Расстояние между несущими стенами

Обновлено: 04.05.2024

Расстояние между несущими стенами в частном доме

В этих системах вертикальные несущие конструкции решаются в виде стен, воспринимающих все вертикальные и горизонтальные нагрузки. Стены объединяются в пространственную систему с помощью вертикальных диафрагм жесткости и горизонтальных дисков перекрытий.

Различают три основные схемы системы с несущими стенами: продольно-стеновая; поперечно-стеновая; перекрестно-стеновая .

Схема с продольными несущими стенами применяется в зданиях высотой до 17 этажей. Достоинством этой схемы является возможность изменения планировки этажей при реконструкции зданий, а также использование местных стеновых материалов. Основной недостаток — толщина стен назначается не только расчетом на прочность, но и по требованиям теплозащиты помещений, что может привести к значительному расходу материалов.

Поперечно-стеновая схема применяется в зданиях высотой до 70 этажей. Расстояние между поперечными стенами называют шагом. Различают узкий (до 3,6 м) и широкий (свыше 3,6 м) шаг поперечных стен. Толщина стен определяется только расчетом на прочность и может быть незначительной. Наружные стены выполняют только ограждающие функции и могут быть выполнены из легких эффективных материалов. Их толщина определяется прежде всего необходимостью теплозащиты помещений. Продольная устойчивость здания обеспечивается диафрагмами жесткости (это, как правило, ориентированные по продольной оси здания стены лестничных клеток) и дисками перекрытий.

Достоинство этой схемы — применение легких ограждающих конструкций, возможность устройства в них значительных по площади проемов. Основной недостаток — трудности при модернизации зданий из-за относительно часто расположенных поперечных капитальных стен.

Перекрестно-стеновая схема. Применяется в зданиях ячейковой планировочной структуры, особенно в сейсмоопасных районах.

3. КС в виде перекрестных плоских стен,

воспринимающих все вертикальные и горизонтальные нагрузк

►Пример для п.2 и 3: Конструктивная система с поперечными несущими стенами гостиницы «Измайлово», Москва, Россия:

Конструктивное решение: свайное поле с монолитным ростверком, сборный железобетонный каркас по номенклатуре типовых изделий со сборными стенками жёсткости. Ограждающие конструкции по индивидуальной разработке. Было предусмотрено выполнение сборных ограждающих панелей и пилонов на белом цементе в опалубке из нержавеющей стали.

Какой толщины должны быть несущие стены дома

Проведение капитального ремонта довольно часто связано с перепланировкой внутренних помещений. При выполнении этих работ нельзя затрагивать несущие стены. Что значит несущая стена? — попробуем разобраться в этом вопросе.

Что такое несущая стена и как ее определить

Несущая стена, являясь основным силовым элементом всего здания, принимает на себя нагрузку вышерасположенных элементов конструкции, балок, перекрытий, крыши. Ее разрушение может привести к необратимым последствиям для здания в целом, поэтому очень важно научиться определять, какие из стен являются несущими.


Проще всего это сделать, посмотрев конструктивный план здания, где несущие стены четко обозначены, нанесены они и на чертеже в техническом паспорте, который есть у каждого собственника, но тут требуется умение читать строительные чертежи. Если документы по каким-либо причинам недоступны, то определить несущие стены можно по расположению и стандартной толщине стен. Наружные стены всегда являются несущими, кроме того, несущими являются стены, разделяющие соседние квартиры и выходящие на лестничную клетку, если речь идет о много квартирном доме.

Помимо этого, такие стены внутри дома можно определить по местам опирания межэтажных перекрытий. Если в вашем доме перекрытия сделаны из железобетонных плит, то, как правило, они имеют стандартную длину 6 метров. Соответственно, если длина дома больше 6 метров, то одна из несущих стен должна находиться внутри здания на стыке межэтажных перекрытий.

Читать еще: Как проштробить стену под проводку перфоратором

Толщина несущих стен

Толщина стен может различаться в зависимости строительного материала, из которого возводилось здание и его конструктивных особенностей. Если, например, дом выложен кирпичной кладкой, то минимальная толщина такой несущей стены определяется количеством кирпичей в одном ряду. Если она превышает значение в тридцать восемь сантиметров, то стена является несущей.

Толщина стен из керамзитобетонных блоков составляет в основном четырнадцать сантиметров, размеры несущих стен превышают эти значения и составляют примерно 90 сантиметров.


Толщина стен из газосиликатных блоков зависит от их плотности. При плотности 400 кг/м3 из них можно строить наружные стены одноэтажных домов, хозяйственных построек, подсобных помещений. Плотность газосиликатных блоков 500 кг/м3 дает возможность использовать их при возведении несущих стен при строительстве домов, высотой до трех этажей. Плотность в 700 кг/м3 обеспечивает их использование при строительстве многоэтажных жилых и административных зданий.

Как правило, несущие газобетонные стены изготавливают из блоков, толщиной 30-40 сантиметров. Подробнее о размерах газобетонных блоков мы рассказывали в статье про сравнение газобетона и пенобетона.

Толщина стен из арболита также зависит от его плотности. Арболит представляет собой уникальный материал, в состав которого может входить до девяноста процентов древесной щепы, поэтому по своим качествам он близок к дереву. Блоки из арболита плотностью менее 500 кг/м3 и используют для теплоизоляции, плотность более 500 кг/м3 является конструкционной.


Для сравнения приведем стандартную толщину несущих стен их разных материалов:

  • толщина стен из кирпичной кладки — 1,5 м;
  • толщина стен из арболита- 0,40 м;
  • толщина стен из керамзитобетонных блоков- 0,90 м;
  • толщина стен из газосиликатных блоков — 0,40 м.

Что такое несущий остов дома

При строительстве частных домов существует такое понятие, как несущий остов дома. Он представляет собой совокупность элементов, таких как колонны, балки, перекрытия, фундамент, обеспечивающих прочность, жесткость и устойчивость всей постройки. Остов служит для того, чтобы противостоять нагрузкам, таким как вес конструкции, людей, мебели, давлению ветра и снега и так далее.


Под жесткостью остова понимается его способность не менять форму под воздействием нагрузок. Устойчивость определяется сопротивлением опрокидыванию.

Несущий остов дома чаще всего бывает стеновым бескаркасным, который применяется при возведении частных домов и коттеджей. Он представляет собой связанные с фундаментом несущие стены, на которые уложены перекрытия и лестницы, придающие остову жесткость по вертикали. Можно представить его в виде жесткой коробки из связанных между собой стен и перекрытий.

Толщина несущих стен в нижней части больше, чем наверху, так как на основание нагружается больше. В стеновом бескаркасном остове толщина капитальных стен в зависимости от используемого материала может колебаться в пределах от 300 до 800 мм, толщина перегородок составляет около 120 мм.

При возведении частных домов, имеющих вытянутую прямоугольную форму, бескаркасный остов выполняется на продольных несущих стенах, то есть капитальные стены располагаются вдоль длинной стороны дома, а потолочные блоки укладываются поперек. Расстояние между продольными несущими стенами чаще всего определяется размерами плиты перекрытия, длина у которых бывает разная.


Бескаркасный остов может выполняться на поперечных несущих стенах, в этом случае наружные перекрытия укладываются вдоль протяженной стороны здания. Стены вдоль протяженного периметра здания необходимо изготовлять в виде перегородок. Недочетом такой компоновки является то, что ширина внутренних помещений остается раз и навсегда заданной величиной, ограниченной несущими стенами, но по сравнению с конструкцией, выполненной на продольных несущих стенах, она обладает большей жесткостью и устойчивостью.

Если частный дом возводится по архитектурному проекту, предполагающему необычность его внешнего облика, то бескаркасный остов выполняется на комбинации из продольных и поперечных несущих стен, на которые соответствующим образом укладываются перекрытия. Такая строительная схема применяется в том случае, если сложность архитектурной формы возводимого частного дома не позволяет использовать только такое расположение капитальных стен. Устойчивость в этом случае обеспечивается взаимосвязью всех конструктивных элементов, образующих единый каркас

Читать еще: Гипсовые 3д панели для стен своими руками

Несущая стена в доме — как определить, какие стены несущие?








Перед тем, как мы приступим к рассмотрению нашего вопроса, хочу познакомить вас с понятием «несущая стена». Итак, несущей называют ту стену, которая принимает на себя нагрузку элементов, расположенных выше нее, в том числе балок, плит перекрытия и стен. Несущие стены используются в интерьере не всегда. Вместо них могут присутствовать колонны и балки, которые на них опираются. Это, так называемая, стоечно-балочная система. Поэтому, если вы не нашли таких стен, но нашли колонны, можете не удивляться.

Все операции, которые нужно провести с несущими стенами, включая обустройство ниш и отверстий, перенос и пробивку проемов, нельзя проводить своими руками. Только профессионалы могут гарантировать безопасность для жизни и здоровья как обитателей вашей квартиры, так и обитателей всего дома. Не рискуйте понапрасну!

Какие стены несущие?

Если вы хотите пойти легким путем, рекомендую разыскать конструктивный план вашего дома. На нем четко обозначено, какая стена несущая, а какая – нет. План находится в УКС (Управление капитального строительства), который расположен в местном исполкоме. Конструктивный план поможет обнаружить не только несущие стены в доме, но и колонны и балки стоечно-балочной системы, а также плиты перекрытия, которые на них опираются.

Если конструктивный план здания по каким-то причинам вам добыть не удалось, то будем определять стены по характерным признакам. Опять же, можно использовать подробный план квартиры, который нарисован в техпаспорте или в домовой книге. Но в этом случае вам удастся определить несущие стены лишь при условии, что не новичок в строительстве и планировке.

Как определить несущую стену?

Какие стены являются несущими можно узнать по:

1. По расположению.

• Наружные самонесущие стены.
• Стены, смотрящие на лестничную клетку.
• Внутренние стены, смотрящие на соседние квартиры.

2. По толщине и использующимся материалам.

Толщина несущей стены может быть:

• Кирпичные несущие стены, толщина которой более 38 сантиметров.
• Железобетонные панели в панельных домах, толщина которых не меньше 14-20 сантиметров.

Если дом монолитный, то любая стена толщиной 20-30 сантиметров и более будет считаться несущей.

3. По опиранию плит перекрытия и балок.

• Все несущие стены должны находиться по расположению плит перекрытия строго перпендикулярно. То есть, плиты должны опираться на стены короткой стороной.

Проемы в несущих стенах

После того, как вы определите, какие стены несущие, вы осознаете все ограничения, связанные с будущей перепланировкой. Такая стена не позволит вбить в себя даже обычный гвоздь под картину. А об обустройстве проемов, ниш, арки и частичном сносе и говорить не приходится. Не забывайте о том, что любая перепланировка, будь то новая квартира или старая хрущевка, вне зависимости от наличия работ со стенами, требует получения специального разрешения, создания проекта и согласования со всеми необходимыми службами.

Читать еще: Как изолировать стену от шума соседей

Категорически запрещается полностью демонтировать несущую стену. Если вы ходите сделать проем в несущей стене, в крайнем случае, можно пробить в ней несколько проемов, отверстий или ниш. Если такая стена, согласно плану перепланировки, нуждается в частичном сносе, она должна быть заменена надежной системой колонн (стоек). Сечение этих стоек должны рассчитать уполномоченные организации, у которых есть лицензия на осуществление данной деятельности. Подсчеты проводятся только после того, как организация получит от вас разрешение на перепланировку, заверенное вышестоящими органами. Подробнее о проемах в несущих стенах вы можете прочитать здесь:

Вы можете заметить, что вышеперечисленные приемы не превратят вас в профессионального конструктора. Но определить главные стены в вашей квартире вы теперь сможете без проблем.

Выбор сечения пиломатериалов каркасной стены

Толщина каркасной стены выбирается исходя из двух условий:

  1. Должна обеспечиваться достаточная несущая способность стен с учетом нормативных нагрузок для каждого конкретного региона.
  2. Должны быть выполнены санитарно-гигиенические нормы по тепловой защите.

Как правило, в Норвегии толщина каркасных стен для жилого дома установлена в 198 мм, с дополнительным утеплением по перекрёстной обрешётке — 50 мм. См. рис. 9.3. Таким образом суммарная толщина теплоизоляции стандартного скандинавского дома составляет примерно 250 мм. При этом возможны вариации, например, иногда каркас стен собирают из доски 36×148 мм с перекрёстной обрешёткой изнутри и снаружи.

Чтобы знать точно, какую толщину каркасных стен выбрать — согласно норвежским строительным правилам, нужно пользоваться специальными таблицами.

Таблица 9.1 показывает взаимосвязь между сечением стоек в наружных несущих стенах, нормативной снеговой нагрузкой и максимальной шириной двухэтажного дома.

Если ширина дома превышает 12 м, необходимо заказать комплексный расчёт несущих конструкций у опытного конструктора, т.к. в этом случае нужно учесть природный ландшафт места строительства, форму здания и другие факторы, определяющие нагрузки на каркас строения.

Сечение стоек высоких каркасных стен также должны рассчитываться опытным инженером. Чем выше высота стоек, тем большее значение имеет нормативная ветровая нагрузка и тем больше фактический прогиб стоек. Толщина стоек в высоких каркасных стенах должна быть не меньше 48 мм.

В таблице 9.2 показана взаимосвязь между высотой несущих наружных стен, шириной дома, нормативной снеговой нагрузкой и сечением стоек каркаса для одноэтажного каркасного дома по норвежской технологии.

Подробности технологии расчёта и изготовления деревянных каркасных стен большой высоты можно посмотреть в оригинальном норвежском руководстве.

Сечения стоек каркаса внутренних несущих стен зависит от конструкции дома, от того как распределяются нормативные нагрузки (рис. 9.5).


Рис. 9.5 Нагрузка на внутренние несущие стены может значительно отличаться в зависимости от конструкции дома

На рисунке 9.5A видно, что внутренние стены первого этажа не являются несущими, так как конструкция кровли предусматривает свободно опёртые фермы. Тем не менее, внутренняя стена подполья в данном случае является несущей, так как на неё опирается перекрытие.

На рисунке 9.5B внутренние стены первого этажа являются несущими, так как конструкция дома предусматривает эксплуатируемый лофт, опирающийся на внутреннюю стену.

На рисунке 9.5C все внутренние стены являются несущими, так как они воспринимают нагрузки с кровли, перекрытия лофта и с цокольного перекрытия.

Внутренние ненесущие стены должны быть также рассчитаны на нагрузку от навесной мебели, полок и санитарного оборудования. Расчёта на прочность конструкции в данном случае недостаточно, для комфорта жильцов конструкции дома должны быть также рассчитаны и на зыбкость. Всё имеет значение, неприятные вибрации перегородок могут возникнуть даже от резкого закрытия двери или из-за перепада давления воздуха в помещениях.

Таблица 9.3 показывает рекомендованные сечения стоек для деревянных каркасных внутренних стен в малоэтажных деревянных каркасных домах, построенных по настоящей норвежской технологии.

Проектирование 17 этажных монолитный зданий в Краснодарском крае

В разработку поступило здание 17 этажное (+1 этаж - в цоколе) монолитное здание, данное здание в дальнейшем пойдет на экспертизу.
По геологии сейсмичность строительной площадки 7 баллов, строительство в Краснодаре.

по СП 14.13330.2011

пункт 6.11.3 Внутренние поперечные и продольные стены зданий на площадках 8 и 9 баллов должны быть сквозными и без изломов в плане. Максимальное расстояние между несущими стенами не должно превышать 7,2 м. В зданиях с ненесущими наружными стенами должно быть не менее двух внутренних продольных и поперечных стен.

по СНКК 22-301-2000

пункт 2.2.13. В зданиях с ненесущими наружными стенами высотой
более 12, 9 или 5 этажей при расчетной сейсмичности 7, 8 и 9
баллов, соответственно, следует предусматривать не менее двух
внутренних продольных стен. Максимальное расстояние между
осями несущих стен не должно превышать 7,2 м.

Так вот, собственно вопрос в том, что заказчик на первом этаже здания хочет сделать холл с расстояниями между осями поперечных стен более 7.2 метров (если быть точным 11 метров), можно ли в таком случае руководствоваться пунктом 6.11.3 СП 14.13330.2011 в котором при сейсмичности 7 балов не указаны расстояния между поперечными и продольными несущими стенами? Экспертиза смотрит на соответствие СП 14.13330.2011, будут ли тогда замечания по СНКК 22-301-2000?

Допустимые отношение высот стен к их толщинам

Подскажите, пожалуйста, как поступить, если по расчету отношение В=H/h даже при умножении на k и увеличении на 20% при армированиии, все равно получается больше? Высоту этажа ведь не уменьшить и толщина перегородки 120мм. У меня В=25 - это самое максимальное значение. H=3,47; h=0,12, следовательно 3,47/0,12=28,92k=1,72 для перегородки120мм без проемов (по интерполяции) и k=0,9 для перегородки с проемами (дверными). Получаю 25х1,72=43 и 25х0,9=22,5. Прибавляю 20% (армирование кладки сетками через четыре ряда):43+43х0,2=51,6 и 22,5+22,5х0,2=27

При расстояниях между связанными со стенами поперечными устойчивыми конструкциями l<=k*beta*h высота стен H не ограничивается и определяется расчетом на прочность.

1.72*28.92*0.12=6 метров

град Воронеж

откуда 28,92? вроде как 25 или 30 при армировании.

__________________
С уважением,
yarrus77

Огромное спасибо всем

Обычно если по гибкости перегородка не проходят, толщину изменить нельзя, армирования и крипление к потолку тоже не помагает, то нужно использовать фахверковые стойки

Из п. 6.17 (При высоте этажа Н, большей свободной длины стены l, отношение l/h не должно превышать значения 1,2В по табл. 28) следует, что L=1.2Bxh. Со всеми поправочными коэффициентами у меня В=43 - для перегородок без проемов и В=22,5 - для перегородок с проемами, следовательно L=1.2x43x0.12=6.19 и L=1.2x22.5x0.12=3.24. Получается, что там, где стена без проемов, на высоту 3,47м и толщину 120мм я стойки должна поставить через 6м, а с проемами - через 3м. Это так?

Из п. 6.17 (При высоте этажа Н, большей свободной длины стены l, отношение l/h не должно превышать значения 1,2В по табл. 28) следует, что L=1.2Bxh. Со всеми поправочными коэффициентами у меня В=43 - для перегородок без проемов и В=22,5 - для перегородок с проемами, следовательно L=1.2x43x0.12=6.19 и L=1.2x22.5x0.12=3.24. Получается, что там, где стена без проемов, на высоту 3,47м и толщину 120мм я стойки должна поставить через 6м, а с проемами - через 3м. Это так?

Это не так. Указанное вами применчание к п.6.17 это лиш дополнительное условие, которое вы должны соблюсти, при этом требования к отношению Н/h (6.17-6.20) никто не отменял. Для понимания вашей задачи, сообщите свою свободную длину l

Наибольшая длина перегородки с проемом - 7,05м

На мою перегородку с проемом 7,05м нужно поставить стойки через 3,24м, тем самым мы ограничим свободную длину перегородки, причем ведь это при любой высоте получается? А зачем нам тогда Вф, если она в расчетах не участвует. И свободная длина перегородки в формуле от высоты перегородки никак не зависит.

Последний раз редактировалось davidych, 10.10.2013 в 10:37 .

А зачем нам тогда Вф, если она в расчетах не участвует.

Если бы у вас выполнилось условие Вф<=Вн, то вы на этом закончили бы свой расчет (к примеру, если бы перегородка была толщиной 200мм!), а так пришлось ограничивать свободнуюю длину перегородки до 6 и 3м.

Благодарю за разъяснения.

Разве Вн2 не считается как Вн*к1*к2? ведь эта стена является и как перегородкой не несущей нагрузку, так и стена с проемом.

Разве Вн2 не считается как Вн*к1*к2? ведь эта стена является и как перегородкой не несущей нагрузку, так и стена с проемом.

Вопрос интересный. В СНиПе написано так: ОБЩИЙ коэффициент снижения отношений В, определяемый путем умножения отдельного коэффициента снижения k (табл. 29), принимается не ниже коэффициента снижения kp, указанного в табл. 30 для столбов.
В табл. 30 мне подходит k=0,6.
Значит для перегородки с проемом общий k= к1 х k2=1,72х0,9=1,548,что > 0,6. Принять нужно k=1.548?

Вопрос интересный. В СНиПе написано так: ОБЩИЙ коэффициент снижения отношений В, определяемый путем умножения отдельного коэффициента снижения k (табл. 29), принимается не ниже коэффициента снижения kp, указанного в табл. 30 для столбов.
В табл. 30 мне подходит k=0,6.
Значит для перегородки с проемом общий k= к1 х k2=1,72х0,9=1,548,что > 0,6. Принять нужно k=1.548?

В моем понимании СНиПа да, к=1,548.
Итого ваша Вф=3,47/0,12=28,9< Вн=25*1,548=38,7 (без армирования и при невыполнении пункта 6.20)

Последний раз редактировалось Andrey88, 11.10.2013 в 10:43 .

Век живи, век учись - дураком помрешь! Нужно еще чье-нибудь мнение по этому вопросу. Может Texas откликнится.

В моем понимании СНиПа

СП 70.13330.2012 Несущие и ограждающие конструкции. Актуализированная редакция СНиП 3.03.01-87 (с Изменениями N 1, 3, 4)

9.1.1 Требования настоящего раздела распространяются на производство и приемку работ по возведению каменных конструкций из керамического и силикатного кирпича, керамических, бетонных, силикатных и природных камней и блоков.

Сплошную кладку наружных стен из материалов с плотностью более 1400 кг/м следует применять для неотапливаемых зданий или для промзданий с большим выделением тепла.

9.1.2 Работы по возведению каменных конструкций должны выполняться в соответствии с проектом. Подбор состава кладочного раствора с учетом условий эксплуатации зданий и сооружений следует осуществлять, руководствуясь приложением Т.

9.1.3 Применение материалов кладки в зависимости от влажностных параметров помещений приведены в СП 15.13330.

9.1.4 Не допускается ослабление каменных конструкций отверстиями, бороздами, нишами, монтажными проемами, не предусмотренными проектом или ППР.

9.1.5 Каменную кладку заполнения каркасов следует выполнять в соответствии с требованиями, предъявляемыми к возведению несущих каменных конструкций и в соответствии с 9.3-9.6.

9.1.6 При вынужденных разрывах кладку необходимо выполнять в виде наклонной штрабы.

9.1.7 Разность высот возводимой кладки на смежных захватках и при кладке примыканий наружных и внутренних стен, а также разность высот между смежными участками кладки фундаментов не должна превышать 1,2 м.

9.1.8 Установку креплений в местах примыкания железобетонных конструкций к кладке следует выполнять в соответствии с проектом.

Возведение каменных конструкций последующего этажа допускается только после укладки несущих конструкций перекрытий возведенного этажа, анкеровки стен и замоноличивания швов между плитами перекрытий. Не допускается монтаж плит перекрытий в заранее заготовленные штрабы.

9.1.9 Предельная высота возведения свободно стоящих каменных стен (без укладки перекрытий или покрытий) не должна превышать значений, указанных в таблице 9.1. При возведении свободно стоящих стен большей высоты следует применять временные крепления.

Толщина однослойных, двухслойных и внутренней части трехслойных стен, см

Объемная масса (плотность) кладки, кг/м

Допустимая высота стен, м, для ветрового района

9.1.10 Высота каменных неармированных перегородок, не раскрепленных перекрытиями или временными креплениями, не должна превышать 1,5 м для перегородок толщиной 9 см, выполненных из камней и кирпича на ребро толщиной 8,8 см, и 1,8 м - для перегородок толщиной 12 см, выполненных из кирпича.

9.1.11 При связи перегородки с поперечными стенами или перегородками, а также с другими жесткими конструкциями допускаемые их высоты увеличивать на 15% при расстоянии между жесткими конструкциями менее 3,5, на 25% - при расстоянии не более 2,5 и на 40% - не более 1,5.

9.1.12 Контроль за качеством кладки осуществляется производителем работ, строительным мастером. Строгая прямолинейность и горизонтальность рядов в период кладки обеспечивается натяжением причалок, выкладкой маяков и поверкой уровнем; отклонение в толщине шва допускается до ±2 мм.

Вертикальность стен и столбов проверяется провешиванием отвесом. Отклонение от вертикальности не должно быть более 5 мм при кладке под расшивку и не более 7 мм при кладке под штукатурку. Горизонтальность и вертикальность поверхностной кладки периодически проверяется геодезическими инструментами.

9.1.13 После окончания кладки каждого этажа следует производить инструментальную проверку горизонтальности и отметок верха кладки независимо от промежуточных проверок горизонтальности ее рядов.

Расстояние между несущими стенами

НЕСУЩИЕ И ОГРАЖДАЮЩИЕ КОНСТРУКЦИИ

Load-bearing and separating constructions

Дата введения 2013-07-01

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛИ - ЗАО "ЦНИИПСК им.Мельникова"; институты ОАО "НИЦ "Строительство": НИИЖБ им.А.А.Гвоздева и ЦНИИСК им.В.А.Кучеренко; Ассоциация производителей керамических стеновых материалов; Ассоциация производителей силикатных изделий, Сибирский Федеральный университет

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Управлением градостроительной политики

Информация об изменениях к настоящему актуализированному своду правил публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Госстрой) в сети Интернет

Изменения N 1, 3, 4 внесены изготовителем базы данных

Введение

Настоящий свод правил разработан с целью повышения качества выполнения строительно-монтажных работ, долговечности и надежности зданий и сооружений, а также уровня безопасности людей на строительной площадке, сохранности материальных ценностей в соответствии с Федеральным законом от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений", повышения уровня гармонизации нормативных требований с европейскими и международными нормативными документами; применения единых методов определения эксплуатационных характеристик и методов оценки.

Актуализация СНиП 3.03.01-87 выполнена следующим авторским коллективом: ЗАО "ЦНИИПСК им.Мельникова" в составе специалистов: кандидаты техн. наук И.И.Пресняков, В.В.Евдокимов, В.Ф.Беляев; д-ра техн. наук Б.В.Остроумов, В.К.Востров; инженеры С.И.Бочкова, В.М.Бабушкин, Г.В.Калашников; Сибирский Федеральный Университет - доцент, канд. техн. наук В.Л.Игошин; институты ОАО "НИЦ "Строительство": НИИЖБ им.А.А.Гвоздева - д-ра техн. наук Б.А.Крылов, В.Ф.Степанова, Н.К.Розенталь; кандидаты техн. наук В.Р.Фаликман, М.И.Бруссер, А.Н.Болгов, В.И.Савин, Т.А.Кузьмич, М.Г.Коревицкая, Л.А.Титова; И.И.Карпухин, Г.В.Любарская, Д.В.Кузеванов, Н.К.Вернигора и ЦНИИСК им.В.А.Кучеренко - д-ра техн. наук И.И.Ведяков, С.А.Мадатян; кандидаты техн. наук О.И.Пономарев, С.Б.Турковский, А.А.Погорельцев, И.И.Преображенская, А.В.Простяков, Г.Г.Гурова, М.И.Гукова; А.В.Потапов, A.M.Горбунов, Е.Г.Фокина; Ассоциация производителей керамических стеновых материалов - В.Н.Геращенко; Ассоциация производителей силикатных изделий - Н.В.Сомов.

1 Область применения

1.1 Настоящий свод правил распространяется на производство и приемку работ, выполняемых при строительстве и реконструкции предприятий, зданий и сооружений во всех отраслях народного хозяйства:

при возведении монолитных бетонных и железобетонных конструкций из тяжелого, особо тяжелого, на пористых заполнителях, жаростойкого и щелочестойкого бетона, при производстве работ по торкретированию и подводному бетонированию;

при изготовлении сборных бетонных и железобетонных конструкций в условиях строительной площадки;

при монтаже сборных железобетонных, стальных, деревянных конструкций и конструкций из легких эффективных материалов;

при сварке монтажных соединений строительных стальных и железобетонных конструкций, соединений арматуры и закладных изделий монолитных железобетонных конструкций;

при производстве работ по возведению каменных и армокаменных конструкций из керамического и силикатного кирпича, керамических, силикатных, природных и бетонных камней, кирпичных и керамических панелей и блоков, бетонных блоков.

Требования настоящего свода правил следует учитывать при проектировании конструкций зданий и сооружений.

1.2 При возведении специальных сооружений - автомобильных дорог, мостов, труб, стальных резервуаров и газгольдеров, тоннелей, метрополитенов, аэродромов, гидротехнических мелиоративных и других сооружений, а также при возведении зданий и сооружений на вечномерзлых и просадочных грунтах, подрабатываемых территориях и в сейсмических районах следует дополнительно руководствоваться требованиями соответствующих нормативных документов.

2 Нормативные ссылки

2.1 В настоящем своде правил использованы ссылки на следующие нормативные документы:

ГОСТ 379-95 Кирпич и камни силикатные. Технические условия

ГОСТ 450-77 Кальций хлористый технический. Технические условия

ГОСТ 530-2012 Кирпич и камень керамические. Общие технические условия

ГОСТ 965-89 Портландцементы белые. Технические условия

ГОСТ 969-91 Цементы глиноземистые и высокоглиноземистые. Технические условия

ГОСТ 1581-96 Портландцементы тампонажные. Технические условия

ГОСТ 2081-2010 Карбамид. Технические условия

ГОСТ 2246-70 Проволока стальная сварочная. Технические условия

ГОСТ 3242-79 Соединения сварные. Методы контроля качества

ГОСТ 5264-80 Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры

ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями

ГОСТ 5802-86 Растворы строительные. Методы испытаний

ГОСТ 6402-70 Шайбы пружинные. Технические условия

ГОСТ 6996-66 Сварные соединения. Методы определения механических свойств

ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 7512-82 Контроль неразрушающий. Соединения сварные. Радиографический метод

ГОСТ 7566-2018 Металлопродукция. Приемка, маркировка, упаковка, транспортирование и хранение

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 8269.0-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний

ГОСТ 8713-79 Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры

ГОСТ 8735-88 Песок для строительных работ. Методы испытаний

ГОСТ 8736-2014 Песок для строительных работ. Технические условия

ГОСТ 9087-81 Флюсы сварочные плавленые. Технические условия

ГОСТ 9206-80 Порошки алмазные. Технические условия

ГОСТ 9467-75 Электроды покрытые металлические для ручной дуговой сварки конструкционных и теплоустойчивых сталей. Типы

ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2014 Смеси бетонные. Методы испытаний

ГОСТ 10243-75 Сталь. Методы испытаний и оценки макроструктуры

ГОСТ 10541-78 Масла моторные универсальные и для автомобильных карбюраторных двигателей. Технические условия

ГОСТ 10690-73 Калий углекислый технический (поташ). Технические условия

ГОСТ 10832-2009 Песок и щебень перлитовые вспученные. Технические условия

ГОСТ 10906-78 Шайбы косые. Технические условия

ГОСТ 10922-2012 Арматурные и закладные изделия, их сварные, вязаные и механические соединения для железобетонных конструкций. Общие технические условия

ГОСТ 11052-74 Цемент гипсоглиноземистый расширяющийся

ГОСТ 11371-78 Шайбы. Технические условия

ГОСТ 11533-75 Автоматическая и полуавтоматическая дуговая сварка под флюсом. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры

ГОСТ 11534-75 Ручная дуговая сварка. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры

ГОСТ 12730.5-2018 Бетоны. Методы определения водонепроницаемости

ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 13087-2018 Бетоны. Методы определения истираемости

ГОСТ 14771-76 Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры

ГОСТ Р 55724-2013 Контроль неразрушающий. Соединения сварные. Методы ультразвуковые

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 15164-78 Электрошлаковая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры

Строим из газоблоков, соблюдая нормы – строим на века

На нашем портале неоднократно появлялись темы, где авторы спрашивали совета о том, какой материал для стен выбрать.


elenamir пользователь FORUMHOUSE

Решились на строительство дома. Из какого материала лучше строить?


marsNRG пользователь FORUMHOUSE

Всем привет. Нужна ваша помощь дорогие форумчане. Хотим строить одноэтажный дом с мансардой 2014 весной, для пмж, земля 10 сот, вопрос из какого материала строить?,рассматриваем кирпич, пено-блок,газо-блок и другие стр. материаллы. Есть геологические изыскания проведенные в декабре 2013. Прикладываю к теме. Просьба посмотреть и посоветовать какой дом из чего строить на каком фундаменте, денег 1.700.000.хотелось бы дом 100-120 кв. м жилого помещения без особых изысков простой квадратный, размеры как получится. Фундамент+коробка дома+крыша двухскатка ну и окна с дверями, без отделки. За ранее благодарен. Всех с наступающим новым 2014 годом удачной всем стройки.


PairOfDeuces пользователь FORUMHOUSE

Сам в строительстве ни бум-бум, поэтому заранее извиняюсь если что-то не так напишу. Родители планируют строить дом и попросили почитать в интернете что пишут про стеновые блоки. Отец консервативен и склоняется "по старинке" строить из кирпича. Я ес-но за все новое: пеноблоки, газоблоки и т.д. Про достоинства тех или иных блоков все более менее понятно. Они очень подробно расписаны на сайтах производителей. Хотелось бы узнать какие есть недостатки. Нагуглил вот такое видео. Хотелось бы услышать комменты.

Почему же газоблоки стали такими популярными, и почему возникают сомнения на этапе выбора материала? Давайте сначала остановимся на его плюсах и минусах.


Плюсы газобетона

  • В составе газобетона цемент, песок, вода, известь и алюминиевая пудра. Последняя выступает как раз в качестве газообразователя. За счет такого состава одним из плюсов газобетона является его экологичность.
  • Воздухопроницаемость материала или его возможность «дышать».
  • По теплопроводности газобетон сопоставим с древесиной. Блоки обладают аккумулятивными свойствами, они сохраняют природное тепло снаружи, и искусственное отопление изнутри.
  • Неоспоримым и огромным преимуществом газобетона является простота работы с материалом. Он легкий, блоки имеют довольно большой размер, что обеспечивает высокую скорость строительства. Газобетон легко пилить, сверлить, штробить.
  • Газобетон огнеупорный и морозоустойчивый материал.
  • Заключительное, но немаловажное преимущество - прочность и долговечность. Газобетон рекомендуется применять даже в сейсмоопасных регионах.


Минусы газобетона

Но, как известно, бочки меда без ложки дегтя не бывает, поэтому за плюсами всегда следуют минусы. Газобетон, хоть и отличный материал, не исключение.

  • Он гигроскопичен. Данная проблема решается внешней отделкой дома.
  • Трудности с внешней отделкой здания. Для отделки подойдет далеко не любой материал, если вы хотите сохранить все свойства газобетона. Часто предпочтение отдают штукатурке.
  • Ячеистые блоки подвержены деформации, при наличии ошибок, например с фундаментом.
  • Проблемы с крепежными элементами. Нужно использовать специальные для ячеистых бетонов крепежи.

Как мы видим, плюсов несомненно больше, а большинство минусов можно избежать грамотным и дальновидных подходом к стройке, без которого вообще начинать строительство становится авантюрой.


Срок службы зданий из газобетона оценивают от 70 лет. Но, чтобы дом действительно служил верой и правдой как минимум двум поколениям, нужно соблюсти все правила и строить по не зря придуманным нормам.

Выбираем качественный материал

Качественный автоклавный газобетон должен быть произведен в соответствии с ГОСТом 31359-2007 “Бетоны ячеистые автоклавного твердения”. В документе подробно указаны физико-химические и теплофизические характеристики разных марок бетона, классы прочности, коэффициенты теплопроводности и паропроницаемости, требования к материалам, из которых изготавливается газобетон.

В зависимости от средней плотности выделяют 14 марок газобетона: D200, D250, D300, D350, D400, D450, D500, D600, D700, D800, D900, D1000, D1100, D1200. Марка означает плотность материала в кг/м3. То есть плотность газобетона D500 означает 500 кг/м3.

Ячеистые бетоны имеют 15 классов прочности на сжатие: В0,35; В0,5; В0,75; В1,0; В1,5; В2,0; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В17,5; В20. Значение класса обозначает какую нагрузку в Ньютонах выдерживает квадратный миллиметр газобетона. То есть, при В0,5 квадратный сантиметр материала выдерживает нагрузку в 50 кг.

Для несущих стен одноэтажных строений будет достаточно газобетона D400. Для двухэтажного стоит выбирать уже D500, а для более высоких сооружений от D700 и выше.

Читайте также: