Узлы армирования монолитных стен

Обновлено: 04.05.2024

Узлы армирования монолитных конструкций здания с несущими стенами

Добрый день, хотелось бы услышать мнение специалистов по следующим вопросам:

1) На чертеже приведен разрез по свободному краю плиты перекрытия, защемленной по 3 сторонам и вертикальный разрез по стене в месте сопряжения с перекрытием. Вопрос: с какой целью производится усиление конструкции хомутам? Очень хотелось бы, чтобы ответ был обоснован НДС конструкции, а не опытом проектирования.

2) Выполняется ли анкеровка арматуры зеленого цвета (d8) на краю плиты?
В данном примере эта арматура видимо распределительная.
Хотелось бы узнать, какие меры предпринимать, если нижняя арматура на свободном краю требуется по расчету? (например такая ситуация возникла при расчете в SCAD в упругой стадии работы ЖБ - требует 5 стержней d6, хотя разумеется площадь арматуры по расчету гораздо меньше чем у 5 шестерок).
Все-таки по новому СНиП минимальная длина анкеровки - 200мм и ее надо выполнять.

Примечание: перекрытие разумеется толщиной 220 мм=), конструировалось видимо по старому СНипу

3) Как вариант - установка П-образных стержней (см. п.9.9 СП 52-103-2007 свод правил по монолитным конструкциям)
Там написано, что в этом случае П-образные хомуты обеспечивают анкеровку и ВОСПРИЯТИЕ КРУТЯЩИХ моментов..
Вопрос: как именно воспринимается крутящий момент этими хомутами ( на пальцах)? целесообразно ли выполнять установку П-хомута с нахлесточным соединением с верхней и нижней арматурой? заменяет ли он хомут, показанный на чертеже или устанавливается совместно с ним?

Заранее благодарю..
Примечание (перекрытие толщиной 220 мм=). конструировалось видимо по старому СНиП

Последний раз редактировалось fariatiev, 21.04.2011 в 11:41 . Причина: Ошибка в чертеже Хомут по краю плиты работает с учетом кручения . Почему там кручение-в литературе это все есть и темы похожие были.
А вот по второму узлу(стык плиты со стеной)-непонятно зачем "якобы" скрытая балка с хомутами в центре узла? Если только сечение не попало на место усиления плиты , уложенной над проемом без перемычечного "мяса". Только в этом случае это по-другому показывается.

1. Очень похоже на это
ПОСОБИЕ по проектированию жилых зданий Вып. 3 Конструкции жилых зданий (к СНиП 2.08.01-85)
6.21 ". В плитах, защемленных по трем сторонам, свободный край дополнительно армируется объемным каркасом из четырех стержней диаметром 10 мм из стали класса A-III для восприятия усадочных и температурных воздействий.
Схема армирования монолитной плиты перекрытия, защемленной по трем сторонам, с четвертой свободной показана на рис. 42. "

2) Выполняется ли анкеровка арматуры зеленого цвета (d8) на краю плиты? Выполняется.
См. Залесова "РЕКОМЕНДАЦИИ по проектированию железобетонных монолитных каркасов с плоскими перекрытиями" Рис. 13, п. 6.3.4, 6.2.5, 6.2.6.

гадание на конечно-элементной гуще

узлы безграмотные __________________
.: WikiЖБК + YouTube :. узлы безграмотные

Подробнее, если можно.
Узлы разрабатывал не я, так что здесь преобладает желание разобраться как грамотно сделать свой дипломный проект с такой же конструктивной схемой, а не самолюбие..

Хомут по краю плиты работает с учетом кручения . Почему там кручение-в литературе это все есть и темы похожие были.

По причине указанной выше: укажите, где посмотреть, если есть возможность

SergeyKonstr
У Залесова на рис. 13 указана анкеровка рабочей арматуры, а в моем примере показана арматура вдоль длинной стороны плиты, неужели все-таки и в этом случае следует ставить П-образные стержни?
Меня смущает рисунок (не помню номер в ПОСОБИЕ по проектированию жилых зданий Вып. 3 Конструкции жилых зданий (к СНиП 2.08.01-85)) с армированием такой плиты, нижняя арматура доведена до края, где расположен каркас, верхняя арматура только над опорой.

Опять же вопрос возникает, воспримут ли эти П-образные хомуты крутящий момент? (вопрос задаю, потому что не представляю себе, честно говоря, как его воспринимают хомуты, указанные на моей картинке)

По поводу восприятия усадочных и температурных усилий:
видел такую строчку в ЦНИИЭповском пособие, но на защите такой ответ не всех удовлетворит))).

Последний раз редактировалось fariatiev, 21.04.2011 в 15:48 . . По причине указанной выше: укажите, где посмотреть, если есть возможность По поводу восприятия усадочных и температурных усилий:
видел такую строчку в ЦНИИЭповском пособие, но на защите такой ответ не всех удовлетворит) А какой удовлетворит? С разжеванием проблемы.
Если поставлен замкнутый хотут, то он обеспечивает положение стержней арматуры от выпучивания. При нагревании ЖБ расширению свободного края препятствуют опоры, поэтому в арматуре появляются дополнительные усилия сжатия, которые могут привести к потери устойчивости стержня арматуры.
Опять же вопрос возникает, воспримут ли эти П-образные хомуты крутящий момент? (вопрос задаю, потому что не представляю себе, честно говоря, как его воспринимают хомуты

Да также, как и в случае, если рачитываете закладную деаталь с анкерами, заделанными в бетоне на дейстие момента, скажем, верхний анкер растянут, нижний сжат (момент - это две силы, направленные в противоположные стороны, одна ветвь П-ки растянута, другая сжата).

У Залесова на рис. 13 указана анкеровка рабочей арматуры, а в моем примере показана арматура вдоль длинной стороны плиты, неужели все-таки и в этом случае следует ставить П-образные стержни? Тут ничего не понял. То у вас
Хотелось бы узнать, какие меры предпринимать, если нижняя арматура на свободном краю требуется по расчету?

В Тихонове нет не слова о крутящем моменте, тем более о механизме восприятия его хомутами по краю плиты.

Правда в узлах армирования свободного края плиты П-образные стержни, связывающие нижнюю и верхнюю арматуру везде установлены совместно с О-образными хомутами, это говорит о том, что заменять каркас по краю плиты пэшками вероятно не стоит (вопрос почему опять же остался без ответа). Тихонов 2007, армирование элементов железобетонных зданий, Рис. 2.69 разрез 1-1 (3-3).
Почему там установлены Пэшки становится ясно из рис. 2.66 (фрагмент 1.1)..(вдоль края плиты идет перфорация)

За импортные пособия огромное спасибо, как раз собирался после института подтянуть английский, думаю будет очень интересно в них покопаться..

Engineer SV,
Перемычка там есть, это перекрытие 1-го этажа с магазинами и офисами, может быть в перемычке отверстие под принудительную вентиляцию?

По поводу крутящего момента не соглашусь, пример не совсем удачный. крутящий момент действует в плоскости перпендикулярной П-эшке. Закладную деталь с анкерами никогда не рассчитывал (наши курсовые несколько далеки от жизни)..есть ли картинка того, о чем вы говорите?

По поводу нижней арматуры на свободном краю плиты, в КЭ свободного края по расчету требует ничтожная площадь сечения, конкретно 1 стержень d5 на метр погонный.
В пособие Цнииэп, рис.55, анкеровка в аналогичной ситуации не выполняется, как быть?

Как армировать монолитную плиту перекрытия: схемы и примеры

Перекрытие один из несущих элементов строения. Самый распространённый материал, применяемый для его возведения, это железобетон (композиция бетона и стали). Соблюдение строительных правил и норм по армированию плиты перекрытия, это гарантия надёжности железобетонной конструкции. Правильное расположение арматуры в бетоне, даёт ему необходимую прочность, для того чтобы выдержать все будущие нагрузки на растяжение и изгиб. Можно выполнить армирование монолитной плиты перекрытия своими руками, для этого необходимо соблюдать технологию выполнения работ.

армирование плиты перекрытия

Виды бетонных перекрытий

Бетонные перекрытия бывают двух типов.

  1. Стандартные – это железобетонные плиты, которые изготовляются на заводе.
  2. Монолитное перекрытие – это железобетонная конструкция, возведение которой осуществляется на месте строительства.

Виды бетонных перекрытий

Стандартные плиты могут быть: пустотными, ребристыми, сплошными, а также иметь и другие конструктивные особенности. Всё зависит, от места их применения в строительстве.

Основное преимущество возведения перекрытия готовыми плитами, от монолитного, это скорость строительства и цена. В течение дня можно перекрыть частный дом ж/б плитами, когда для сооружения сплошной монолитной плиты необходимо минимум месяц. Но это не пугает застройщиков, так как у монолитной плиты масса преимуществ перед плитами перекрытия.

Достоинства и недостатки монолитного перекрытия

Преимущества, благодаря которым монолитное перекрытие пользуется большой популярностью в строительстве.

монолитное строительство

К недостаткам строительства монолитного перекрытия можно отнести.

  1. Стоимость.
  2. Трудоёмкость строительных работ.
  3. Время строительства.

Чем и зачем армируют перекрытие

Для армирования плит перекрытия используют стальную, так и композитную арматуру (в основном стеклопластиковую). Более распространена металлическая арматура А500С (в проектной спецификации может обозначаться S500), популярны диаметры 10 и 12 мм. Для основного армирования железобетонной конструкции используют только рифлёную арматуру, чтобы создания качественную связь арматуры с бетоном. Для изготовления дополнительных элементов, не влияющих на несущую способность будущей железобетонной конструкции, можно использовать гладкую арматуру А1. Практикуют в современном частном строительстве и комбинирование арматуры, используют для армирования монолитной плиты одновременно металлические и стеклопластиковые пруты.

арматура для армирования перекрытия

Этапы строительства монолитной плиты перекрытия

Начинается строительство с составление чертежа будущей конструкции плиты. А именно, расчета толщины перекрытия, подсчета веса арматуры необходимой для армирования, марки используемого бетона. На эти параметры влияют многие факторы, которые следует учесть при составлении чертежа, самостоятельно это делать не советую, лучше заплатить проектировщику и он произведет все расчеты, а вы будете спать спокойно.

На начальном этапе возводятся вертикальные несущие опоры строения, на которые будет опираться перекрытие. Это могут быть колонны, стены из бетона или кирпича, а также и газосиликатного блока необходимой плотности.

строительство бетонной стены

Установка опалубки под бетонные стены.

После возведения несущих опор устанавливается горизонтальная опалубка под перекрытие необходимого размера, с запасом от 30 см, для установки борта. В состав опалубки входят телескопические стойки, треноги, короны, ригеля и ламинированная фанера. Процесс монтажа опалубки проводится в следующем порядке:

опалубка для монолитной плиты перекрытия

Сборка горизонтальной опалубки под плиту перекрытия.

После установки опалубки выполняется армирование плиты перекрытия, укладывается арматура нижнего и верхнего слоя, по проекту и соединяется между собой проволокой, образуя железный каркас (подробнее процесс армирования разберём ниже).

вязка арматурного каркаса плиты перекрытия

На следующем этапе плиту бетонируют. С помощью крана и колокола для подачи бетона, либо бетононасосом. При укладке бетонной смеси её обязательно следует уплотнять вибратором, заливка производится беспрерывно, плита должна быть монолитной (бывают исключения при больших объёмах, могут устанавливаться отсечки, обязательно согласовывается с проектировщиком). В жару следует накрыть плиту клеёнкой и периодически поливать водой, чтобы бетон не пересыхал, в зимний период на арматурный каркас крепят обогрев.

бетонирование перекрытия

Процесс бетонирования монолитной плиты бетононасосом.

После того как плита перекрытия наберёт необходимую прочность, производится демонтаж опалубки, места стыков листов фанеры, при необходимости шлифуют.

Пошаговый пример устройства армирования монолитной плиты перекрытия

Для более подробного изучения рассмотрим на примере, как выполняется армирование монолитного перекрытия толщиной 200 мм. В качестве основной арматуры используются пруты диаметром 12 мм, размер ячейки основной сетки 200х200 мм.

Схема армирования плиты перекрытия

Арматурный каркас плиты будет состоять из двойного армирования, 2 уровня сетки с расположенными в ней усилениями, требуемыми проектом. Как писалось выше, размер ячейки 20 на 20 см. Дополнительная арматура – усиление, в нижней сетке укладывается в области между опорами, так как на бетон в этом месте действует сила растяжение, вверху, наоборот, над опорами.

схема армирования плиты перекрытия

Нижний слой армирования плиты перекрытия

Начинается процесс армирования плиты с разметки. Отмеряем по чертежу, все его стороны и во все его углы внутренние и наружные вбиваем гвозди. По гвоздям натягиваем нить и получаем контур нашего будущего перекрытия, край бетона. От него будет проводиться разметка расположения арматуры. Согласно чертежу, смотрим какая арматура укладывается первой и от параллельной ей стороны перекрытия начинаем разметку.

раскладка нижнего армирования первый слой

В нашем случае защитный слой до центра арматуры от края перекрытия 4.5 см, следовательно, отмеряем от нити расстояние 4 см, и забиваем в это место гвоздь. Далее, на расстоянии 11.5 метров отступаем то же расстояние от края и забиваем второй гвоздь. По этим двум гвоздям натягиваем нить, это будет край первой арматуры, далее по шнурку через расстояние 1.2 м, пробиваем гвозди, укладываем первый прут, прижимаем его к гвоздям и фиксируем, с другой стороны, тоже гвоздями. Это необходимо, для того чтобы зафиксировать первый прут, от него будет зависеть ровность завязанной сетки и производится разметка расположения арматуры.

фиксация арматуры гвоздями к опалубке

Далее, от нашего зафиксированного прута с помощью рулетки делаем разметку арматуры через 200 мм, рисуем маркером либо карандашом корректором отметки. По ним будет производиться укладка арматуры.

разметка арматуры нижнего слоя плиты

Если на перекрытии присутствуют балки либо капители колонн, вяжем сперва их по месту, либо на земле, а потом монтируем краном.

армирование капители на колонне

армирование капители и балки на колонне

Следующим шагом устанавливаем «деки» в местах продавливания, по чертежу. Обычно ставятся на колоннах и углах стен.

деки на колонне

деки на углу стены

Теперь можно приступить к армированию основной сетки. По меткам разносим арматуру, выравниваем по торцу, делая защитный слой 2 см.

первый слой нижнего армирования плиты

Сразу зарезаем разбежку нахлестов арматуры. В нашем случае нахлест равен 40 диаметрам, для арматуры 12 мм, это 48 см. Разбежка равна 1,5 перехлеста – это 72 см, минимум, больше можно. Из получившихся кусков можно сделать пешки, они нам понадобятся для установки по краям плиты перекрытия и для обрамления отверстий.

зарезанная арматура с разбежкой

схема стыковки арматуры перекрытия

Схема стыковки и размер нахлеста арматуры в монолитной плите перекрытия (без сварки).

После того как уложили первый слой, приступаем к укладке второго, он будет перпендикулярен первому. Так же натягиваем нить, пробиваем гвозди и фиксируем первую арматуру, от неё будет производиться дальнейшее армирование нижнего слоя монолитной плиты перекрытия. Зафиксировав её, связываем каждое пересечение арматуры по рулетке – шаг 200 мм. Следующим шагом укладываем арматуры через каждые 2 метра и также провязываем по рулетке с шагом в 20 см. Этот прут является монтажным и сразу же частью нижней сетки.

расвязка нижнего армирования перекрытия

Провязав монтажные пруты, подставляем под них фиксаторы защитного слоя для арматуры, и производим разметку и укладку усиления 1-ого слоя.

пластиковый фиксатор защитного слоя перекрытия

Уложив все усиления разносим и привязываем остальные пруты основного армирования. Завязав всю нижнюю основную сетку, подставляем фиксаторы, с шагом 600 на 600 мм (5 штук на 1 метр квадратный). После установки фиксаторов укладываем усиления 2 слоя. Привязывается усиление по центру ячейки основного армирования, если шаг 200 мм, при шаге 100 мм, на расстоянии 50 мм от центра основного армирования, получится в ячейке по два прута усиления.

Важно! Связывать арматуры следует в шахматном порядке, с шагом 400 мм. Это обеспечит надёжную фиксацию металлических стержней между собой.

нижняя сетка армирования плиты

Финальный вид нижней сетки, с фиксаторами защитного слоя 25 мм, 5 штук на квадратный метр.

Если на перекрытии есть отверстия, их лучше разметить сразу, пока нет арматуры, начертить на опалубке и забить по углам гвозди. Можно сразу поставить опалубку для них, или же вырезать позже после армирования всей плиты, кому как удобней. Отверстия, размер которых более чем 200 на 200 мм, следует обрамлять дополнительной арматурой, выпуская в каждую сторону от короба по 50 см, то есть если короб 60 на 60 см, то размер обрамления 160 см. Привязывается по два прута с шагом 100 мм, с каждой стороны короба на верхнем и нижнем слое армирования, в общем, 16 прутов на короб. Так же привязываются пешки, к каждому пруту основной сетки.

обрамление отверстий перекрытия

усиление отверстия в плите перекрытия

Устройство усиления отверстий в плите перекрытия.

Верхний слой армирования монолитной плиты

расстановка лягушек на плите перекрытия

При наличии в плите перекрытия балкона, его усиляют, балками либо дополнительными прутами, в зависимости от проектных требований. Между балками арматура вырезается, и вставляется полистирол толщиной 100 мм, для уменьшения промерзаемости.

балконные балки усиления из арматуры

крепеж верхней арматуры к лягушке

Уложив усиления, раскладываем всю основную арматуру 4 слоя армирования и привязываем напротив нижней сетки. После укладываем усиление 4 слоя армирования и закрепляем вязальной проволокой.

армирование плиты перекрытия

Финальный вид армирования плиты перекрытия 20 см.

На последнем этапе армирования по краю перекрытия по основной сетке привязываем пешки. Это можно делать и в этапе вязки нижнего слоя.

Выполнив армирование плиты перекрытия, следует выполнить контрольную проверку, всё ли усиление на месте, соблюдены ли везде защитный слой. Если всё в порядке можно приступать к бетонированию плиты.

Важные моменты при армировании плиты

Правильно выполненное армирование плиты перекрытия обеспечит её долгую эксплуатации, для этого запомните следующие моменты, на которые следует обращать внимание в первую очередь.

  1. Защитный слой. Именно он обеспечивает правильную работу арматуры в плите перекрытия и защищает о коррозии.
  2. Величина нахлеста. Минимум 40 диаметров арматуры, этого будет достаточно, можно больше, но ни меньше.
  3. Расположение нахлестов. Верхний и нижний нахлест не должен совпадать.
  4. Обрамление отверстий. Неправильно выполненное обрамление, может привести к трещинам на перекрытии.
  5. Надёжная вязка арматуры. Она не должна шататься и прогибаться, а так же идти ровно без изгибов.
  6. Усиление. Количество должно соответствовать проектным требованиям, располагаться строго по чертежу.
  7. Арматура должна быть чистой и не ржавой.

Вот и всё о чем следует помнить при выполнении работ для качественного результата, если есть вопросы по армированию плиты перекрытия, задавайте их в комментариях.

Как армировать колонны: схемы, нормы и правила

армированная колонна

В монолитном строительстве, колоннами называют железобетонные вертикальные протяженные элементы, предназначенные для восприятия и передачи нагрузки от вышележащих конструкций. Для того чтобы они смогли обеспечить одноэтажным и многоэтажным сооружениям необходимый уровень жесткости и прочности, по вертикали, их усиливают арматурным каркасом. Разберем, как правильно и чем выполнить армирование колонны, чтобы она выдержала все будущие нагрузки на сжатие, скручивание и изгиб.

Зачем армировать колонны?

Арматурный каркас увеличивает такие показатели бетонной колонны, как:

  • Прочность.
  • Сейсмостойкость.
  • Устойчивость к появлению трещин.
  • Долговечность.

Материал для усиления колонн

Для армирования колонн используют арматуру следующих классов:

  1. В качестве рабочих продольных стержней применяют термомеханически упрочнённые стальные пруты периодического профиля класса А500С. Также допускается использование горячекатаных стержней класса А400.
  2. Для изготовления конструктивных элементов (хомутов, соединительных стержней), используется арматура с гладким профилем класса А240.

Пример армирования колонны разными классами арматуры

Технологические нормы по созданию армирующего каркаса

Для того чтобы правильно выполнить армирование монолитной колонны необходимо соблюдать следующие нормы по его устройству.

Диаметр арматуры

Минимальный диаметр стальных рабочих продольных стержней для сборных колонн должен быть равен не менее 16 мм. Для монолитных допускается применять арматуру диаметром 12 мм.

Рекомендуется, для создания армирующего каркаса колонны, использовать пруты одинаковой диаметра. Но допускается и применение двух разных, в этом случае стержни большего размера располагаются по углам колонны, а меньшего между ними по центру.

Минимальный и максимальный процент армирования колонны

Минимальный размер сечения арматуры для всех колонн разный. Определяется он расчетными действиями, учитываются все будущие нагрузки, которые будут действовать на колонну, временные, длительные и постоянные.

Максимальная площадь сечения рабочей продольной арматуры не рекомендуется делать более 5% площади поперечного сечения колонны. Так как в этом случае тяжело расположить стержни в пределах сечения.

Оптимальный процент армирования колонн находиться в пределах 0,4-3%. В местах стыковки это значение будет в 2 раза больше.

Пример расчета процента армирования колонны 400 на 400 мм, арматурой 16 диаметра – 4 шт.

  1. Находим площадь сечения колонны, 40*40=1600 см2.
  2. Считаем суммарную площадь поперечного сечения арматуры, 4*2,01=8,04 см2.
  3. Процент армирования равен, 8,04/(1600/100)=0,5025%.

Расположение продольных стержней

Максимально допустимое значение расстояния между осями продольных стержней не должно превышать 400 мм. Если расстояние более 400 мм, то следует между ними установить дополнительные стержни диаметром не менее 12 мм.

Рекомендуемое значение расстояния между стержнями в свету для сборных колонн рекомендуется делать не менее 30 мм, а для монолитных от 50 мм. В обоих случаях минимальное значение следует принимать не менее диаметра используемой арматуры.

Размер и расположение поперечных элементов

Размер поперечных стержней, зависит от наибольшего размера продольного прута в сечении колонны, а также от способа их соединения (вязка или сварка). Минимальный диаметр поперечных прутов указан в таблице ниже:

Таблица размера поперечных стержней арматуры колонны

Таблица зависимости размера поперечных стержней от диаметра продольной арматуры.

На размер шага расположения хомутов в колонне влияет класс арматуры, и ее показатели расчетного сопротивления сжатию Rас.

  • Для Rа.с. <= 4000 кгс/см 2 – шаг не более 50 см, а так же не больше 20 диаметров используемого прута при соединение методом сварки, а при вязке не более 15d.
  • Для Rа.с. = 4500 кгс/см 2 и Rа.с. = 5000 кгс/см 2 – шаг не должен превышать 40 см. Для сварных каркасов не более 15 диаметров, а для вязаных 12. Для расчета берется размер наименьшего используемого продольного прута.

Если процент насыщения продольных стержней в колонне больше 3, то размер шага поперечной арматуры не должен превышать 30 см и не быть более 10 диаметров меньшего продольного элемента. Рекомендуется в данном случае хомуты крепить методом сварки.

Шаг поперечных элементов колонны

Таблица рекомендуемого шага поперечных элементов армирования колонны.

Длина и правила стыковки прутов колонн

Длина арматуры для армирования монолитной железобетонной колонны берется такой, чтобы не было необходимости делать стык. Но если стык все же необходимо выполнить внахлест, без применения сварки, то лучшим вариантом расположения стыка будет в месте изменения сечения колонны. А для многоэтажных монолитных домов, лучший вариант расположения стыка, это уровень верха перекрытия.

Рекомендуемый размер нахлеста арматуры в колонне в сжатом состоянии, равен 30 диаметрам прута, при выполнении стыковки в разбежку. Но чаще всего стыковку выполняют без разбежки над перекрытием, в таком случае размер нахлеста рекомендуется делать в 2 раза больше, то есть 60 диаметров прута.

На схемах ниже приведены примеры выполнения стыковки продольной арматуры в монолитном домостроении.

Схема устройства стыков продольных стержней монолитных колонн

Пояснения к чертежу: а — при одинаковом сечении колонн верхнего и нижнего этажей; 6 — при незначительном различии в сечениях колонн верхнего и нижнего этажей; в — при резком различии в сечениях колонн верхнего и нижнего этажей.

Требования к защитному слою

Соблюдение требований по защитному слою бетона для арматуры колонны, одно из важнейших условий качественной железобетонной конструкции. Размер защитного слоя, зависит от диаметра арматуры и её назначения.

установка фиксаторов защитного слоя для колонны

Пример создания защитного слоя, с помощью пластиковых фиксаторов для арматуры.

Схемы армирующих каркасов

На схему расположения продольных и поперечных элементов армирования колонны (хомутов и соединительных стержней), влияет размер колонны, форма, количество арматуры используемых для её усиления, а также способ соединения элементов каркаса: при помощи сварки или вязальной проволоки.

Виды армирования вязанных колонн

Виды армирования сечений колонн вязаных каркасов.

Примеры армирования сечений колонн сварных каркасов

Схемы армирования сечений колонн сварных каркасов.

Армирование колонн в зависимости от формы и типа армирования

Чертеж расположения поперечных и продольных стержней в зависимости от типа армирования и формы колонны.

Как видите при создании армирующего каркаса следует учесть немало факторов, для того чтобы получить качественную железобетонную колонну. Будьте внимательны и ответственно отнеситесь к процессу строительства и расчета. Если остались вопросы после изучения материала, задавайте их в комментариях.

Арматурные работы: советы профессионала, приёмы и секреты

В этой статье мы расскажем о разных видах армирования конструкций и откроем некоторые секреты профессии арматурщика. Также будут приведены упрощённые расчёты, описания документации, схемы армирования. В статье вы найдёте практические советы и рекомендации по ведению арматурных работ.

Виды армирования

Армирование — неотъемлемая часть конструкции, материал которой предусматривает переход из жидкого состояния в твёрдое. Этот процесс называют схватыванием или твердением. По способам армирования различают:

  1. Дисперсное — добавление в жидкий раствор фибровых волокон или металлической стружки. Придаёт монолитному участку жёсткость и стойкость к истиранию. Применяют в устройстве полов, стяжек. Может применяться в комбинации со стержневым способом.
  2. Стержневое — в объём бетона или раствора включают систему стержней (сетку, каркас), которая распределяет нагрузку внутри конструкции. Применяют для несущих и отдельно стоящих элементов зданий.
  3. Слоевое (укрепление слоя) — в слой жидкого раствора или шпатлёвки включают сетку для придания стабильности отделочного слоя. Применяют при отделке и ремонте плоскостей.

В данной статье мы рассмотрим армирование конструкций при помощи каркаса и сеток.

Армирование конструкций

Отвердевший бетон выдерживает высокие нагрузки на сжатие — до 1000 кг/см², но неустойчив на излом, разрыв и растяжение. При этом его производство — относительно недорогое.

Арматурный стержень воспринимает значительные нагрузки на растяжение, но неустойчив к сжатию и изгибу. К тому же стоимость производства высока, учитывая, что в неё входят расходы на добычу металла .

Поскольку любая несущая конструкция подвергается комбинированным нагрузкам, необходим материал, удовлетворяющий нескольким требованиям. Комбинация арматурных стержней и бетона даёт комбинацию их свойств. В результате получается железобетон, устойчивый к сжатию, изгибу и излому.

Поскольку все ж/б изделия условно подразделяются на заводские и местного производства, арматура работает в них по-разному. Большинство заводских изделий производится с использованием предварительно напряжённой арматуры. Перед укладкой бетона в форму стержни предварительно растягивают (напрягают) специальным устройством. После отвердения напряжение в стержнях остаётся — арматура как бы «поджимает» весь элемент вдоль них, что значительно улучшает механические свойства детали. Например, балка или плита с предварительно напряжённой арматурой выдерживает большие нагрузки (+ 40–60%) на изгиб, чем обычные.

В высотных зданиях арматурный каркас служит основой всей конструкции. Стержни переходят из одного элемента в другой, что делает их взаимосвязанными между собой и придаёт требуемую жёсткость каркасу здания. Этот эффект даёт возможность возводить небоскрёбы на относительно малой площади.

Армирование СНиП

При строительстве ответственных зданий и сооружений расчёт сечения и количества стержней — один из основных. Нормы армирования регламентируются документами — СНиП 2.03.01–84 «Бетонные и железобетонные конструкции» и приложением к нему «Армирование элементов монолитных железобетонных зданий. Пособие по проектированию». В этих документах подробно описаны расчёты, допуски и требования к конструкциям, в которых применено армирование.

Условия эксплуатации и требования к самим стержням нормируются документом ГОСТ 10884–94 «Сталь для железобетонных конструкций» .

Глубокие расчёты необходимы при строительстве крупных и сложных объектов — высотных зданий, мостов, башен, плотин. Для расчёта армирования конструкций в частном строительстве достаточно придерживаться основных правил, которые актуальны для всех случаев применения арматуры.

Сортамент арматуры

Ещё одним полезным документом является сортамент. В нём приведены все возможные характеристики арматурных изделий — вес погонного метра и зависимость его от диаметра, площадь сечения стержня и марки стали и многие другие. Эти данные необходимы при более сложных расчётах — монолитных перекрытий, резервуаров или зданий, имеющих более 3-х этажей.

Класс арматуры

Как правило, в частном порядке используют самые распространённые марки и диаметры стержней. Условно этот набор можно назвать «оптимальным разрядом». В него входят стержни диаметром от 6 до 18 мм. Классы арматуры оптимального разряда по ГОСТ 5781:

  1. А1 (А240). Гладкий прут Ø 6–12 мм — в бухтах (бобинах, мотках), 12–40 мм — в прутах (круг).
  2. А2 (А300). Имеет винтовые рёбра. Диаметр 10–12 мм — в бухтах, 12–40 мм — в прутах.
  3. А3 (А400). Поперечные рёбра расходятся «ёлочкой» от продольного ребра. Ø 6–12 мм — в бухтах, 12–40 мм — прутах.

Другие марки встречаются редко — в основном на объектах с высокими требованиями, эти изделия изготавливают на заказ из более качественной стали.

Армирование бетона бывает только двух видов по конструкции — плоская сетка (может быть изогнута) или пространственный каркас. Сетку применяют для лежачих плит и стяжек, пространственный каркас — для объёмных элементов — балок, перемычек, армопояса , колонн, стен и др. При этом две сетки, устроенные на стабильном расстоянии друг от друга, уже представляют собой каркас (например, стеновой).

Расчёт армирования

Когда определена форма изделия (элемента) и его размер, дело остаётся за малым — определить диаметр и шаг ячейки каркаса. В строительстве с невысокими требованиями оптимально применить эффективную систему адаптированного расчёта. Принцип применения арматуры разного диаметра прост — чем больше нагрузки несёт элемент, тем толще необходимы стержни.

Показатели каркасов и сеток для разных конструкций:

В адаптированном расчёте можно применить общий принцип — достаточный шаг ячейки будет равен диаметру стержня, умноженному на 10. В ответственных местах — примыкания и соединения элементов — следует добавлять усиления, т. е. устанавливать дополнительные стержни.

Схема армирования

Как правило, из железобетона устраивают два вида элементов — балки и плиты. В 80% случаев для выполнения каркаса любой сложности достаточно будет двух позиций:

  • рабочие стержни — пруты арматуры Ø 12–18 мм, устроенные вдоль конструкции;
  • распределительные (конструктивные) элементы — изделия из проволоки Ø 6–8 мм, которые распределяют в пространстве и фиксируют рабочие стержни с заданным шагом.

Разумеется, понадобится вязальная проволока.

Схема армирования балки: 1 — армирование лежачих, фундаментных балок и армопояса; 2 — армирование висячих балок, фундамента; 3 — защитный слой 40 мм; 4 — вспомогательные рабочие стержни; 5 — основные рабочие стержни; 6 — хомут Схема армирования балки: 1 — армирование лежачих, фундаментных балок и армопояса; 2 — армирование висячих балок, фундамента; 3 — защитный слой 40 мм; 4 — вспомогательные рабочие стержни; 5 — основные рабочие стержни; 6 — хомут

Если балка предполагается висячая, все стержни в ней должны быть одинакового сечения (не менее 16 мм). Для лежачей балки вспомогательные стержни могут быть меньшего диаметра.

Схема армирования плиты: 1 — лежачая плита; 2 — висячая плита; 3 — «лягушка»; 4 — распределительная арматура; 5 — рабочая арматура Схема армирования плиты: 1 — лежачая плита; 2 — висячая плита; 3 — «лягушка»; 4 — распределительная арматура; 5 — рабочая арматура

Каркас висячей плиты представляет собой две зеркально расположенные сетки. Равное расстояние между ними удерживается с помощью ограничителей.

Станок для арматуры

Для того чтобы изготовить элементы типа «хомут» или «лягушка» потребуется специальное приспособление — гибочный станок. Если предполагается ощутимый объём бетонирования, начать следует именно с изготовления этого станка из подручного материала. Он представляет собой верстак на стальной раме, надёжно установленный в горизонтальном положении.

Чтобы собрать станок для арматуры на месте, вам понадобится подручный материал — обрезки металла, среди которых должны быть два уголка 40х40 или 45х45.

  1. Основной элемент станка — упор со втулкой. В середине верстака привариваем вертикально стержень длиной 8–10 мм и подбираем стальную трубку, которая свободно на него наденется.
  2. К трубке привариваем рычаг — лучше всего уголок горизонтальной полкой к трубке. Если уголка нет, тогда упор в 100 мм от приваренного стержня.
  3. К наружному краю рычага привариваем удобную ручку.
  4. Укладываем арматуру наибольшего диаметра (но не более 18 мм), которую необходимо гнуть параллельно длинному краю верстака.
  5. Привариваем к верстаку упор — лучше всего уголок.

Станок может иметь произвольную конструкцию. Основная идея — сила прикладывается в трёх точках через рычаги.

В продаже часто можно встретить заводские ручные приспособления для загиба арматуры, но они редко выдерживают интенсивные нагрузки и предназначены для домашнего использования. Для больших объёмов можно приобрести электрический гибочный станок 220 или 380 В. При помощи электрического станка можно выгибать довольно сложные элементы, которые используют в том числе и в художественной ковке. Цена нового электрического гибочного станка до 40 мм начинается от 70 000 руб.

Сварка арматуры

Самая распространённая ошибка при выполнении арматурных работ — применение электросварки для соединения элементов каркаса. Причины, по которым этого делать нельзя:

  1. Перегрев металла. При производстве арматуры классов А1, А2, А3 используется сталь с относительно высоким содержанием углерода. Это значит, что после нагрева она теряет до 50% свойств по прочности. Это особенно важно для соединений под углом.
  2. Неправильное распределение нагрузки. Жёстко зафиксированный (приваренный) участок стержня как бы вычленяется из него и работает отдельно от остальной его части. По этой причине возникают ненормальные напряжения, сосредоточенные в местах жёсткой фиксации (сварки) вместо того, чтобы распределяться по всей длине.
  3. Неправильно собранный каркас останется только выбросить (невозможно переделать).
  4. Опасность для других рабочих — возможно случайное поражение током.
  5. Затраты на электричество.

Однако есть случаи, когда сварка не только незаменима, но и обязательно требуется:

  1. Установка закладных деталей (ЗД). ЗД — приоритетные элементы, на которых сосредотачивается большая нагрузка. Они ввариваются в каркас для лучшей передачи нагрузки на стержни.
  2. Сварка продольных стыков (перехлёстов). Перегретая арматура сохраняет до 70% свойств на растяжение. К тому же на перехлёсте она сдвоена. Сварка продольных стержней «в стык» лишена смысла.
  3. Крепление по месту к уже существующим ЗД или стальным элементам (при реконструкции зданий).

Вязка арматуры

Скрепление пересекающихся стержней между собой — кропотливая и трудоёмкая работа. Но её нельзя избежать при армировании конструкций. Для этого используют мягкую вязальную проволоку толщиной от 0,5 до 2,5 мм. Приспособление для работы — крючок арматурщика — каждый специалист подбирает себе сам. Есть небольшой ассортимент заводских моделей, но в подавляющем большинстве случаев крючок изготавливают на месте из прута проволоки Ø 8–12 мм. Для этого необходимо выгнуть его в удобной форме и заточить с одного конца. На обратном конце стержня крючка можно надеть пластиковую трубку. Также крюк можно установить в аккумуляторный шуруповёрт, что значительно облегчит работу.

Для облегчения труда арматурщика есть развитые формы вязального крючка:

  1. Заводской арматурный крючок. Между ручкой и стержнем крюка установлен подшипник.
  2. Автоматический крюк. Вращается за счёт пружины в рукояти, соединённой с жалом.
  3. Вязальное устройство (пистолет). Операция автоматизирована, пистолет сам поджимает стержни и вяжет проволоку.

При создании каркасов для разных элементов применяют разный шаг вязки. Чем более ответственный участок — тем плотнее будут расположены узлы.

Шаг узлов в разных каркасах:

Арматурные работы часто сопряжены с установкой опалубки, которую часто смазывают маслом для облегчения демонтажа. Внимательно следите за тем, чтобы масло не попадало на стержни — это приведёт к отсутствию сцепления между бетоном и арматурой. Использование сильно окисленной арматуры категорически нежелательно.

Армирование монолитных конструкций

Для начала немного истории. Изобретение железобетона началось с открытия цемента. Первый цемент был получен в 1796 году англичанином по фамилии Паркер. Цемент был получен путем обжига глины и известкового камня. Полученные смеси на основе цемента с добавлением песка и щебня применялись в строительстве для устройства перегородок, малопролетных балок. Материал получился высокопрочным на сжатие, огнестойким, достаточно дешевым. Применение его было ограниченно низкой прочностью материала на разрыв.

Некоторые принципиально похожие на современный железобетон конструкции применялись даже в 1802 году при строительстве Царскосельского дворца в г. Царское село, пригороде Санкт-Петербурга. Тогда были использованы металлические стержни совместно с вяжущим веществом - известковым тестом для устройства перекрытий дворца.

Однако до совмещения бетона и арматуры было еще далеко. Как ни странно предложения по устройству конструкций из бетона, пронизанного металлическими стержнями поступавшие от строителей: в 1854 году английский штукатур Вильям Вилкинсон получил патент на использование железобетона и даже возвел из него небольшой домик, а в 1861 году независимо от него француз Куанье издал брошюру «Применение бетона в строительном искусстве» в которой описывал применение металлических стержней совместно с бетоном, не получили никакого распространения и массового применения.

А вот честь открытия железобетона почему-то принадлежит садовнику Жозефу Монье. Он изготавливал из цементобетона декоративные кадки для садовых деревьев, когда они трескались от прорастающих корней решил скрепить из железными обручами, а чтобы не портить внешний вид обручи снова обмазал пескобетоном. Получилась очень удачная конструкция, Монье как весьма предприимчивый человек начал думать над применением данной системы, разработал и построил мост, запатентовал железобетонные балки и в конце концов в 1880 году получил общий патент на применение железобетона. Не будучи строителем он не мог правильно оценить взаимодействие и совместную работу металла и бетона, в частности он рекомендовал располагать армирующие сетки по центру конструкции.

Но тут уже в дело вступили профессиональные строители усовершенствовавшие технологию, рассчитавшие и правильно расположившие армирующие сетки в бетоне. Не могу здесь не упомянуть немецкого инженера Гюстава Вайса, который выкупил патент Монье, произвел исследования конструкций соединяющих железо и бетон и в 1887 году перенес арматуру из середины бетонной плиты в ее нижнюю часть тем самым значительно увеличив ее рабочий пролет и положив начало современному монолитному строительству.

Итак, к чему же пришло современное представление о железобетоне. Здесь я расскажу о том как правильно в соответствии с нормами современного строительства произвести армирование конструкции и как проверить правильность выполнения этих работ если вы являетесь Заказчиком.

Основные направления применения монолитных конструкций - это различные виды балок. Да, и перекрытие - тоже технически балка, просто широкая и тонкая. Рассчитывается данная конструкция в сечении по пролету. Рассмотрим картинку:

Зоны работы свободной балки в пролете Зоны работы свободной балки в пролете

Как видно в продольном сечении есть несколько зон. Верхняя часть белки в пролете - сжимается, нижняя - растягивается. Над опорами все ровно наоборот. Конечно если балка свободная, то есть ее опирание на опоры не защемлено, то растяжение над опорной части незначительно.

Как я писал выше в железобетоне на растяжение работает именно арматура, бетон же славится своей прочностью на сжатие.

На нижнем рисунке указан армирующий стержень который воспринимает нагрузку растяжения в нижней части пролета и не дает конструкции разрушится.

Теперь немного физики на пальцах. Все мы инстинктивно понимаем закон рычага, тот самый рычаг которым Архимед грозился перевернуть землю. Как ломается балка или другая конструкция. Мне почему-то легче представить это в вертикальном положении. Вот есть стержень, например карандаш, нижний конец жестко зажат в тиски, а верхний я начинаю изгибать. Естественно усилие воздействует на ту точку, которая зажата в тиски, чес длиннее карандаш тем легче его сломать, у моего воздействия больший рычаг.

Сопротивляется моему воздействию карандаш сжимая свою часть, направленную в сторону моего воздействия, растягивая противоположную. Рычаг этого сопротивления связан с толщиной этого карандаша. При этом если глянуть вглубь, то внутренние части стержня растягиваются и сжимаются меньше, то есть их вклад в сопротивление меньше.

Если развернуть горизонтально, положить наш карандаш-балку на опоры и начать на него давить картина будет приблизительно та же. Причем стоит отметить что если концы карандаша защемить то он будет выдерживать большую нагрузку ибо в работу включатся верхние части защемленных концов работая на растяжение.

Собственно на пальцах это и есть весь принцип сопромата. Приложили нагрузку - возникла деформация в результате возникло напряжение которое стало сопротивляться нагрузке, пока все в пределах нормы все это упруго, связи между атомами материала не нарушаются, если нагрузка слишком большая деформация становится слишком большой, расстояния между атомами вещества увеличиваются так сильно, что атомные связи разрушаются и все ломается, течет и падает. Задача инженера вовлечь в работу наибольшую часть конструкции обеспечив максимальную реакцию при небольшой деформации.

Теперь к нашему частному домику. Все эти описания наверху я делал для того, чтобы объяснить общие принципы работы армированной конструкции. Поняв эти принципы вы сможете на глаз определить правильно ли выполнено армирование, добавим некоторые способы соединений и собственно все, что вам надо знать.

Читайте также: