Технология утепления наружных стен реферат

Обновлено: 26.09.2022

Фасадная система наружного утепления дома, теплоизоляция стен и фасада здания

«МОКРЫМ» СПОСОБОМ — ЭТО своеобразный «сэндвич», состоящий из трех слоев, выполняющих различные функции, а в совокупности обеспечивающие неуязвимость, экономичность и надежность.

ПЕРВЫЙ СЛОЙ в СИСТЕМЕ УТЕПЛЕНИЯ – теплоизолирующий:

Фасадный ПОЛИМЕРНЫЙ КЛЕЙ для утеплителя и теплоизоляции, утеплитель МИНЕРАЛЬНАЯ ВАТА «Rockwool», «Paroc», «ТехноФас» или ПЕНОПОЛИСТИРОЛ ПСБС-25Ф, которые дополнительно укрепляется с помощью специальных ФАСАДНЫХ ДЮБЕЛЕЙ для теплоизоляции.

ВТОРОЙ СЛОЙ в СИСТЕМЕ УТЕПЛЕНИЯ – армировочный:, ФАСАДНАЯ СТЕКЛОСЕТКА TG-15 и ПОЛИМЕРНЫЙ КЛЕЙ для создания армирующего слоя в системе утепления., ТРЕТИЙ СЛОЙ в СИСТЕМЕ УТЕПЛЕНИЯ – финишный- штукатурный:

ПОЛИМЕРНАЯ ГРУНТОВКА ГРУНТ и СТРУКТУРНАЯ ФАСАДНАЯ ШТУКАТУРКА ШУБА, КОРОЕД на полимерно-акриловой основе, или МОЗАИЧНО-КАМЕННАЯ ШТУКАТУРКА МОЗАЙКА, широкой цветовой гаммы и фактуры.

ОСОБЕННОСТИ ТЕПЛОИЗОЛЯЦИИ ПАНЕЛЬНЫХ ДОМОВ СТАРОЙ ПОСТРОЙКИ

Исследования показывают, что при эксплуатации традиционного многоэтажного жилого дома через стены теряется до 40% тепла, через окна — 18%, подвал — 10%, покрытия — 18%, вентиляцию — 14%.

Основным методом достижения энергетической эффективности зданий является повышение тепловой эффективности ограждающей оболочки здания, включая стены.

В настоящее время можно говорить о существовании двух направлений снижения теплопотерь в зданиях: реконструкция существующих строений для приведения в соответствие новым ужесточенным нормам теплозащиты и разработка и возведение новых т. н. энергоэффективных домов, отвечающих современным строительным требованиям.

В существующем фонде крупнопанельных многоэтажных жилых домов России заключены огромные резервы в достижении энергосберегающего эффекта, поскольку уровень теплозащиты этих зданий существенно ниже современных требований.

В основном в ранее построенных зданиях средней полосы России сопротивление теплопередаче стен составляет в среднем 0,60 м2 0С/Вт.. Принятые недавно нормативные требования увеличили значения сопротивления теплопередаче: для стен до 3,0–3,5 м2 0С/Вт.. Сопротивление теплопередачи показывает, какое количество тепла уйдет через квадратный метр ограждающей конструкции при заданном перепаде температур. Можно сказать и наоборот, какой перепад температур возникнет при прохождении определенного количества тепла через квадратный метр ограждений R = ΔT/q, где q – это количество тепла, которое теряет квадратный метр ограждающей поверхности. Его измеряют в ваттах на квадратный метр (Вт/м. кв.); ΔT – это разница между температурой на улице и в комнате (°С) и, R – это сопротивление теплопередачи (°С/ Вт/м. кв. или °С·м. кв./ Вт).

19 стр., 9093 слов

Строительство загородных домов для временного проживания

. из непрофилированного бруса или пеноблоков. Объяснение тому простое: строительство дач из этих материалов наиболее целесообразно, если брать за основу критерий «цена-качество». Дачные дома из бруса с утеплением . компании обязательно выезжают на место предполагаемых работ, осуществляют всесторонний анализ, составляют смету стоимости строительства коттеджей, что дает возможность человеку определиться .

так исходя из условий энергосбережения согласно СНиП II-3-79* «Строительная теплотехника», сопротивление теплопередаче стен для жилых помещений в Москве и ее области в домах постоянного проживания должно составлять 3,16 м2 0С/Вт.

Несоответствие этого показателей в панельных домах старой постройки приводит к теплопотери до 90 Вт/м.кв..

Наиболее предпочтительным способом повышения теплозащиты реконструируемых зданий считается наружная теплоизоляция стен с применением эффективных теплоизоляционных материалов. При этом обеспечивается значительное повышение теплотехнической однородности наружных ограждений, простота конструктивных решений дополнительной теплозащиты, возможность утепления зданий без выселения жильцов, сохранение полезной площади, улучшение температурно-влажностного режима существующих наружных ограждений.

Тепловая модернизация старых зданий требует единовременных капиталовложений, которые составляют в среднем 5-10% от стоимости дома, а экономический эффект – экономия на отоплении — 50%. Подсчитано, что затраты на проведение тепловой модернизации этой категории задний окупаются за 5–10 лет.В настоящее время растет число реализованных проектов реконструкции зданий в частности панельных пятиэтажек в Москве и Санкт-Петербурге, в которых удалось добиться двукратного снижения затрат на обогрев. В случае массового внедрения этого успешного опыта, даже по самым приблизительным подсчетам, можно будет сократить теплопотери всего жилищного фонда на 30%.

Для утепления стен зданий в настоящее время в строительной практике получили конструкции наружной теплоизоляции, которые условно можно разделить на «мокрые» системы с оштукатуриванием плитного (предпочтительнее — минераловатного) утеплителя и «сухие» вентилируемые системы с облицовкой на относе от слоя теплоизоляции.

Системы наружного утепления зданий с финишным штукатурным слоем относятся к первому варианту. При применении данного способа утепления общее сопротивление теплопередаче все конструкции будет складываться из суммы сопротивления теплопередаче самой стены и сопротивления теплопередаче слоев, используемых в системе:

® Первый слой – теплоизолирующий. К чистой, ровной поверхности наружной стены фасада с помощью полимерного клея приклеивается теплоизоляционный слой (минеральная вата «Paroc” «Rockwool» или пенополистирол ПСБ-С 25), который дополнительно укрепляется с помощью специальных дюбелей.

4 стр., 1627 слов

Современные системы утепления зданий и сооружений

. «термошубы», утепление стен зданий и сооружений с наружной стороны можно выполнить устройством на фасаде здания каркаса, в . утепление. Теплоизоляционные системы, применяемые для наружной теплоизоляции, подразделяются на системы: с тонкими штукатурными и накрывочными слоями; с толстыми штукатурками (до 30 мм); «сухой теплоизоляции» (система утепления «на относе» ); монолитной теплоизоляции (утепление .

® Второй слой – защитно-влагостойкий – создается с помощью полимерного клея и армируется сеткой из стекловолокна.

®Третий слой – декоративно-влагостойкий, на основе акриловых штукатурных и мозаичных масс широкой цветовой гаммы и фактуры.

«Современный теплый дом». Теплоизоляция фасадов. Тёплый ветер.

Многослойные стены появились, как только человек понял, что для обеспечения нормального микроклимата во внутренних помещениях в суровые зимние морозы недостаточно толщины обычных однослойных ограждающих конструкций. При увеличении их толщины тратятся значительные средства на материалы, увеличивается вес конструкции, нагрузки на фундамент, время, затрачиваемое на строительные операции и т.д. Только значительного эффекта это не дает.

Нельзя безразмерно утолщать стены. Поэтому появились многослойные конструкции. Первый слой это непосредственно несущая стена, внутренняя сторона которой обращена в жилые помещения и покрыта внутренними декоративными покрытиями (штукатуркой, обоями, краской и т.д.).

Толщина его определяется только прочностными требованиями и значениями паропроницания. Второй слой — это эффективный теплоизолирующий материал, обладающий относительно малым весом и высокими теплофизичискими характеристиками. Наружный слой защитно-декоративный. Служит он (как видно из названия) для защиты теплоизоляционного слоя и придания фасаду декоративно- эстетического вида.

В предыдущем номере мы подробно остановились на многослойных конструкциях стен, в которых теплоизоляционный материал защищается декоративными штукатурками. С одной стороны эти системы предлагают достаточно надежные методы утепления фасадов с большим выбором эстетических и цветовых решений декора, техник выполнения и доступностью комплектующих. С другой стороны зависимость от погодных условий, температуры окружающего воздуха, солнца и ветра, атмосферных осадков и как следствие сезонность проводимых работ значительно ограничивает применение штукатурных систем утепления фасадов. К тому же недостаточно высокий профессионализм некоторых монтажных бригад и желание сэкономить на качестве комплектующих может проявиться в очень короткий срок. Это и трещины, и отслаивание штукатурного слоя, а и иногда и полностью отвалившиеся фасады…

Ремонтные операции при штукатурных методах утепления фасада иногда сопоставимы по цене с заново производимыми работами, но и они не всегда оправдывают себя. Очень тяжело подобрать такой же цвет декоративной штукатурки. За время эксплуатации здания декоративный слой немного выгорел на солнце, немного припал пылью, немного пострадал от шалости детишек. Новая же краска яркая и сочная. Границы перехода сразу же бросаются в глаза. Замазанные трещины тоже видны даже самым непрофессиональным прохожим. Новым мастерам не всегда удаётся повторить технику нанесения декоративной штукатурки. У каждого мастера свой неповторимый почерк, как у художников.

В общем, вопросов хватает. Что же можно противопоставить? Можно ли придумать такую систему утепления фасада, чтобы сохранялись все положительные особенности теплого фасада, но мокрых процессов было меньше? Чтобы не было зависимости монтажных операций от погоды и времени года? Есть ли такие системы, в которых сохраняются высокие декоративные качества, но они не страдают от невежества и малого практического опыта рабочих? Системы, которые легко можно отремонтировать как в локальных фрагментах, так и при каких-либо перестройках?

14 стр., 6553 слов

Автоматизация производства и информационные системы на предприятии .

. со временем», что предполагает отслеживание и внедрение новых программных продуктов, технологий, систем. Курсовая работа состоит из двух глав: В первой главе вводится понятие автоматизированной . процессов лежит замена физического и умственного труда человека машинным трудом. Понятие автоматизации производственных процессов включает комплекс мероприятий, направленных на сокращение числа работающих в .

Оказывается, такие системы существуют!

Системы навесных вентилируемых фасадов были разработаны как более рациональная и более долговечная альтернатива штукатурных фасадов. Эти системы тоже по своей сути состоят из несущей стены, эффективного теплоизолирующего слоя и декоративно-защитного покрытия, но конструктивно очень сильно отличаются от них. Основными отличиям является то, что теплоизоляционные материалы в таких системах используются значительно более легкие и как следствие менее прочные. С одной стороны это позволяет сэкономить значительные средства на теплоизоляционном слое, но с другой стороны требует введения системы силового каркаса. Этот каркас зачастую при помощи дюбелей крепиться на несущую стену и удерживает на себе и теплоизоляционный слой, и декоративную навеску.

Каркас этот, в зависимости от системы, может быть выполнен либо из деревянных реек, либо из металлических профилей. Декоративная же отделка, тоже в зависимости от системы, может быть самая разная. От деревянной обработанной вагонки и винилового сайдинга, до каменных навесных панелей и керамогранита. От легких алюминиевых и композитных панелей до стеклянных и зеркальных щитов. Выбор декора огромен и позволяет укомплектовать практически любое строение комплексной системой от частного домика в лесу до современной многоэтажной «свечки» в центре города. Все элементы соединяются механически без мокрых и клеевых процессов в любое время года и практически при любой погоде.

Любая модель вентилируемого фасада должна иметь воздушный зазор между теплоизоляционным слоем и внутренней стороной декоративной отделки. Толщина вентилируемой щели зачастую должна быть не менее 4см. Используя естественное восходящее движение воздуха по вентилируемой щели, достигается удаление лишней влаги из теплоизоляционного слоя и ограждающей конструкции в целом. Если такой зазор отсутствует и облицовка смонтирована вплотную к утеплителю, то он начинает увлажняться, постепенно теряет свои теплоизоляционные свойства и в конечном итоге система перестает соответствовать своему функциональному назначению.

В связи с этим к теплоизоляции предъявляются особые требования в отношении воздухопроницаемости и гидрофобности. Материал должен обеспечивать беспрепятственную диффузию водяного пара и обладать эффективной воздухопроницаемостью. Стоит обратить внимание, что воздух, движущийся в зазоре системы, может выносить из теплоизоляционного слоя, помимо влаги, и волокна утеплителя. Оптимально подобранные характеристики материалов и установка плит в комплексе с ветрозащитными покрытиями и мембранами предотвращают этот процесс.

Так же воздушный зазор в данной системе может способствовать распространению огня во время пожара. Теплоизоляционный слой на основе негорючих плит из каменной ваты позволит этого избежать, т.к. волокна каменной ваты изготовленной на основе базальтовых пород могут выдерживать температуру более тысячи градусов по Цельсию.

9 стр., 4266 слов

Аморфные материалы: их свойства, применение в современной технике, .

. твёрдых тел (кристаллических и аморфных) позволяет создавать материалы с заданными свойствами. При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твёрдым телам, и . аморфизирующихся систем сплавов, достаточно подробно изучены структура и свойства металлических стёкол, расширяется область их применения в промышленности. 2.1 Методы получения аморфных сплавов .

Применение в качестве теплоизоляционного слоя фасадной системы материалов из каменной ваты гарантирует максимально продолжительный срок эксплуатации данной системы. Высокие механические характеристики плит обеспечивают стабильность их размеров и отсутствие разрушений в местах фиксации механическими креплениями. Точность изготовления размеров плит и их малые отклонения устраняет образование зазоров при их установке на поверхность стены.

Одним из основных критериев выбора теплоизоляционных материалов для вентилируемых систем является плотность материала. Нижний предел плотности минераловатного утеплителя составляет 30-50кг/м3, а верхний 70-90 кг/м3. Это не случайные величины. Практика показала, что это действительно оптимальная плотность материалов и подбирать её необходимо в зависимости от этажности здания и скорости движения воздуха в вентиляционной щели. В малоэтажном строении (1-2 этажа) допускается применение легких материалов. При увеличении этажности растет и плотность используемых теплоизоляционных плит. При высоте здания более 10 метров уже рекомендуется применение плит плотностью более 70 кг/м3. Такие плиты гибкие и в то же время достаточно жесткие, их можно надежно зафиксировать в вертикальном положении (они не сползают).

Достаточно часто в строительной практике используется двухслойная изоляция, что, в принципе, не может не приветствоваться, поскольку плитами второго слоя теплоизоляции удается перекрыть стыки плит первого слоя и тем самым уменьшить теплопотери.

Однако настораживает следующая достаточно опасная тенденция: использование в системе очень легких материалов. Часто плотные материалы на строительных объектах с целью удешевления систем заменяются самыми легкими материалами плотностью ниже 20 кг/м3. Это приводит к осадке утеплителя внутри конструкции, образованию значительных мостиков холода и выходу системы из строя. Легкие материалы, благодаря своим структурным особенностям, обладают большой воздухопроницаемостью и могут быть подвержены подсосу воздуха в них или в промежуток между ограждающей конструкцией и теплоизоляционным материалом, что приводит к формированию конвективных потоков и соответственно — к неоправданным потерям тепла. Поэтому в системах вентфасадов легкие минераловатные или стекловолокнистые плиты следует комбинировать с более плотными материалами.

Примеры похожих учебных работ

Реферат стены зданий

. покрытием и иметь уклон для стока воды от стены. Стены зданий возводятся из крупных панелей, крупных бетонных или . др. конструкциям в пределах каждого этажа. Несущая способность стен здания из различных материалов (бетон, кирпич, естеств. и искусств, .

Малоэтажное жилое здание

. ЮУрГТК / Малоэтажное жилое здание предназначено для постоянного или сезонного проживания людей. Дом запроектирован . 1. Исходные данные для проектирования 4 2. Объемно-планировочное решение . строительных и отделочных работах 31 Заключение 34 .

Теплоизоляционные материалы (2)

. чем в несколько раз выше, чем у наружных слоёв. Швы и соединения пароизоляционного барьера . изоляционно-строительные, которые применяют для утепления строительных ограждений, и изоляционно-монтажные - для утепления трубопроводов и промышленного .

Системы теплогазоснабжения и вентиляции

. существенные потери тепла могут приходиться на вентиляцию. Тепловые потери в основном зависят от: разницы температур в доме и на улице (чем разница больше, тем потери выше), теплозащитных свойств стен, .

Фасадные системы

. Вентилируемый фасад (метод легкий сухой) Плитты PANELROCK предназначаются для тепло- и звукоизоляции стен: наружных зданий . ограждающих конструкций вновь строящихся, а также реконструируемых зданий с защитным внешним слоем. Они обладают следующими .

Реферат: Теплоизоляция

Теплоизоляция, тепловая изоляция, термоизоляция, защита зданий, тепловых промышленных установок (или отдельных их узлов), холодильных камер, трубопроводов и прочего от нежелательного теплового обмена с окружающей средой. Так, например, в строительстве и теплоэнергетике Т. необходима для уменьшения тепловых потерь в окружающую среду, в холодильной и криогенной технике - для защиты аппаратуры от притока тепла извне. Т. обеспечивается устройством специальных ограждений, выполняемых из теплоизоляционных материалов (в виде оболочек, покрытий и т. п.) и затрудняющих теплопередачу; сами эти теплозащитные средства также называются Т. При преимущественном конвективном теплообмене для Т. используют ограждения, содержащие слои материала, непроницаемого для воздуха; при лучистом теплообмене - конструкции из материалов, отражающих тепловое излучение (например, из фольги, металлизированной лавсановой плёнки); при теплопроводности (основной механизм переноса тепла) - материалы с развитой пористой структурой.

Эффективность Т. при переносе тепла теплопроводностью определяется термическим сопротивлением (R) изолирующей конструкции. Для однослойной конструкции R=d/l, где d - толщина слоя изолирующего материала, l - его коэффициент теплопроводности. Повышение эффективности Т. достигается применением высокопористых материалов и устройством многослойных конструкций с воздушными прослойками.

Задача Т. зданий - снизить потери тепла в холодный период года и обеспечить относительное постоянство температуры в помещениях в течение суток при колебаниях температуры наружного воздуха (см. Строительная теплотехника). Применяя для Т. эффективные теплоизоляционные материалы, можно существенно уменьшить толщину и снизить массу ограждающих конструкций и таким образом сократить расход основных стройматериалов (кирпича, цемента, стали и др.) и увеличить допустимые размеры сборных элементов.

В тепловых промышленных установках (промышленных печах, котлах, автоклавах и т. п.) Т. обеспечивает значительную экономию топлива, способствует увеличению мощности тепловых агрегатов и повышению их кпд, интенсификации технологических процессов, снижению расхода основных материалов. Экономическую эффективность Т. в промышленности часто оценивают коэффициентом сбережения тепла h= (Q1 - Q2 )/Q1 (где Q1 - потери тепла установкой без Т., а Q2 - c Т.). Т. промышленных установок, работающих при высоких температурах, способствует также созданию нормальных санитарно-гигиенических условий труда обслуживающего персонала в горячих цехах и предотвращению производственного травматизма. Большое значение имеет Т. в холодильной технике, так как охлаждение холодильных агрегатов и машин связано со значительными энергозатратами.

Т. - необходимый элемент конструкции транспортных средств (судов, ж.-д. вагонов и др.), в которых роль Т. определяется их назначением: для средств пассажирского транспорта - требованием поддержания комфортных микроклиматических условий в салонах; для грузового (например, судов, вагонов-рефрижераторов и грузовых автомобилей для перевозки скоропортящихся продуктов) - обеспечения заданной температуры при минимальных энергетических затратах. К эффективности Т. на транспорте предъявляются повышенные требования в связи с ограничениями массы и объёма ограждающих конструкций транспортных средств. См. также Теплозащита, Теплоизоляционные работы.

3. Теплоизоляционные материалы

Теплоизоляционные материалы, материалы и изделия, применяемые для теплоизоляции зданий (сооружений), технологического оборудования, средств транспорта и др. Т. м. характеризуются низкой теплопроводностью [коэффициент теплопроводности не более 0,2 вт/(м × К)], высокой пористостью (70—98%), незначительными объёмной массой и прочностью (предел прочности при сжатии 0,05—2,5 Мн/м 2 ).

Основной показатель качества Т. м. — коэффициент теплопроводности. Однако его определение весьма трудоёмко и требует применения специального оборудования, поэтому на практике в качестве такого показателя — марки Т. м. — используют выраженную в кг/м 3 величину их объёмной массы в сухом состоянии, которая в достаточном приближении характеризует теплопроводность Т. м. Различают 19 марок Т. м. (от 15 до 700). В эксплуатационных условиях Т. м. должны быть защищены от проникновения влаги; их теплопроводность при насыщении водой возрастает в несколько раз.

Основные области применения Т. м. — изоляция ограждающих строительных конструкций, технологического оборудования (промышленных печей, тепловых агрегатов, холодильных камер и т. д.) и трубопроводов. Различают Т. м. жёсткие (плиты, блоки, кирпич, скорлупы, сегменты и др.), гибкие (маты, матрацы, жгуты, шнуры и др.), сыпучие (зернистые, порошкообразные) или волокнистые. По виду основного сырья Т. м. подразделяют на органические, неорганические и смешанные.

К органическим Т. м. относят прежде всего материалы, получаемые переработкой неделовой древесины и отходов деревообработки (древесноволокнистые плиты и древесностружечные плиты), с.-х. отходов (соломит, камышит и др.), торфа (торфоплиты) и др. местного органического сырья. Эти Т. м., как правило, отличаются низкой водо- и биостойкостью. Указанных недостатков лишены так называемые газонаполненные пластмассы (пенопласты, поропласты, сотопласты и др.) — высокоэффективные органические Т. м. с объёмной массой от 10 до 100 кг/м 3 .

Характерная особенность большинства органических Т. м. — низкая огнестойкость,

поэтому их применяют обычно при температурах не свыше 150 °С.

Более огнестойки Т. м. -смешанного состава (фибролит, арболит и др.), получаемые из смеси минерального вяжущего вещества и органического наполнителя (древесные стружки, опилки и т. п.).

Неорганические Т. м. — минеральная вата и изделия из неё (среди последних весьма перспективны минераловатные плиты — твёрдые и повышенной жёсткости), лёгкие и ячеистые бетоны (главным образом газобетон и пенобетон), пеностекло, стеклянное волокно, изделия из вспученного перлита и др. Изделия из минеральной ваты получают переработкой расплавов горных пород или металлургических (главным образом доменных) шлаков в стекловидное волокно. Объёмная масса изделий из минеральной ваты 75—350 кг/м 3 .

Неорганические Т. м., используемые в качестве монтажных, изготовляют на основе асбеста (асбестовые картон, бумага, войлок), смесей асбеста и минеральных вяжущих веществ (асбестодиатомовые, асбестотрепельные, асбестоизвестковокремнезёмистые, асбестоцементные изделия) и на основе вспученных горных пород (вермикулита, перлита). Для изоляции промышленного оборудования и установок, работающих при температурах выше 1000 °С (например, металлургических, нагревательных и др. печей, топок, котлов и т. д.), применяют так называемые легковесные огнеупоры, изготовляемые из огнеупорных глин или высокоогнеупорных окислов в виде штучных изделий (кирпичей, блоков различного профиля); перспективно также использование волокнистых Т. м. из огнеупорных волокон и минеральных вяжущих веществ (коэффициент их теплопроводности при высоких температурах в 1,5—2 раза ниже, чем у традиционных, имеющих

4. Теплоизоляционные работы,

Работы по устройству теплоизоляции конструкций зданий и сооружений, трубопроводов, промышленного оборудования, средств транспорта и др. Различают Т. р. строительные (теплоизоляция ограждающих конструкций зданий и сооружений) и монтажные (теплоизоляция трубопроводов, тепловых агрегатов, холодильников и др.). В зависимости от размеров изолируемой поверхности, её конфигурации и вида теплоизоляционного материала устройство теплоизоляционного ограждения производится: укладкой и закреплением крупных изделий заводского изготовления (плиты, блоки, сегменты), мягких рулонных материалов (маты, шнуры), мелкоштучных изделий (кирпич); засыпкой; обмазкой; набрызгом или заливкой. Наиболее трудоёмки Т. р., связанные с обмазкой и засыпкой. При засыпке предусматриваются меры по предотвращению самоуплотнения слоя теплоизоляционного материала (с течением времени) и образования в нём пустот. Набрызг и заливка — относительно новые методы Т. р., основанные на применении главным образом полимерных теплоизоляционных материалов в виде отверждающихся пен. Используются как заранее приготавливаемые полимерные пены, получаемые перемешиванием жидкого полимера с пенообразователем (например, мипора), так и полимерные композиции, вспенивающиеся в процессе твердения (например, фенольные или полиуретановые заливочные композиции).

Комплекс Т. р., помимо устройства (нанесения) слоя собственно теплоизоляционного материала, включает работы по гидро- и пароизоляции этого слоя и обеспечению его защиты от механических повреждений. Устройство гидро- и пароизоляционных слоев предусматривается в тех случаях, когда теплоизоляционный слой подвергается увлажнению (например, на трубопроводах, проложенных на открытом воздухе, под землёй и др.) или когда одна из сторон изолируемой конструкции испытывает воздействие отрицательных температур (ниже 0°С) (холодильные установки, здания в условиях холодного климата и др.). В последнем случае водяные пары конденсируются на холодной поверхности, поэтому пароизоляция производится с тёплой стороны конструкции. Защита теплоизоляционного слоя от механических повреждений осуществляется облицовкой его плотными материалами, установкой специальных защитных кожухов (например, металлических), оштукатуриванием и другими способами.

В современном индустриальном строительстве Т. р. выполняются преимущественно в заводских условиях, в процессе изготовления сборных конструкций и изделий (например, однослойных панелей из теплоизоляционно-конструктивных материалов или многослойных панелей, где теплоизоляционный материал несёт только функции тепловой защиты). Для монтажной теплоизоляции выпускаются полностью готовые элементы, сводящие Т. р. лишь к закреплению (монтажу) этих элементов на изолируемой поверхности; это существенно повышает производительность труда и качество Т. р.

5. Как лучше утеплять стены - снаружи или изнутри?

Стены построенного дома, не обеспечивающие достаточный уровень теплозащиты, нуждаются в утеплении. Для этого используют различные теплоизоляционные материалы, располагая их с наружной или внутренней стороны стены.

При внутреннем утеплении существующая стена, расположенная перед утеплителем, находится в зоне отрицательных температур, которая отчасти захватывает и собственно утеплитель. Кроме того, нарушается естественная диффузия водяных паров, и создаются условия для образования конденсата в толще конструкции на границе утеплителя и стены.

Следует обратить внимание на тот факт, что при внутреннем утеплении практически невозможно установить теплоизоляционный материал в местах примыкания перекрытий к наружной стене. Здесь образуются 'мостики холода', причем потери тепла в этих зонах могут превышать потери через остальную площадь стены

При наружном утеплении снижение температуры по толщине существующей стены происходит достаточно медленно и плавно. Резкое падение температуры наблюдается ближе к наружной стороне, а зона отрицательных температур располагается в толще слоя дополнительной теплоизоляции.

Расположение плотных, плохо пропускающих водяные пары материалов изнутри, а легких и пористых снаружи благоприятно влияет на влажностный режим стены и не создает условий для скопления в ней влаги. Если теплоизоляционный материал надежно защищен от атмосферных воздействий (дождя, снега, солнечной радиации), такая стена в течение всего года сохраняет высокие теплозащитные свойства.

Сточки зрения поддержания нормального температурно-влажностного режима утепление с наружной стороны стены является оптимальным. Однако этот процесс отличается повышенной сложностью и трудоемкостью, требует тщательного подбора отделочных материалов, а также штукатурных и клеевых составов. Выполнение работ желательно поручить специалистам, хорошо знакомым с особенностями различных систем утепления. Наружное утепление с использованием штукатурных фасадных систем может выполняться только квалифицированными специалистами, имеющими лицензию на производство этих работ.

Существующие конструктивные решения по защите утеплителя можно разделить на две группы:

системы утепления фасадов с вентилируемой воздушной прослойкой (так называемые 'вентилируемые фасады');

штукатурные системы наружного утепления.

6. Облицовка стен кирпичом и мелкими блоками

Деревянные и кирпичные стены для повышения уровня теплозащиты часто облицовывают с наружной стороны кирпичом, мелкими блоками, керамическими или бетонными камнями. В качестве утепляющего материала используют плиты из минеральной или стекловаты, размещаемые в пространстве между облицовкой и существующей стеной, и предусматривают вентилируемую воздушную прослойку толщиной 60 мм.

Новая стенка (облицовка) может опираться на обрез существующего фундамента (если позволяют его несущая способность и ширина) или на специально подведенный для нее фундамент. Поверх цоколя укладывают гидроизоляционный материал с перехлестом полотнищ не менее 100 мм.

Плиты утеплителя устанавливаются с перевязкой швов (подобно кирпичной кладке) и крепятся к существующей стене специальными дюбелями или анкерами со шляпками, прижимающими плиту к поверхности несущей стены. Одним концом анкера укладываются в швы новой кладки, другим крепятся к существующей стене с шагом 600 мм по вертикали и 500-1100 мм по горизонтали. Для вентиляции полости стены в нижнем ряду кладки устраивают специальные продухи из расчета 75 см на каждые 20 м 2 поверхности стены. Для нижних продухов можно использовать щелевой кирпич, положенный на ребро таким образом, чтобы наружный воздух через отверстия в кирпиче имел возможность проникать в воздушную прослойку в стене. Верхние продухи предусматривают в карнизной части стены.

Вентиляционные отверстия также могут быть выполнены путем частичного заполнения цементным раствором вертикальных швов между кирпичами или блоками нижнего ряда кладки. Ограничительная деревянная рейка, помещенная в середине вертикального шва, позволит оставить его нижнюю часть не заполненной раствором. Для защиты волокнистых утеплителей от продувания их укрывают со стороны воздушной прослойки ветрозащитным стеклохолстом или стеновым 'Тайвеком'.

Деревянные дома из бруса также облицовывают кирпичом, керамическими и бетонными камнями или мелкими блоками.

Утепляющий материал размещают между деревянной стеной и облицовкой. С наружной стороны утеплителя необходимо предусмотреть вентилируемую воздушную прослойку, обеспечивающую удаление влаги из древесины , а также вентиляционные продухи, устройство которых описано выше. При отсутствии воздушной прослойки стены дома станут влажными, покроются плесенью, а древесина начнет быстро разрушаться.

Облицовочную кладку соединяют со стеной из бруса при помощи металлических связей с антикоррозийным покрытием. Один конец связи закладывают в горизонтальный шов кладки, другой крепят к брусу. Приступать к облицовке стен из бруса кирпичом желательно через год-полтора после возведения коробки, когда древесина полностью высохнет.

Для повышения теплозащиты деревянных каркасных домов их тоже можно обложить с наружной стороны кирпичом или каменными блоками.

Кирпичную облицовку устанавливают с наружной стороны каркасной стены с зазором 60 мм. Для вентиляции зазора в нижнем ряду кладки и в верхней (карнизной) части облицовки предусматривают специальные продухи. Кладка связывается с каркасом при помощи полос шириной 30-50 мм из оцинкованной стали, согнутых вдвое. Одной стороной полосу закладывают в кладку с перегибом конца на 90° вдоль облицовки, другой прибивают к брусьям каркаса. Облицовка кирпичом возможна при уширенном цоколе здания. Поверх цоколя устраивают гидроизоляцию с перехлестом полотнищ на 100 мм.

7. Штукатурные системы утепления фасадов

Штукатурная система утепления фасадов предусматривает крепление теплоизоляционного материала к существующей стене при помощи анкеров, дюбелей и клеевых составов, с последующим нанесением штукатурного слоя (по армирующей сетке).

Этот вид утепления представляет собой не набор отдельно взятых строительных материалов утеплителя, клеящих и штукатурных составов, дюбелей и сеток, а единую систему, все элементы и детали которой подобраны определенным образом, обеспечивающим длительную совместную работу всех составляющих. По этой причине для утепления фасадов могут использоваться только сертифицированные штукатурные системы, а сами работы должны выполняться специалистами, хорошо знакомыми с технологией производства работ. Планируя сроки проведения работ, необходимо учитывать, что наружное утепление стен с последующим оштукатуриванием предполагает использование мокрых процессов, которые должны производиться при температуре наружного воздуха не ниже +5 °C.

Жесткие плиты из минеральной ваты на основе базальтового волокна или стекловаты, чаще всего применяемые для утепления наружных стен, наклеивают вплотную друг к другу без образования щелей, обеспечивая перевязку стыков (по типу кирпичной кладки).

Крепление плит утеплителя к стене производится механическим способом с помощью распорных дюбелей-втулок, полиамидных дюбелей и пластмассовых дюбелей 'тарельчатого' типа из расчета 8 -12 дюбелей на 1 м 2 поверхности. Дюбеля должны быть заглублены в толщу бетонных стен на 35-50 мм, кирпичных - на 50 мм, в кладку из пустотного кирпича и легкобетонных блоков - на 90 мм.

Армирующую сетку укладывают поверх прикрепленных к фасаду плит с перехлестом полотнищ на ширину 100 мм.

Особое внимание следует обратить на усиление сеткой углов оконных и дверных проемов.

При утеплении углов необходимо обеспечить перевязку торцов теплоизоляционных плит и защитить их металлическим перфорированным уголком для предохранения кромок углов от сколов.

Нижний край штукатурной системы утепления должен располагаться на высоте 500 мм от поверхности земли.

Необходимо обратить особое внимание на качество горизонтальной гидроизоляции между цоколем и утепляемой стеной.

В местах примыканий штукатурной системы утепления к карнизу верхняя часть утеплителя должна быть защищена специальной уплотнительной лентой.

Необходимая толщина слоя утеплителя (табл. 4) зависит от конструкции утепляемой стены и вида утепляющего материала.

Утепление наружных стен, теория и практика, технология и материалы

Утепление наружных стен снаружи

Наружные стены правильно утеплять снаружи, добавляя к стене слой эффективного утеплителя из пенопласта или подобного материала, характеризующегося высоким теплосопротивлением, достаточной прочностью и низким водопоглощением.

Почему следует утеплять снаружи, наглядно демонстрируют следующие рисунки:

Теперь наружную стену утеплили, расположив слой эффективного утеплителя на внешней стороне.

Рис.3 Условные обозначения:

  1. Наружная стена.
  2. Эффективный утеплитель, например, пенополистирол.
  3. Наружный декоративный слой из специальной шпаклевки, который армирован стеклосеткой и окрашен краской для фасадных работ. Надежно защитит пенополистирол от погодных воздействий, повысит огнестойкость конструкции.
  4. Клеевой раствор обеспечивает механическое крепление слоя утеплителя и его плотное прилегание к стене, если площадь утепляемой поверхности более 8 м², дополнительно применяются специальные дюбеля.
  5. Внутренний декоративный слой.
  6. Температурный график.
  7. График «точки росы».

Материалы и технология утепления наружных стен.

Плиты из жесткого пенополистирола фирмы URSA, имеющие специальный паз, позволяют утеплять стены, полы, чердачные перекрытия и подвалы в один слой.

Обычные пенопластовые плиты, не рекомендуется применять для утепления стен, но в виду их низкой стоимости (в 3-5 раз дешевле экструзионного пенополистирола) используют все же очень часто, что в свою очередь негативно сказывается на качестве и долговечности утепления.

Общая схема утепления наружных стен пенополистиролом:

Технология ведения работ при утеплении стен пенополистиролом:

  1. Поверхность стен очищается от грязи и отслаивающихся фрагментов краски или штукатурки.
  2. Углубления и неровности заполняются фасадными штукатурными растворами.
  3. Подготовленная поверхность грунтуется в зависимости от состояния укрепляющими и увеличивающими адгезию грунтовками.
  4. На подготовленную поверхность с помощью клеевого состава устанавливаются плиты. Клеевой состав можно наносить как на плиту, так и на стену.

Клеевые составы фирмы “Caparol”.

Сухие смеси фирмы «Ceresit», для приклеивания пенополистирола СТ83, для приклеивания и армирования СТ85.

Наклеивают плиты, аналогично с кирпичной кладкой с перевязкой:

  1. Механически пенополистирольные плиты крепят с помощью пластиковых дюбелей с широкой пластинчатой шляпкой, из расчета не менее четырех штук на плиту, установку которых следует производить спустя сутки после приклеивания на раствор. Такие дюбеля пригодны для крепления всех типов и марок пенополистирольных плит независимо от производителя.

Дюбель-комплекты с металлическим стержнем характеризуются высокой прочностью, а с пластиковым (армированный поликарбонат) стержнем теплотехническими показателями, исключающими появление «мостика холода».

При установке утепляющего слоя из обычного пенопласта или из пенополистирольных плит, не имеющих паза, очень часто дюбеля устанавливают в швы или на стыках, но возможно, это не совсем верно.

    По поверхности наклеенных плит наносится специальный армирующий состав, на который «по-мокрому» укладывается слой стойкой к действию щелочей армирующей стеклосетки с ячейкой 4-7 мм. Сетка накрывается слоем армирующего состава.

Крупные фирмы, изготовители строительной химии и смесей, например, немецкая “Ceresit” разработали свои технологии утепления стен. Они выпускают ряд товаров строительной химии и смесей, созданных для того, чтобы полностью удовлетворить потребность в материалах на всех этапах утепления.

Утепление наружных стен изнутри.

Рассмотрим, случай утепления наружной стены при расположении утеплителя с внутренней стороны.

Несмотря на то, что теория и практика доказала всю ошибочность утепления наружных стен изнутри, подобные попытки продолжаются. Почему утепление изнутри так привлекает к себе:

  • Проводить работы можно в любое время года, даже зимой или в дождь.
  • Простота работ: не нужны лестницы, подмости, автомобили с подъемниками или снаряжение альпиниста, а значит нанимать специалистов не нужно.

Утеплять первый и второй этаж рационально с инвентарных подмостей.

Для строителей, освоивших альпинистское снаряжение, этаж значения не имеет.

Фальшстена из гипсокартона с минераловатным утеплителем дешевле наружного утепления и по материалу и по стоимости работы.

Негативные моменты утепления наружных стен изнутри:

  • На стене может появляться конденсат и, как следствие, грибок, высолы и ржавые пятна.
  • Зона конденсации перемещается в объем утеплителя, а минеральная вата в подобных влажных условиях теряет свои свойства и может разрушиться.
  • Устройство непроницаемого паробарьера сильно затруднит «дыхание» стен, что не допустимо при отсутствии вентиляции (систем вентиляционных каналов и отдушин).
  • Утепление внутри уменьшает полезную площадь помещений.

Следует добавить, что в связи с массовым применением пластиковых окон и входных дверей с резиновыми уплотнителями проветривание необходимо сделать правилом, иначе добиться нормальной влажности помещений будет очень сложно.

Варианты с пароизоляцией между утеплителем и листом гипсокартона с декоративной отделкой, а также с проветриванием внутреннего минераловатного утеплителя с помощью воздушных прослоек и вентиляционных отверстий, достаточно затратные. Утепляя изнутри наружную стену, логично утеплить часть примыкающего к ней пола и потолка, заведя на эти участки и пароизоляцию. Умельцы могут добавить в такой «слоеный пирог» утепления и пеноформ, где 1-3 см слой вспененного полимерного материала усилен алюминиевой фольгой. Если такие расчеты оказались ошибочными, то на стенах выступит черная плесень и следы высолов, рыжие пятна (см. рисунки 5 и 6).

Утепление стен изнутри считается неправильным, но полностью исключать его нельзя. Не зависимо от мнения и доказательств большинства, каждый хозяин квартиры решение принимает сам.

Утепление наружных стен позволит снизить эксплуатационные затраты при индивидуальном отоплении или же при центральном сделать помещения теплее. Утеплять следует только снаружи, а в качестве утеплителя рекомендуется использовать пенополистирол экструдированный или высокой плотности. Жесткие минераловатные плиты применяют в проветриваемых фасадных системах, которые редко устраивают при утеплении жилых домов, и это больше подходит для общественных зданий.

ПОДЕЛИТЬСЯ:







Оставляя комментарий Вы соглашаетесь с Политикой конфиденциальности

Читайте также: