Расчет несущей способности монолитной стены

Обновлено: 17.05.2024

Как рассчитать стены из кладки на устойчивость

Чтобы выполнить расчет стены на устойчивость, нужно в первую очередь разобраться с их классификацией (см. СНиП II -22-81 «Каменные и армокаменные конструкции», а также пособие к СНиП) и понять, какие бывают виды стен:

1. Несущие стены - это стены, на которые опираются плиты перекрытия, конструкции крыши и т.п. Толщина этих стен должна быть не менее 250 мм (для кирпичной кладки). Это самые ответственные стены в доме. Их нужно рассчитывать на прочность и устойчивость.

2. Самонесущие стены - это стены, на которые ничто не опирается, но на них действует нагрузка от всех вышележащих этажей. По сути, в трехэтажном доме, например, такая стена будет высотой в три этажа; нагрузка на нее только от собственного веса кладки значительная, но при этом очень важен еще вопрос устойчивости такой стены - чем стена выше, тем больше риск ее деформаций.

3. Ненесущие стены - это наружные стены, которые опираются на перекрытие (или на другие конструктивные элементы) и нагрузка на них приходится с высоты этажа только от собственного веса стены. Высота ненесущих стен должна быть не более 6 метров, иначе они переходят в категорию самонесущих.

4. Перегородки - это внутренние стены высотой менее 6 метров, воспринимающие только нагрузку от собственного веса.

Разберемся с вопросом устойчивоcти стен.

Первый вопрос, возникающий у «непосвященного» человека: ну куда может деться стена? Найдем ответ с помощью аналогии. Возьмем книгу в твердом переплете и поставим ее на ребро. Чем больше формат книги, тем меньше будет ее устойчивость; с другой стороны, чем книга будет толще, тем лучше она будет стоять на ребре. Со стенами та же ситуация. Устойчивость стены зависит от высоты и толщины.

Теперь возьмем наихудший вариант: тонкую тетрадь большого формата и поставим на ребро - она не просто потеряет устойчивость, но еще и изогнется. Так и стена, если не будут соблюдены условия по соотношению толщины и высоты, начнет выгибаться из плоскости, а со временем - трещать и разрушаться.

Что нужно, чтобы избежать такого явления? Нужно изучить п.п. 6.16. 6.20 СНиП II -22-81.


Рассмотрим вопросы определения устойчивости стен на примерах.

Пример 1. Дана перегородка из газобетона марки М25 на растворе марки М4 высотой 3,5 м, толщиной 200 мм, шириной 6 м, не связанная с перекрытием. В перегородке дверной проем 1х2,1 м. Необходимо определить устойчивость перегородки.

Из таблицы 26 (п. 2) определяем группу кладки - III . Из таблиц ы 28 находим ? = 14. Т.к. перегородка не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 9,8.

Находим коэффициенты k из таблиц ы 29:

k 1 = 1,8 - для перегородки, не несущей нагрузки при ее толщине 10 см, и k 1 = 1,2 - для перегородки толщиной 25 см. По интерполяции находим для нашей перегородки толщиной 20 см k 1 = 1,4;

k3 = 0,9 - для перегородки с проемами;

Окончательно β = 1,26*9,8 = 12.3.

Найдем отношение высоты перегородки к толщине: H / h = 3,5/0,2 = 17,5 > 12.3 - условие не выполняется, перегородку такой толщины при заданной геометрии делать нельзя.

Каким способом можно решить эту проблему? Попробуем увеличить марку раствора до М10, тогда группа кладки станет II , соответственно β = 17, а с учетом коэффициентов β = 1,26*17*70% = 15 < 17,5 - этого оказалось недостаточно. Увеличим марку газобетона до М50, тогда группа кладки станет I , соответственно β = 20, а с учетом коэффициентов β = 1,26*20*70% = 17.6 > 17,5 - условие выполняется. Также можно было не увеличивая марку газобетона, заложить в перегородке конструктивное армирование согласно п. 6.19. Тогда β увеличивается на 20% и устойчивость стены обеспечена.

Пример 2. Дана наружная ненесущая стена из облегченной кладки из кирпича марки М50 на растворе марки М25. Высота стены 3 м, толщина 0,38 м, длина стены 6 м. Стена с двумя окнами размером 1,2х1,2 м. Необходимо определить устойчивость стены.

Из таблицы 26 (п. 7) определяем группу кладки - I . Из таблиц ы 28 находим β = 22. Т.к. стена не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 15,4.

Находим коэффициенты k из таблиц ы 29:

k 1 = 1,2 - для стены, не несущей нагрузки при ее толщине 38 см;

k2 = √А n / Ab = √1,37/2,28 = 0,78 - для стены с проемами, где Ab = 0,38*6 = 2,28 м 2 - площадь горизонтального сечения стены с учетом окон, А n = 0,38*(6-1,2*2) = 1,37 м 2 ;

Окончательно β = 0,94*15,4 = 14,5.

Найдем отношение высоты перегородки к толщине: H / h = 3/0,38 = 7,89 < 14,5 - условие выполняется.

Необходимо также проверить условие, изложенное в п. 6.19:

Н + L = 3 + 6 = 9 м < 3 kβh = 3*0,94*14,5*0,38 = 15.5 м - условие выполняется, устойчивость стены обеспечена.

Еще полезные статьи:

Комментарии « 3 4 5 6 7 8

профили арматуру не заменят

насчет фундамента: допустимы пустоты в теле бетона, но не снизу, чтобы не уменьшать площадь опирания, которая отвечает за несущую способность. То есть снизу должен быть тонкий слой армированного бетона.
А какой фундамент - лента или плита? Какие грунты?

Цитирую Иринa: профили арматуру не заменят

жаль, вообще просто пишут что в легких бетонах (керамзитобетон) плохая связь с арматурой - как с этим бороться? я так понимаю чем прочнее бетон и чем больше площадь поверхности арматуры - тем лучше будет связь, т.е. надо керамзитобетон с добавлением песка (а не только керамзит и цемент) и арматуру тонкую, но чаще

насчет фундамента: допустимы пустоты в теле бетона, но не снизу, чтобы не уменьшать площадь опирания, которая отвечает за несущую способность. То есть снизу должен быть тонкий слой армированного бетона.
А какой фундамент - лента или плита? Какие грунты?

Груны пока не известны, вероятнее всего будет чистое поле суглинки всякие, изначально думал плиту, но низковато выйдет, хочется по-выше, а ещё же придётся верхний плодородный слой снимать, поэтому склоняюсь к ребристому или даже коробчатому фундаменту. Несущей способности грунта много мне не надо - дом всё-таки решили в 1 этаж, да и керамзитобетон не очень тяжёлый, промерзание там не более 20 см (хотя по старым советским нормативам 80).

Думаю снять верхний слой 20-30 см, выложить геотекстиль, засыпать песочком речным и разровнять с уплотнением. Затем легкая подготовительна я стяжка - для выравнивая (в неё вроде бы даже арматуру не делают, хотя не уверен), поверх гидроизоляция праймером
а дальше вот уже диллема - даже если связать каркасы арматуры ширина 150-200мм х 400-600мм высоты и уложить их с шагом в метр, то надо ещё пустоты чем-то сформировать между этими каркасами и в идеале эти пустоты должны оказаться поверх арматуры (да ещё и с некоторым расстоянием от подготовки, но при этом сверху их тоже надо будет проармировать тонким слоем под 60-100мм стяжку) - думаю ППС плиты замонолитить в качестве пустот - теоретически можно будет такое залить в 1 заход с вибрированием.

Т.е. как бы с виду плита 400-600мм с мощным армированием каждые 1000-1200мм объемная структура единая и легким в остальных местах, при этом внутри примерно 50-70% объёма будет пенопласт (в не нагруженных местах) - т.е. по расходу бетона и арматуры - вполне сравнимо с плитой 200мм, но + куча относительно дешового пенопласта и работы больше.

Если как-то бы ещё заменить пенопласт на простой грунт/песок - будет ещё лучше, но тогда вместо легкой подготовки разумнее делать нечто более серьёзное с армированием и выносом арматуры в балки - в общем тут не хватает мне и теории и практического опыта.

Вернёмся пока к стенам, тут вычитал ещё интересный вариант tilt-up
на фундаменте отливается прямо стена с утелпением сразу (в утеплении есть углубления для армирования, т.е. слой бетона не везде одинаковый, как бы та же ребристая структура)

я думаю заменить тяжёлый бетон 50-150 мм, на керамзитобетон заводской 150-250 мм 1000-1200кг/м3 - арматурный каркас там из 12й арматуры в прорези между утеплителем (шаг 1м в утолщениях стены), а по внутренней стене дополнительно кладочную сетку 6ку вроде с шагом 100мм

потом это ставится уже краном (свариваются, скручиаются выносы арматуры) а стыки и углы монолитятся и утепляются отдельно (в стыках из плиты и потом в перекрытие отдельно арматура закладывается)

немного смущает слабая связь стен с фундаментом (только по стыкам и углам), но при монолитном перекрытии - это вроде как достаточно жестко, можно в фундаменте и стеновых плитах сделать закладные и сварить до кучи

Как Вам такая технология? Несущая стена получится 150мм с утолщениями до 250мм из керазитобетона M50 с умеренным армированием

жаль, вообще просто пишут что в легких бетонах (керамзитобетон) плохая связь с арматурой - как с этим бороться? я так понимаю чем прочнее бетон и чем больше площадь поверхности арматуры - тем лучше будет связь, т.е. надо керамзитобетон с добавлением песка (а не только керамзит и цемент) и арматуру тонкую, но чаще зачем с этим бороться? нужно просто учитывать в расчете и при конструировании. Понимаете, керамзитобетон - достаточно хороший стеновой материал со своим списком достоинств и недостатков. Как и любые другие материалы. Вот если бы вы захотели использовать его для монолитного перекрытия, я бы вас отговаривала, потому что
Цитата: в легких бетонах (керамзитобетон) плохая связь с арматурой

а значит будут проблемы в растянутой зоне плиты и в местах анкеровки арматуры.

Для стен же, тем более для одноэтажного дома, керамзитобетон вполне подходит. Конечно, нужно соблюсти все нормативные требования для лёгких бетонов.

стяжка не армируется

а дальше вот уже диллема вот поэтому никто так и не делает

почитал СНИП по легким бетонам, там довольно интересные есть моменты.
1. похоже можно делать керамзитобетон без мелкого наполнителя, я думаю использовать 10-20
2. есть разные сорта керамзита по прочности, и требования для каждой марки керамзитобетона

Класс бетона по прочности на сжатие - Минимальная марка заполнителя по прочности

При этом я вижу что для фракции 10-20 есть варианты керамзита как П25 (дешового 250кг/м3), так и П50 - более дорогой и у него насыпная плотность уже 400кг/м3

т.е. в принципе можно получить относительно дорогой конструкционно- теплоизоляционн ый D600 - D700 M100-B7.5 из которого даже относительно тонким слоем при качественном армировании можно хоть в 3-4 этажа лепить

а можно получить дешовый D500 M50-B3.5 на 1-2 этажа хватит и такого за глаза, даже если будет пирог 120мм-100 ППС-80мм с армированием по 1 слою в обоих слоях керамбитобетона , связанных стеклоплатсиков ой арматурой между собой (как только это посчитать - не понятно, одиночной стены в 120мм мало, но учитывая что пенопласт будет не сплошным слоем, а с шагом в метр будут рёбра из чистого керамзитобетона с армированием, т.е. рёбра в 300мм толщиной по сути)
я думаю прочности тут с большим запасом (скидка на качество изготовления самомесом, но планирую вибрировать поверхностным вибратором, плиты будут отливаться на фундаменте горизонтально с выносом арматуры для связи плит, и через неделю подниматься - размер плиты 1.1-1.2 х 2.4-3 м вес примерно 300-400кг всего, стыки плит будут заливаться отдельно тем же керамзитобетоном)

Онлайн калькулятор расчета монолитного плитного фундамента (плиты, ушп)

Онлайн калькулятор монолитного плитного фундамента (плиты) предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента домов и других построек. Перед выбором типа фундамента, обязательно проконсультируйтесь со специалистами, подходит ли данных тип для ваших условий.

Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003

П литный фундамент (ушп) – монолитное железобетонное основание, закладываемое под всю площадь постройки. Имеет самый низкий показатель давления на грунт среди других типов. В основном применяется для легких построек, так как с увеличением нагрузки существенно возрастает стоимость данного типа фундамента. При малом заглублении, на достаточно пучинистых грунтах, возможно равномерное приподнимание и опускание плиты в зависимости от времени года.

О бязательно наличие хорошей гидроизоляции со всех сторон. Утепление может быть как подфундаментное, так и располагаться в стяжке пола, и чаще всего для этих целей применяется экструдированный пенополистирол.

Г лавным преимуществом плитных фундаментов является относительно низкая стоимость и простота возведения, так как в отличии от ленточного фундамента нет необходимости в проведении большого количества земляных работ. Обычно достаточно выкопать котлован 30-50 см. в глубину, на дне которого размещается песчаная подушка, а так же при необходимости геотекстиль, гидроизоляция и слой утеплителя.

О бязательно необходимо выяснить какими характеристиками обладает грунт под будущим фундаментом, так это это является основным решающим фактором при выборе его типа, размера и других важных характеристик.

При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация

Д алее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой в правом блоке.

Учет расчетной высоты стен при проверке и подборе армирования

При расчете внецентренно сжатых элементов в общем случае следует учитывать влияние продольного изгиба на увеличение эксцентриситета продольной силы, т.е. влияние продольного изгиба.

Как правило, усилия в элементах расчетных моделей определяются без учета деформированной схемы. Поэтому для учета продольного изгиба при выполнении конструктивного расчета нормального сечения (проверка или подбор армирования) следует корректировать полученные из расчета по недеформированной схеме изгибающие моменты.

В основе принятого в нормах проектирования СП 63.13330 подхода по учету продольного изгиба (пункт 8.15) используется метод критических сил (параграф 3.2.13[1] и 3.2.1 [2]).

Следует отметить, что в основе расчетной модели, приведенной в нормах проектирования, лежит внецентренно сжатый элемент с шарнирными закреплениями по концам. Упругая линия данного стержня имеет вид синусоиды с максимальным выгибом в середине пролета.

Расчетная высота стен 1.jpg

Принятая для учета продольного изгиба расчетная модель

Функция ПК ЛИРА-САПР «Учет расчетной высоты» предназначена для учета продольного изгиба из плоскости пластинчатого конечного элемента.

Расчетная высота стен 2.jpg

При «учете расчетной высоты» происходит корректировка изгибающего момента My, полученного по результатам расчета, с учетом коэффициента η. При этом согласованные оси для выдачи результатов должны быть направлены таким образом, что местная ось Y1 смотрела вертикально (для стен «высота» определяется направлением согласованной оси Y1).

Решение по учету продольного изгиба принимает пользователь в зависимости от особенностей расчетной модели. При этом следует брать в учет ту расчетную модель, которая заложена в нормах проектирования. Так, при действии вертикальных нагрузок в опорном узле коэффициент η=1.

Т.к. в стеновых системах горизонтальную нагрузку воспринимают диафрагмы, расположенные в плоскости действия этой нагрузки, то для узлов сопряжения стен и плит, перпендикулярных горизонтальной нагрузке, учет продольного изгиба не требуется. Учет продольного изгиба, как правило, требуется только для средней трети высоты стены – среднего сечения (см. раздел 5 [3]).

Расчёт на внецентренное сжатие простенка из газобетонных блоков

Материал — газобетонный блок на ц.п. растворе. Марка блока М50, марка раствора М75. Расчётное сопротивление кладки сжатию R=16.3155*0.8=13.0524 кгс/см2. Коэффициент 0.8 принят по п.6.12 для кладки из блоков и камней из крупнопористых бетонов и из автоклавных ячеистых бетонов. Размеры простенка b=100 см, h=38 см. Высота простенка l0=290 см. По результатам определения внутренних усилий в сечении простенка возникают следующие усилия: N=16.057 т, изгибающие моменты Мх=0.314 т*м, Му=0 т*м, поперечные силы, Qx=0 т, Qy=0.18 т;

mas_03_01.jpg

Схема приложения нагрузок к простенку
Расчёт на внецентренное сжатие в плоскости изгиба

По п.7.7 Расчет внецентренно сжатых неармированных элементов каменных конструкций следует производить по формуле

mg=1 — коэффициент, учитывающий влияние длительной нагрузки и определяемый по формуле (16). При толщине стены более 30 см, принимается равным 1.

φ — коэффициент продольного изгиба для всего сечения в плоскости действия изгибающего момента, определяемый по расчетной высоте элемента l0

Для l0=290 см, ix=0.289*38=10.982 см, α=750, по таблице 19, при λ=l0/ix=290/10.982=26.407, φ=0.91138


αn
750
λn 21 0.95
λi 26.407 0.91138
λn+1 28 0.9

φс — коэффициент продольного изгиба для сжатой части сечения, определяемый по фактической высоте элемента Н по таблице 18 в плоскости действия изгибающего момента при гибкости:

где hс и iс — высота и радиус инерции сжатой части поперечного сечения Ас в плоскости действия изгибающего момента.

Площадь сжатой части сечения определяется по формуле:

mas_03_f01.jpg

A=b*h=3800 см 2 — площадь поперечного сечения простенка;

e0x=Mx/N=0.314/16.057=1.955533 см – эксцентриситет расчётной силы N относительно центра тяжести сечения;

ev=0 см — случайный эксцентриситет продольной силы, для несущих стен толщиной 25 см и более не учитывается.

Высота сжатой части сечения hcx=Ac/b=34.0889 см;

Радиус инерции сжатой части сечения icx=0.289*hcx=0.289*34.0889=9.8517 см, λcx=l0/icx=290/9.8517=29.4365, φcx=0.88769

Типы фундаментов. Монолитная фундаментная плита.

Внешний вид монолитной фундаментной плиты

Монолитная фундаментная плита представляет собой плоскую ж/бетонную конструкцию, расположенную под всей площадью дома (или других построек). Поскольку важным фактором любого фундамента является площадь опирания на грунт и от неё зависит передаваемая на грунт нагрузка, монолитная фундаментная плита выгодно отличается от других типов фундаментов, т.к. её площадь очень большая и это позволяет использовать её на грунтах с низкой несущей способностью. По аналогии с ленточным фундаментом, фундаментная плита бывает двух типов: мелкозаглубленная (в случае отсутствия подвального (цокольного) этажа), заглубленная (при наличии подвального (цокольного) этажа). Это позволяет значительно сэкономить на земляных работах при отсутствии потребности в устройстве подвального (цокольного) этажа.
За особенность работы монолитной фундаментной плиты - не оказывать сопротивления подвижкам грунта и не гасить их данный тип фундамента ещё называют "плавающим". Но, нельзя данное название трактовать как универсальный фундамент для всех типов грунтов, вопреки сложившемуся мнению, данный тип не пригоден для грунтов с сильным пучением или на топких грунтах. На таких грунтах не исключены неравномерная просадка дома, что может привести к неправильной работе несущих конструкций и проявиться в виде трещин на них. Для правильной работы фундаментной монолитной плиты главное сохранить баланс между нагрузкой от дома и возникающим в грунте, сезонным напряжениям, т.е. нельзя на тонкой (слабой) плите возводить массивный каменный двух-, трехэтажный дом; и наоборот - на толстой (массивной) плите возводить легкое деревянное строение. Для точного определения толщины плиты, марки бетона, количества арматуры, её диаметров и её расположения в теле плиты, производится расчет фундаментной монолитной плиты, но поскольку выполнить такой расчет под силу только специалисту, для частного домостроения применяется набор требований, который с достаточной степенью точности позволяет определить все эти параметры и простому обывателю.

Шаг 1. Определяем толщину фундаментной монолитной плиты.

Поскольку, основное назначение фундамента - передавать нагрузку от дома на грунт (основание), для расчета основных характеристик фундамента необходимо произвести расчет веса дома (для этого, можно воспользоваться калькулятором расчета веса дома). Как уже говорилось в статье (Грунты и основания) в зависимости от типа грунта, меняются и его физико-механические свойства, главное из которых - несущая способность грунта. Несущая способность - это максимальная нагрузка, которую грунт способен воспринять от веса дома, без деформаций. На основании несущей способности были разработаны показатели оптимального давления на грунт фундаментной плиты, в зависимости от его типа (см. Таблицу 1).

Таблица показателей оптимального давления на грунт при строительстве монолитной фундаментной плиты

Таблица №1.


Для примера, рассмотрим следующий вариант:
имеем дом, двухэтажный, наружные и внутренние стены которого выполнены из кирпича, толщина наружных стен в 2 кирпича (b=510мм), толщина внутренних несущих стен 1,5 кирпича (380мм). Размер дома в плане составляет 10 х 12м, длина внутренней несущей стены составляет 12м.п.
По результатам расчета на калькуляторе мы получили общий вес дома (с временными нагрузками и коэффициентом надежности 1,3): 630тн, при этом нагрузка на несущие стены составляет 6,38тн/м.п.
Далее, исходя из проекта, определяем площадь опирания плиты, в нашем примере, при размерах дома 10 х 12м, к длине и ширине необходимо добавить минимум по одной толщине наружной стены с каждой стороны, соответственно размеры плиты будут составлять:

(10м + 2 х 0,5(две толщины)) х (12 + 2 х 0,5(две толщины)) = 11 х 13 м = 143м2.

Таким образом у нас есть площадь плиты и вес дома. Разделим вес дома на площадь плиты:

630тн (630 000 кг) / 134м2 (1340000см2) = 0,470 кг/м2

- получили показатель распределенного давления на грунт от нашего дома.

Теперь из Таблицы №1 выбираем тип нашего грунта (например, "пески мелкие средней плотности") для которого оптимальным давлением будет 0,25кг/см2.
Сопоставляем с полученным нами распределенным давлением 0,47 кг/см2 отсюда делаем вывод: для нашего дома, имеющего вес 630тн на грунтах: пески мелкие средней плотности тип фундаментная плита экономически не выгоден, поскольку для выполнения условия оптимального давления на грунт нам потребуется увеличивать площадь фундаментной плиты почти в 2 раза.
Рассмотрим другой пример - имеем одноэтажный дом, с несущими стенами из пеноблоков, имеющий в плане размеры 8 х 10м. Используя калькулятор определяем его вес. Вес получился 98 тн. Определяем площадь фундаментной плиты:

(10м + 2 х 0,4 (две толщины)) х (8 + 2 х 0,4 (две толщины)) = 10,8 х 8,8 м = 95м2.

Таким образом у нас есть площадь плиты и вес дома. Опять разделим вес дома на площадь плиты:

98тн (98 000 кг) / 95м2 (950000см2) = 0,103 кг/м2

- получили показатель распределенного давления на грунт от нашего дома.

Теперь из Таблицы №1 выбираем тип нашего грунта (например, опять выберем "пески мелкие средней плотности") для которого оптимальным давлением будет 0,25кг/см2. Вычитаем из оптимального давления полученное нами распределенное давление:

0,250 - 0,103 = 0,147 кг/см2;

Теперь эту разницу мы должны компенсировать весом фундаментной плиты, для этого нам необходимо обратиться к формуле:

Mплиты / Sплиты = 0,147 кг/см2,

где,
Мплиты - масса плиты, кг;
Sплиты - её площадь, см2;

находим массу нашей плиты:

Мплиты = Sплиты х 0,147 = 950 000 см2 х 0,147 кг/см2 = 139 650кг;

Принимая во внимание, что плотность ж/бетона составляет в среднем 2500кг/м3, находим толщину нашей плиты:

139 650кг / 2500кг/м3 = 55,86 м3 (объем нашей плиты), разделим его на площадь / 95м2 = 0,588м = 58,8см.

Рассмотрим третий пример - имеем двухэтажный дом, с несущими стенами из пеноблоков, имеющий в плане размеры 8 х 10м. Используя калькулятор определяем его вес. Вес получился 168 тн. Определяем площадь фундаментной плиты:

(10м + 2 х 0,4 (две толщины)) х (8 + 2 х 0,4 (две толщины)) = 10,8 х 8,8 м = 95м2.

Таким образом у нас есть площадь плиты и вес дома. Опять разделим вес дома на площадь плиты:

168тн (168 000 кг) / 95м2 (950000см2) = 0,176 кг/м2

- получили показатель распределенного давления на грунт от нашего дома.

Теперь из Таблицы №1 выбираем тип нашего грунта (например, опять выберем "пески мелкие средней плотности") для которого оптимальным давлением будет 0,25кг/см2.
Вычитаем из оптимального давления полученное нами распределенное давление:

0,250 - 0,176 = 0,073 кг/см2;

Теперь эту разницу мы должны компенсировать весом фундаментной плиты, для этого нам необходимо обратиться к формуле:

Mплиты / Sплиты = 0,073 кг/см2,

где,
Мплиты - масса плиты, кг;
Sплиты - её площадь, см2;

находим массу нашей плиты:

Мплиты = Sплиты х 0,073 = 950 000 см2 х 0,073 кг/см2 = 63 350кг;

Принимая во внимание, что плотность ж/бетона составляет в среднем 2500кг/м3, находим толщину нашей плиты:

63 350кг / 2500кг/м3 = 27,74 м3 (объем нашей плиты), разделим его на площадь / 95м2 = 0,292м = 29,2см.

Анализ результатов расчета толщины фундаментной плиты:

по результатам расчетов толщина плиты может попасть в три диапазона:

  1. толщина плиты менее 100мм;
  2. толщина плиты от 150мм до 350мм;
  3. толщина плиты более 350мм.

В первом случае - у Вас очень слабая несущая способность грунта. Возможно потребуются дополнительные обследования и принятие решений для укрепления грунтов, либо переход на другой тип фундаментов.
Во втором случае - Монолитная фундаментная плита подходит Вам в качестве основания. Полученный результат округляют до ближайшего значения, кратного 50 мм (в целях экономии лучше округлять в меньшую сторону!).
В третьем случае - монолитная фундаментная плита, как тип фундамента не подходит для Вашего дома. Требуется принимать в расчет другой тип фундаментов (ленточный, столбчатый или свайный).

Таким образом, для рассмотренных нами первого и второго варианта показали - что тип фундамента - монолитная фундаментная плита - НЕ ПОДХОДИТ! Такой тип фундамента подходит лишь для третьего варианта, его мы и продолжим дальше рассматривать.
Окончательно принимаем толщину 25см и пересчитаем заново, но с учетом веса самой плиты:

168 тн (вес дома) + (95м2 (площадь плиты) х 0,25м (толщина плиты) х 2500кг.м3 (плотность ж/бетона) = 168тн + 59,38тн = 227,38тн (общий вес);

Разделим его на площадь плиты:

227 380 / 950 000 = 0,239кг/см2

- сравниваем с оптимальным давлением 0,250 получаем разницу 0,011кг/см2 - 4,4% от оптимальной нагрузки это в пределах

допуска (+-10%), поэтому дя расчета остальных показателей принимаем толщину плиты - 25 см.

Шаг 2. Определяем марку бетона для фундаментной плиты.

Для определения марки бетона фундамента, нам необходимо рассчитать один показатель отношение нагрузки от здания к площади несущих стен. Для расчета площади несущих стен мы возьмем периметр дома (10+8) х 2 = 36м.п. и умножим на толщину стен 0,4м получим 14,4 м2.
Делим нагрузку от дома 168тн (168000кг) на площадь несущих стен 14,4м2 (144000см2):

168 000 / 144 000 = 1,16кг/см2 ,

что соответствует 1,16 кгс/см2, это очень маленькая нагрузка для бетона любой марки (см. таблицу 2), но принято закладывать марку бетона для монолитной фундаментной плиты не ниже М200!

Таблица прочности бетона в зависимости от марки или класса бетона

Таблица №2.

Шаг 3. Расчет армирования для фундаментной плиты.

Армирование фундаментной плиты выполняется сеткам, взаимно перекрещивающимися под прямым углом стержнями арматуры.
Согласно СП 63.13330.2012, при высоте плиты от 10 до 15 см используется один ряд арматурной сетки, от 15 см до 30 см – два ряда, свыше 30 см – три и более рядов.
Для железобетонных оснований используется арматура диаметром в основном 12–16 мм, чаще всего 14 мм. Если сеток несколько, то верхняя армируется с помощью прутков диаметром 8–10 мм (поскольку она выполняет функцию "конструктивной", а нижняя функцию "рабочей" арматуры).

Шаг арматуры может быть различным, лучше его принимать в зависимости от того, какова толщина плиты фундамента:
если толщина плиты до 25 см используют шаг 150 мм,
если толщина свыше 25 см – 200 мм.

Напишем наши исходные данные для фундаментной плиты:

  • Длина плиты - 10,8м;
  • Ширина плиты - 8,8м;
  • Толщина плиты - 250мм;
  • Кол-во армирующих сеток - 2 шт;
  • Арматура для нижней сетки - класс А500 диам. 14мм;
  • Шаг арматуры для нижней сетки - принимаем 150 мм;
  • Арматура для верхней сетки - класс А400 диам. 10мм;
  • Шаг для верхней сетки - принимаем 200мм;

Выполняем расчет:
Нижняя сетка ("рабочая" арматура).
считаем кол-во продольных стержней, для этого делим ширину на шаг арматуры и добавляем один пруток (крайний):

8800 / 150 + 1 = 59,67

60 прутков (длиной 10,8 м.), общая длина = 648 м.п.

считаем кол-во продольных стержней, для этого делим ширину на шаг арматуры и добавляем один пруток (крайний):

10800 / 150 + 1 = 73 прутка (длиной 8,8 м.), общая длина = 642,4 м.п.

Итого на нижнюю сетку необходимо 648 + 642,4 = 1290,4 м.п. при весе погонного метра 1,21 кг/м.п. общий вес составит 1561,4 кг = 1,56 тн.

Верхняя сетка ("конструктивная" арматура).
считаем кол-во продольных стержней, для этого делим ширину на шаг арматуры и добавляем один пруток (крайний):

8800 / 200 + 1 = 45 прутков (длиной 10,8 м.), общая длина = 486 м.п.

считаем кол-во продольных стержней, для этого делим ширину на шаг арматуры и добавляем один пруток (крайний):

10800 / 200 + 1 = 55 прутков (длиной 8,8 м.), общая длина = 484 м.п.

Итого на нижнюю сетку необходимо 486 + 484 = 970 м.п. при весе погонного метра 0,62 кг/м.п. общий вес составит 601,4 кг = 0,60 тн.

Дополнительно считаются концевые скобообразные элементы (см. рис. 4) из расчета 1 шт на каждый стержень нижней сетки, при этом длина одного элемента - пять толщин плиты:

(60 + 73) х (0,25*5) = 166,25 м.п. (из арматуры А400 диам. 10мм) х 0,62 = 103 кг = 0,1 тн;

Так же дополнительно считаются фиксаторы верхней сетки ("пауки" или "лягушки" см рис.3)
Из расчета 2 шт на 1 м.кв. сетки, при этом длина одного элемента - пять толщин плиты:

95 м2 х 2 шт х (0,25*5) = 237,5 м.п. (из арматуры А400 диам. 10мм) х 0,62 = 147,25 кг = 0,15 тн;

Потребность в арматуре:

  • арматура А500 диам. 14мм - 1,56тн.;
  • арматура А400 диам. 10мм - 0,85тн.;

Остался ещё один вопрос - стоимость монолитной фундаментной плиты.
Для правильной работы фундаментной плиты необходимо выполнить все минимально необходимые слои:

  • По слою утрамбованного грунта устраивается песчаная подушка толщиной 25 - 30 см, с послойным тромбованием;
  • Для выполнения оклеечной гидроизоляции необходимо сформировать основание - чаще всего это слой подбетонки из бетона В7,5 (В15) толщиной 100мм;
  • Слой гидроизоляции оклеечной в два слоя;
  • Сама монолитная плита;

Для расчета укрупненной стоимости нам необходимо:
Состав работ и перечень необходимых материалов.
Состав работ:

  1. Разработка грунта - (из расчета мелкозаглубленной плиты и необходимых слоев получается глубина котлована: песок 300мм + подбетонка 100мм = 400 мм) - 95,0м2 х 0,4 = 38 м3;
  2. Устройство песчаного (щебеночного) основания - 0,3м (толщина) х 95,0 м2 = 28,5м3;
  3. Устройство подбетонки из бетона В7,5 - 95м2 (площадь) х 0,1м (толщина) = 9,5м3;
  4. Устройство гидроизоляции из рулонных материалов в два слоя: 95 м2;
  5. Устройство опалубки - 0,4 (высота опалубки) х (10,8 + 8,8) х 2 м.п. (периметр) = 15,68 м.кв.;
  6. Устройство арматурного каркаса - 1,56 + 0,85 = 2,41 тн.;
  7. Укладка бетонной смеси - 23,76 м2;
  8. Распалубливание - 15,68 м.кв.
  1. Песок(щебень) - 28,5 * 1,3 (коэфф. уплотнения) = 37,0м3;
  2. Бетон В7,5 - 9,5 х 1,02 = 9,7м3;
  3. Гидростеклоизол - 95 м2 х 2 (слоя) х 1,1 (расход) = 209м2;
  4. Щиты опалубки - 201,6 м.кв.;
  5. Арматура - 2,41 тн.;
  6. Бетон - 23,76 х 1,02 = 24,2м3;

Далее, в зависимости от региона, где Вы собираетесь строить определяете рыночные расценки на работы и материалы.
Сводим все данные в таблицу №3. и получаем смету:

Укрупненная смета на устройство монолитной фундаментной плиты

Таблица №3.

Мы рассмотрели ещё один тип фундаментов - монолитная фундаментная плита, ознакомились с его плюсами и минусами. Этой статьёй мы заканчиваем знакомиться с типами фундаментов, далее будем рассматривать технологию их строительства.

Фундамент монолитная плита. Как посчитать толщину, какое выбрать армирование. Чем нельзя пренебрегать

Продолжаем тему фундаментов индивидуальных жилых домов.

В этой статье я максимально простым языком объясню как правильно запроектировать фундамент "Монолитная плита". Ремарка: регламент, описаный ниже, подходит для домов до двух этажей включительно из пенобетонных блоков или кирпича!

Тип фундамента "Монолитная плита" отличается следующими качествами:

1. Маленькое удельное давление на грунт;

2. Не боится высокого уровня грунтовых вод:

3. Отличная несущая способность;

4. Относительная простота конструкции.

Такой фундамент можно применять практически на всех типах грунтов, за исключением болотистых или торфяников.

А проектировать плиту в данной статье будем для одноэтажного дома вот с такой планировкой:

Площадь объекта 160 квадратных метров Площадь объекта 160 квадратных метров

Выбор типа фундамента и его дальнейшее проектирование происходит только после того, как выполнен Архитектурный проект дома (планировки, фасады, посадка на участок) и произведены инженерно-геологические изыскания.

По результатам изысканий в рассматриваемом случае, грунты, на которых будет стоять наш дом - суглинки с высоким уровнем грунтовых вод, а это значит, что фундамент на буронабивных сваях не подойдет, его будет подмывать.

Шаг 1. Разработка котлована, обратные засыпки

Габариты котлована должны выступать за габариты дома минимум на 2 метра с каждой стороны. Дом в осях 13,8 х 14,25 метров. Котлован выкапывается от 500 мм глубиной. Дно котлована выстилается геотекстилем, выполняется обратная засыпка скалой или песком (обязательно с послойной трамбовкой). Потом выкладываем основание плиты плотной пленкой или профилированной мембраной типа "Planter". Это нужно, чтобы при бетонировании "бетонное молочко" не уходило в грунт.

Шаг 2. Проектирование монолитной плиты

Для определения толщины плиты нужно взять максимальное расстояние от несущей до несущей стены и поделить это значение на "20". На плане несущие стены располагаются в осях 1, 3, 4 и 5. Самое большое расстояние между 1 и 3 осью - это 5.700 мм. Делим на "20" - получаем 285 мм. Полученное значение округляем до 10 мм в большую сторону. Толщина плиты в данном случае должна быть не мене 290 мм. При бетонировании использовать бетон марки М350 W4 F150.

Армирование фундамента следует производить двумя ярусами сеткой из арматуры А500С диаметром 12 мм, ячейка сетки 200 х200 мм.

Расчёт монолитного железобетонного перекрытия.

Перекрыть таким способом можно помещения практически любых габаритов. Единственное условие для перекрытия больших помещений – это необходимость в дополнительных опорах. Монолитные перекрытия обладают высокой звукоизоляцией – при своей сравнительно небольшой толщине они полностью подавляют все посторонние шумы.
Кроме того, вы экономите на отделочных работах. На монолитном ж/б перекрытии можно использовать практически любой тип чистового пола. Высокая несущая способность монолитного ж/б перекрытия обеспечивается арматурой, заложенной в нижней, растягивающейся зоне . Диаметр рабочей арматуры и ее шаг должен быть определен по расчету монолитного ж/б перекрытия . Диаметр вспомогательной арматуры , не должен быть менее 6 мм.

Данные для расчёта изгибаемых элементов прямоугольного сечения, армированных одиночной арматурой (согласно "Пособия по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)") Данные для расчёта изгибаемых элементов прямоугольного сечения, армированных одиночной арматурой (согласно "Пособия по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)")

Для проектирования оптимальных по стоимости железобетонных изделий рекомендуется принимать:
μ% = 1÷2%, ξ = 0.3÷0.4 - для балок
μ% = 0.3÷0.6%, ξ = 0.1÷0.15 - для плит перекрытия
Требуемая площадь сечения арматуры:
Fa = M/η×h0×Ra = 4050/(0,925×0,16×36000000) = 0,00076 м2 = 7,6 см2.
На каждом метре монолитного перекрытия должно быть 5 стержней арматуры Alll d14мм (шаг 20 см). Основная рабочая арматура Аlll d14мм располагается параллельно короткой стороне дома (6м), центр ее сечения находится на расстоянии 4 см от низа перекрытия.
Fa(факт)= 1,439×5=7,695см²
Fa ≤ Fa(факт)
7,6 см² < 0,7695 см²
Условие выполняется.

Коэффициент армирования -
μ = Fa/b×h,
Процент армирования - μ% = 100×μ
μ% = 100×7,695/100×20 = 0,385 %
0,385% находится в рекомендуемых пределах для плит (0,3-0,6).
Проверка соблюдения граничных условий:
ξ ≤ ξR
ξR = ξ0/
ξ0 = a - 0.008Rпр,
где Rпр принимается в МПа; коэффициент а = 0.85 для тяжелого бетона и а = 0.8 для бетона на пористых заполнителях.
ξ0 = 0.85 - 0.008·11,5 = 0,758
ξR = ξ0/
ξR = 0.758/(1 + 365/400(1 + 0.758/1.1)) = 0,2984
0,15 < 0,2984
Граничное условие выполнено.

Проверка прочности по касательным напряжениям.

Так как арматуру в верхнем слое и поперечное армирование в монолитном перекрытии (хомуты или вертикальные стержни) мы не предусматривали, то следует проверить прочность монолитного перекрытия по касательным напряжениям :

Условия прочности по касательным напряжениям выполняется и в этом случае расчёта поперечной арматуры по сечениям, наклонным к продольной оси, не требуется. Однако это вовсе не означает, что арматура в верхней части ж/б перекрытия и поперечная арматура совсем не нужны. Дело в том, что мы рассчитывали монолитную плиту перекрытия на равномерно распределенную нагрузку, в действительности же нагрузка далеко не всегда может рассматриваться как равномерно распределенная. При установке тяжёлых предметов и мебели на монолитную плиту перекрытия часть нагрузок будет сосредоточенными. В таких случаях и значение момента может быть несколько больше, но самое главное, возникают значительные местные напряжения. Арматура верхнего пояса и поперечная арматура перераспределяет внутренние напряжения, а потому использование арматуры в верхнем поясе и поперечной арматуры необходимо в плитах перекрытия, для которых все возможные нагрузки и их сочетания предусмотреть не возможно. Диаметр стержней арматуры верхнего пояса и поперечной арматуры можно выбрать меньше диаметра рабочей арматуры.

Читайте также: