волновые процессы в линии, питающей трансформатор, и в ряде других случаев. Несмотря на очень короткое время переходных процессов, они сопровождаются значительным повышением токов, электромагнитных сил, магнитных потоков, возникновением опасных для целостности трансформатора больших механических усилий между обмотками, крайне неравномерного распределения напряжения между отдельными частями обмоток, резкого перегрева обмоток и т. д.

Поэтому без учета переходных процессов в трансформаторе при его проектировании не могут быть правильно выбраны размеры, определены условия, в которых он должен эксплуатироваться, и сформулированы требования к его защите.

Включение ненагруженного трансформатора в сеть

При установившемся режиме работы ток холостого хода силового трансформатора не превышает 3–5 % номинального. При включении трансформатора в сеть под напряжение близкое к номинальному, могут наблюдаться резкие броски тока, во много раз превышающие номинальные значения тока холостого хода.

Уравнение ЭДС при включении трансформатора на синусоидальное, не зависящее от его режима работы напряжение, можно записать в виде:

где фаза включения, т.е. фазовый угол, определяющий значение в момент включения трансформатора в сеть (рис. 7.1). Зависимость нелинейна, поэтому решение уравнения (7.1) возможно при упрощающем положении о пропорциональности потокосцепления току :

Тогда уравнение (7.1) приобретает вид:

Поток выражается в виде суммы двух потоков – периодического потока , соответствующего установившемуся режиму, и свободного потока , соответствующего переходному режиму. Таким образом,

Поток отстает от подводимого к трансформатору напряжения почти на 900 .Поэтому

где амплитуда потока при установившемся режиме работы.

Для определения свободной составляющей потока правую часть (7.4) приравнивают нулю:

Решение (7.7) отыскивается в виде:

где постоянная интегрирования, определяемая из начальных условий: . При функция и поток , а в магнитопроводе существует только поток остаточного намагничивания . В этом случае уравнение (7.5) с учетом (7.6) напишется в виде:

Подставляя это значение в уравнение (7.8), находим:

Окончательно поток в магнитопроводе трансформатора для любого времени переходного периода:

Характер изменения магнитного потока будет зависеть от момента включения трансформатора.

При и магнитный поток

Если остаточный поток отсутствует, то при включении трансформатора в сет поток и ток намагничивания (рис. 7.2) достигают установившегося значения без переходного процесса.

При и магнитный поток

имеет апериодическую составляющую даже при потоке и переходный процесс неизбежен. На рис. 7.3 приведены кривые, характеризующие изменения во времени магнитного потока и его составляющих при процессе включения однофазного трансформатора, протекающего, согласно уравнению (7.14).


Наибольшего значения магнитный поток достигнет через полупериод от момента включения, когда

с учетом (7.15) магнитный поток:

Из (7.15)следует: , а . (7.17)

Обычно и в первом приближении можно считать, что значение , особенно в больших трансформаторах. Остаточный же поток может быть значительным и достигать иногда , и наибольшее значение магнитного потока в переходном процессе в два с лишним раза превышает установившееся:

Понятие и причины возникновения тока намагничивания трансформатора

Кривая БНТ классического типа

Вопрос-ответ

В энергосистеме при подключении силового трансформатора к напряжению, а также при восстановлении рабочих параметров цепи после отключения оборудования на режиме короткого замыкания в питающей устройство обмотке возникает резкий толчок. Это явление получило название тока намагничивания трансформатора. Он имеет затухающий характер, а его максимальная величина превышает номинальный параметр, что необходимо учитывать при проектировании схем защиты оборудования.

Содержание

Понятие намагничивающего тока

Внезапное возрастание, то есть бросок тока намагничивания (БТН), объясняется насыщением сердечника магнитной индукцией. Трансформаторы динамически устойчивы к броскам благодаря изготовлению обмоток с учетом больших по кратности токов, как правило, возникающих при замыканиях накоротко. В среднем намагничивающий ток превышает номинальное значение прибора в 6-8 раз.

Рис. 1. Условия появления БТН

В режиме короткого замыкания напряжение силового агрегата характеризуется предельным понижением до нуля, а после отключения зоны повреждения устанавливается на зажимах устройства скачкообразно.

Восстановление магнитного потока происходит неравномерно и не сразу, что обуславливает возникновение переходного процесса, в течение которого образуются два потока – установившийся ФУ и свободный ФСВ. Для определения общего значения используется формула:

Рис. 2. Магнитные потоки в сердечнике под нагрузкой

Схематически наблюдается отставание ФУ от UТ на 90 градусов, что говорит о зависимости ФСВ и ФТмакс от фазы напряжения. Данные величины достигают наибольших значений при включении – в момент прохождения UТ через ноль. Если не брать во внимание постепенное затухание, ФТмакс ≈ 2ФУ. Но пиковая величина потока может быть и выше, когда в толще сердечника присутствует остаточное намагничивание Фост, по знаку совпадающее с ФСВ.

Сердечник насыщается при значениях потоков, приближенных к 2ФУ, вызывая резкий бросок Iнам. Ток намагничивания образуется только в той обмотке цепи, на которую подается напряжение при включении. Он преобразуется через защитное устройство и поступает на реле, заставляя его срабатывать при соблюдении неравенства Iнам > Iс.з..

Почему происходит бросок при включении

Кратковременный скачок характеризуется броском намагничивающего тока трансформатора (БТН). Его значения на одном и том же приборе могут отличаться по величине при разных включениях. Причиной образования БТН в силовых устройствах является внезапное изменение уровня напряжения намагничивания. Помимо нагрузки, передаваемой на обмотку, скачок может быть вызван и другими причинами:

  • внешнее короткое замыкание (КЗ);
  • восстановление напряжения в контуре;
  • преобразование КЗ;
  • несинхронное подключение генератора.

Ток намагничивания вносит дисбаланс на выводах трансформатора. Защита прибора воспринимает БТН как дифференциальный ток. Но чтобы она корректно выполняла свое назначение, система должна эффективно функционировать и отстраиваться с учетом БТН путем включения в цепь таких вспомогательных устройств, как промежуточные трансформаторы.

Чтобы скачки не повлияли на эксплуатационный ресурс службы агрегата, нежелательно допускать отключение трансформатора в результате бросков.

При включении обмотки на полную нагрузку вследствие асинхронного распределения мощности и переходных волновых процессов возникает высокое перенапряжение, способное вызвать внутреннее короткое замыкание.

Важно! Перенапряжения по причине БТН являются безопасными только при правильной организации дифференциальной защиты системы.

Как происходит процесс

При подаче нагрузки намагничивание прибора из-за включения рассматривается как негативное явление, способное спровоцировать БТН максимальной амплитуды. При отключении ток намагничивания сокращается до нулевой отметки, а магнитная индукция корректируется в зависимости от степени намагничивания стального сердечника, в результате чего в магнитопроводе сохраняется остаточная индукция.

Если через время повторить включение токопреобразующего устройства под напряжение, подчиненное синусоидальному закону изменения, магнитная индукция меняется со смещением остаточной величины до 90% от номинального значения. В результате возникает высокая амплитуда намагничивания и изменение формы кривой.

Рис. 3. Кривая БНТ классического типа

Уровень намагничивающего тока затухает на десятые доли секунды, но полное «сглаживание» кривой наступает в течение нескольких секунд, а при определенных условиях – через несколько минут. Длительность затухания апериодической составляющей осциллограммы БТН обусловлена высокой амплитудой тока в начальный (нулевой) момент времени и содержанием разных гармоник. Пиковая величина зависит от нагрузочного напряжения и его параметров, а также от значения и полярности остаточного магнитного потока в сердечнике.

Пик тока может быть выше номинального значения для высокомощных агрегатов в 10-15 раз, а для приборов мощностью (<50 кВА) – больше в 20-25 раз. Период затухания – от нескольких миллисекунд до секунд.

Способы блокировки на вторичной обмотке

Исключить ложные срабатывания на БТН можно несколькими способами. Опытным путем проверена эффективность метода замедления защиты (недостаток – потеря быстродействия), торможения, блокировки, которые не дали хороших результатов. Наиболее рациональными способами отстройки от токов намагничивания являются:

  1. Использование быстронасыщающихся трансформаторов.
  2. Отстройка дифференциальной отсечки.

Методы на практике доказали свою эффективность, отличаются высокой надежностью, простотой и сохранением важнейшего параметра защиты – быстродействия.

Бросок тока намагничивания при включении трансформатора под нагрузку

Ситуация такая: двухтрансформаторная подстанция 110/10 кВ (2хТРДН-25000/110), от каждой секции 10 кВ отходят по 6 фидеров. Трансформатор на одном из фидеров включается под нагрузку, в нем возникает бросок тока намагничивания. Будет ли в трансформаторе ТРДН-25000/110 протекать ток этого броска тока намагничивания или нет? И в литературе каких авторов подробно излагается процесс возникновения и протекания броска тока намагничивания (дабы попытаться самостоятельно разобраться в этом вопросе)? Спасибо!

2 Ответ от nkulesh 2017-05-17 08:06:55

YuranfanMU пишет:

Ситуация такая: двухтрансформаторная подстанция 110/10 кВ (2хТРДН-25000/110), от каждой секции 10 кВ отходят по 6 фидеров. Трансформатор на одном из фидеров включается под нагрузку, в нем возникает бросок тока намагничивания. Будет ли в трансформаторе ТРДН-25000/110 протекать ток этого броска тока намагничивания или нет? И в литературе каких авторов подробно излагается процесс возникновения и протекания броска тока намагничивания (дабы попытаться самостоятельно разобраться в этом вопросе)? Спасибо!

Да, конечно, ведь источник тока в нагрузке, в отходящих линиях - это питающий их трансформатор, а в физическом, философском, если угодно, смысле - генераторы системы. Вот каким он, этот ток, будет в первичной обмотке, в обмотке ВН - это вопрос, как-то не задумывался раньше.

3 Ответ от Conspirator 2017-05-17 09:24:28

В отечественной литературе я этого явления не встречал, а вот в "иностранной" это явление рассматривается. В Google в поиске наберите Symphatetic inrush current . Даже есть осциллограмма ложного отключения работающего трансформатора от ДЗТ при включении другого.

4 Ответ от Antip 2017-05-17 15:12:11

Полный анализ БНТ - см. книгу "Релейная защита трансформаторов", А.С. Засыпкин, 1989 год.

Ток включения трансформатора


GeekBrains

Ток включения трансформатора3

При включении трансформатора в сеть толчком на полное напряжение в трансформаторе могут возникнуть весьма большие броски тока намагничивания , превышающие в десятки раз ток намагничивания (холостого хода) при нормальной работе.

Так как ток намагничивания в трансформаторе не превосходит нескольких процентов номинального тока трансформатора, то максимальные значения бросков токов намагничивания при включении трансформатора толчком превышают номинальный ток не более чем в 6 - 8 раз.

С точки зрения динамической устойчивости обмоток трансформатора указанные броски тока намагничивания для трансформатора безопасны, так как обмотка рассчитывается на большие кратности токов, имеющие место при коротких замыканиях за трансформатором. Защита же трансформатора отстраивается от упомянутых бросков тока намагничивания путем применения соответствующих устройств (насыщающихся промежуточных трансформаторов и др.).

При включении обмотки на полное напряжение в обмотке могут возникнуть перенапряжения вследствие неравномерного распределения напряжения по обмотке и возникновения переходных волновых процессов. Но указанные перенапряжения для обмоток трансформатора безопасны, так как изоляция их рассчитывается на более значительные атмосферные (грозовые) перенапряжения.

Поэтому включение всех трансформаторов в сеть толчком на полное напряжение является совершенно безопасным, оно производится без предварительного подогрева трансформатора вне зависимости от времени года и температуры масла трансформатора.

Указанное распространяется также на включение в сеть трансформатора после монтажа или капитального ремонта, так как опыт показал, что при включении толчком и наличии повреждения трансформатор своевременно отключается защитой и размеры повреждения при этом бывают не больше, чем при включении трансформатора путем медленного подъема напряжения с нуля, что вызывает значительные трудности в условиях эксплуатации, а зачастую невозможно.

Трансформаторы должны включаться толчком на полное напряжение со стороны питания, где должна быть установлена соответствующая защита.

Испытание включением толчком на номинальное напряжение

При 3—5-кратном включении не должны иметь место явления, указывающие на неудовлетворительное состояние трансформатора. Этим опытом проверяется также отстройка максимальной токовой защиты от бросков тока намагничивания трансформатора. Физически возникновение сверхтока объясняется следующим. При включении трансформатора возникает переходный процесс, в течение которого магнитный поток можно рассматривать как сумму двух составляющих: периодической с неизменной амплитудой и медленно затухающей апериодической.

В момент включения эти составляющие равны по значению и противоположны по знаку, сумма их равна нулю. Когда же периодическая составляющая приобретает ту же полярность, что и апериодическая, они суммируются арифметически. Наибольшее возможное значение этой суммы близко к двукратной амплитуде периодической составляющей. Вследствие глубокого насыщения стали магнитопровода бросок тока холостого хода может превысить установившееся значение его в десятки и сотни раз и в 4—6 раз — номинальный ток.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Читайте также: