В чем измеряется электричество дома

Обновлено: 07.07.2024

Когда появилось электричество в мире: кто его изобрел?

В современном мире каждый ребёнок в сознательном возрасте сталкивается в доме с электричеством. Первые упоминания о наблюдениях в природе этого физического явления относятся к IV веку д. н. э. Великий философ Аристотель изучал поведение угрей, которые поражали свои жертвы электрическими разрядами.

Легендарный учёный Фалес Милетский, живший в Древней Греции (V век д.н.э.), упоминал в своих трудах о таком явлении, как электричество. Он наблюдал за тем, как янтарь, натёртый комком шерсти, притягивал к себе различную мелочь. Историки признают время описания опытов периодом открытия электричества.

Важно! Термин «электричество» происходит от слова «электрон», что означает янтарь.

Далее в истории человечества происходит длительный временной промежуток, в котором не осталось сколь-нибудь существенных упоминаний об электричестве.

Лишь, начиная с 17 века, стартует череда открытий и изобретений, касающаяся электроэнергии. Об истории электричества сообщает Википедия достаточно подробно. Вот краткий перечень основных вех развития науки об электрической энергии:

  1. Англичанин Уильям Гилберт в начале XVII века, изучая магнитоэлектрические явления, ввёл впервые такое понятие, как электричество (янтарность).
  2. Через два года в 1663 году бургомистр Магдебурга Отто фон Генрике продемонстрировал электростатический прибор, состоящий из серного шара, насаженного на металлическую ось. На поверхности сферы в результате трения о ладони накапливался статический заряд тока, который своим магнитным полем притягивал или отталкивал мелкие предметы.



Электростатическая машина Отто фон Генрике

  1. Почти через 60 лет (1729 г.) английский физик Стивен Грей опытным путём определил способность проводить ток различных материалов.
  2. Четыре года спустя (1733 г.) французский физик Шарль Дюфе выдвинул сомнительную версию о существовании двух типов электричества, имеющих стеклянное и смоляное происхождение. Он пояснял это тем, что он получал электрический заряд на поверхности стеклянного стержня и комка смолы путём их трения о шёлк и шерсть, соответственно.
  3. В 1745 году была изобретена Лейденская банка – прообраз современного конденсатора. Автором изобретения был голландский исследователь Питер ван Мушенброк.



Лейденская банка

  1. В это же время выдающиеся русские учёные Рихман и Ломоносов в Санкт-Петербурге добиваются получения искусственного грозового разряда в лабораторных условиях. Во время проведения очередного эксперимента, получив электрический удар, погибает Рихман.
  2. 1785 г. ознаменовался регистрацией в Лондоне закона Кулона, носящего имя его автора. Учёный обосновал величину силы взаимодействия точечных зарядов в зависимости от длины промежутка между ними.
  3. Спустя несколько лет, в 1791 году, Гальвани выпускает в свет трактат, в котором доказывает протекание электрических процессов в мышцах животных.
  4. В этой же стране Вольта в 1800 г. демонстрирует гальванический элемент – источник постоянного тока. Прибор представлял вертикальное сооружение из серебряных и цинковых дисков, переложенных бумагой, вымоченной в соляном растворе.



Вольтов столб

  1. Через двадцать лет датский физик Эрстед обнаружил существование электромагнитного эффекта. Размыкая контакты электрической цепи, он заметил колебания стрелки рядом положенного компаса.
  2. Спустя год, великий французский учёный Ампер в 1821 г. обнаружил магнитное поле вокруг проводника переменного тока.
  3. 1831 г. – Фарадей создаёт первый в мире генератор тока. Двигая намагниченный сердечник внутри катушки из металлической проволоки, он зафиксировал проявление электрического заряда в её витках. Учёный был одним из тех физиков, кто первый создал электричество в лабораторных условиях. Им же была обоснована теория об электромагнитной индукции.

Обратите внимание! По мере накопления практики в результате многочисленных опытов стала возникать потребность теоретического обоснования явлений и появления науки, связанной с электричеством.

История возникновения

Еще до нашей эры философ из Греции Фаллес заметил, что после трения янтаря о шерсть к камню притягиваются мелкие предметы. Затем исследованием таких явлений долгое время никто не занимался. Только в 17 веке исследовав магниты, их свойства английский ученый Уильям Гильберг ввел новый термин «электричество». Ученые стали больше проявлять интереса к нему и заниматься исследованиями в этой области.

Гильбергу удалось изобрести прообраз самого первого электроскопа, он назывался версор. С помощью этого прибора он установил, что кроме, янтаря и другие камни могут к себе притягивать мелкие предметы. В число камней входят:

  • алмаз;
  • аметист;
  • стекло;
  • сапфир;
  • сланцы;
  • опал;
  • карборунд.

Благодаря созданному прибору ученый смог провести несколько опытов и сделать выводы. Он понял, что пламя имеет свойство серьезно влиять на электрические свойства тел после трения. Ученый заявил, что гром и молния — явления электрической природы.

Пожалуй, всем полезно знать, как рассчитать, «сколько ампер в одном кВт».

Этапы создания теории

Электричество — как вырабатывается и из чего состоит

Каждая ступень строительства электрической теории возводилась на основе личных открытий выдающихся учёных физиков. Их фамилии составляют список имён, кому принадлежит изобретение электричества. Теоретическая научная база электричества развивалась постепенно, по мере накопления экспериментального опыта.

Появление термина

Выше уже упоминалось то, что понятие «электричество» впервые было введено в употребление Уильямом Гилбертом в 1600 г. С этого момента отмечают дату, когда появилось электричество.

Первая электростатическая машина

Демонстрируемый прибор в 1663 г. бургомистром Магдебурга Отто фон Генрике считают первой электростатической машиной. Она представляла собой смоляной шар, насаженный на металлический стержень.

Лейденская банка

В 1745 году случилось знаменательное событие – голландский исследователь Питер ван Мушенброк создал электростатический конденсатор. Прибор был назван в честь города, где было сделано изобретение, – Лейденской банкой.

Два вида зарядов

Бенджамин Франклин ввёл понятие о полярности зарядов. С тех пор аксиомой является то, что любой электрический потенциал имеет отрицательный и положительный полюсы.

Бенджамин Франклин

В 1747 году американский научный исследователь Бенджамин Франклин создаёт собственную теорию об электричестве. Он представил природу электричества как нематериальную жидкость в виде неких флюидов.

От теории к точной науке

Закон Ома для неоднородного участка

Теоретическая база, накопленная за несколько последних столетий, позволила в ХХ веке полученные знания переформатировать в точную науку. Основополагающие открытия и изобретения появились, благодаря тем учёным, кто открыл природу электрического тока. Точно установить, в каком году изобрели искусственное электричество, невозможно. Это произошло в основном в течение 18 и 19 веков.

Назвать того, кто первый изобрёл ток, довольно затруднительно. Скорее всего, это можно приписать целому ряду великих учёных, упомянутых выше. К этому приложили руку выдающиеся физики Америки, Англии, Франции, Италии, России и многих других стран Европы.

Несомненную бессмертную славу заслужили такие изобретатели и теоретики электротехники, как Эдисон и Тесла. Последний много приложил усилий по теоретическому обоснованию природы магнетизма, успешно реализовывал его на практике. Тесла является создателем беспроводного электричества.

Закон взаимодействия зарядов

Одной из фундаментальных скрижалей науки об электричестве является закон взаимодействия зарядов, известный как закон Кулона. Он гласит о том, что сила взаимодействия двух точечных зарядов находится в прямой пропорциональной зависимости от произведения количеств зарядов и обратно пропорциональна расстоянию в квадрате между этими точками.



Закон Кулона

Изобретение батареи

Документальным подтверждением изобретения электрической батареи считается предложенное устройство итальянским учёным Алессандро Вольта. Прибор назвали вольтовым столбом. Он представлял собой своеобразную этажерку, сложенную из медных и цинковых пластинок, переложенных кусками войлока, смоченного раствором серной кислоты.

Вверху и внизу столба создавался электрический потенциал, разряд которого можно было почувствовать, приложив к столбу ладони рук. В результате взаимодействия атомов металлов, возбуждённых электролитом, внутри батареи накапливалась электроэнергия.

Изобретатель гальванического электричества, Алессандро Вольта, положил начало появлению того, что сегодня называют батарейками.

Появление понятие тока

Выражение «ток» возникло одновременно с появлением электричества в лаборатории физика Уильяма Гилберта в 1600 году. Ток характеризует направленность электрической энергии. Он может быть как переменным, так и постоянным.

Закон электрической цепи

Бесценный вклад в развитие теории электричества внёс в XIX веке немецкий физик Кирхгофа. Он был автором терминов таких, как ветвь, узел, контур. Законы Кирхгофа стали основой построения всех электрических цепей радиоэлектронных и радиотехнических приборов и устройств.

Первый закон гласит: «Сумма электрических зарядов, идущих в узел в течение определённого времени, равна сумме зарядов, уходящих из него за это же время».

Второе положение Кирхгофа можно выразить так: «При прохождении токов через все ветви контура падает потенциал. При их возвращении в исходный узел потенциал полностью восстанавливается и достигает своей первоначальной величины. То есть утечка энергии в пределах замкнутого электрического контура равняется нулю».

Электромагнитная индукция

Явление возникновения электрического тока в замкнутом контуре проводника при прохождении через него переменного магнитного поля описал в 1831 году Фарадей. Теория электромагнитной индукции позволила открывать последующие законы электротехники и изобретать различные модели генераторов как постоянного, так и переменного тока. Эти устройства демонстрируют, как появляется и проистекает электричество в результате действия электромагнитной индукции.

Использование электрического освещения в России

Напряженность электрического поля

Ещё со школьной скамьи люди помнят историю появления электрических лампочек в России. Первый опыт в создании этих приборов был проведён русским учёным Яблочковым. Их устройство было основано на возникновении искры между двумя каолиновыми электродами.

В 1874 г. Яблочков впервые представил прибор освещения с использованием электрической дуги. Этот год можно считать отправной точкой, когда впервые появилось световое электричество в России. Впоследствии свечи Яблочкова использовались как дуговые прожектора на паровозах.

До появления ламп накаливания Эдисона угольные свечи Яблочкова ещё долго использовались как единственный источник электрического освещения в России.



Производство и практическое использование

Со времён появления первого электричества до массового производства электричества и его практического применения должно было произойти много открытий, и внедрено изобретений в сферу генерирования и передачи электрической энергии.

Генерирование и передача электроэнергии

Со временем стали придумывать различные способы генерирования электричества. С появлением мобильных, а впоследствии гигантских электростанций, возникла проблема передачи электричества на большие расстояния.

Позволить решить этот вопрос помогла научно-техническая революция. В результате были построены огромные сети электропередач, охватывающие страны и целые континенты.

Применение

Практически невозможно назвать сферу деятельности человечества, где бы ни было задействовано электричество. Оно является основным источником энергии во многих жизнеобеспечивающих сферах деятельности человека.

Первые ГЭС

Отечественная история электричества в царский период ознаменовалась и первыми небольшими гидроэлектростанциями. Самая ранняя появилась на Зыряновском руднике в Алтайских горах. Большая известность обрушилась на станцию в Петербурге на реке Большой Охте. Одним из ее строителей был все тот же Роберт Классон. Кисловодская гидроэлектростанция «Белый уголь» служила источником энергии для 400 уличных фонарей, трамвайных линий и насосов на минеральных водах.


К 1913 году на разных российских речках были уже тысячи ГЭС небольшого размера. По подсчетам специалистов их общая мощность составляла 19 мегаватт. Самой крупной ГЭС была Гиндукушская станция в Туркестане (она работает и сегодня). При этом накануне Первой мировой войны сложилась заметная тенденция: в центральных губерниях упор делался на строительство тепловых станций, а в далекой провинции – на силу воды. История создания электричества для российских городов началась с больших вложений иностранцев. Даже оборудование для станций почти все было зарубежным. Например, турбины закупали отовсюду – от Австро-Венгрии до США.

В период 1900-1914 гг. темп российской электрификации являлся одним из самых высоких во всем мире. В то же время существовал заметный перекос. Электричество поставлялось в основном для промышленности, а вот спрос на бытовые приборы оставался достаточно низким. Ключевая же проблема продолжала заключаться в отсутствии централизованного плана модернизации страны. Движение вперед осуществлялось частными компаниями, при этом в массе своей – иностранными. Немцы и бельгийцы в основном финансировали проекты в двух столицах и старались не рисковать своими средствами в далекой российской провинции.

Современный виток исследований

Грандиозный рывок в развитии электротехники совершил легендарный учёный, физик и изобретатель Никола Тесла на рубеже XIX, XX веков. Многие изобретения Теслы ещё ждут нового витка исследований в области электротехники для того, чтобы они были внедрены в жизнь.

Сейчас ведутся исследовательские работы по получению новых сверхпроводимых материалов, созданию совершенных компонентов электрических цепей с высоким КПД.

Дополнительная информация. Открытие графена и получение из него новых токопроводящих материалов предрекают грандиозные перемены в сфере использования электричества.

Наука не стоит на месте. С каждым годом человечество становится свидетелем появления более совершенных источников электроэнергии, вместе с этим и создания приборов, машин и различных агрегатов, потребляющих экологически чистую энергию в виде электрического тока.

Дальнейшее развитие

После наступления мира в СССР продолжилось строительство крупнейших во всем мире ТЭС и ГЭС. Энергетическая программа осуществлялась согласно принципу дальнейшей централизации всей отрасли. К 1960 году выработка электричества увеличилась в 6 раз по сравнению с 1940 годом. К 1967-му закончился процесс создания единой энергетической системы, объединившей всю европейскую часть страны. В эту сеть вошло 600 электростанций. Их общая мощность составила 65 миллионов киловатт.

В дальнейшем упор в развитии инфраструктуры делался на азиатский и дальневосточный регионы. Отчасти это объясняется тем, что именно там сосредотачивалось около 4/5 всех гидроэнергетических ресурсов СССР. «Электрическим» символом 1960-х стала возведенная на Ангаре Братская ГЭС. Вслед за ней появилась аналогичная Красноярская станция на Енисее.


Гидроэнергетика развивалась и на Дальнем Востоке. В 1978 году в дома советских граждан стал поступать ток, который производила Зейская ГЭС. Высота ее плотины – 123 метра, а вырабатываемая мощность – 1330 мегаватт. Настоящим чудом инженерной мысли в Советском Союзе считали Саяно-Шушенскую ГЭС. Проект реализовывался в условиях сложного климата Сибири и удаленности от крупных городов с необходимой промышленностью. Многие детали (например, гидротурбины) попадали на стройку через Северный ледовитый океан, проделывая путь в 10 тысяч километров.

В начале 1980-х серьезно изменился топливно-энергетический баланс советской экономики. Все большую роль играли атомные электростанции. В 1980 году их доля в выработке энергии равнялась 5%, а 1985 году – уже 10%. Локомотивом отрасли была Обнинская АЭС. В этот период началось ускоренное серийное строительство атомных электростанций, однако экономический кризис и катастрофа в Чернобыле затормозили данный процесс.

Ватты, киловатты, киловатты в час – разбираемся в понятиях

Александр Георгиевич Кондратьев

Знать установленную мощность электроприборов важно для правильного выбора электропроводки, устройств защиты. Это необходимо, чтобы обеспечить безопасную работу приборов в доме.

Мощность бытовых электроприборов измеряется в ваттах, а в расчетах мощных электросетей используется понятие киловатт. Поэтому собственнику, прежде чем производить расчеты, необходимо знать, какая установлена аппаратура в доме, какой мощности. А для проектирования нужно разобраться, сколько ватт в киловатте.

Содержание

Что такое ватт

Величина единицы электрической энергии совершаемой работы за промежуток времени называется ваттом.

единица измерения электроэнергии

Можно представить формулой:

Вт= джоуль/секунду, или 1Вт=1 дж/сек.

Для определения мощности электрических машин применяется следующая формула:

P=U*I. Напряжение умноженное на ток.

Электроэнергия измеряется «U» в вольтах, а «I» в амперах получаемая мощность в ваттах.

Как перевести ватты в киловатты

Бытовые электроприборы имеют разную мощность. Она колеблется от нескольких Вт до нескольких тысяч ватт. Для удобства расчета приводят к единому значению. Обычно это киловатт, обозначается кВт.

Для перевода ваттов в киловатты необходимо знать, сколько ватт содержится в 1 кВт. Само слово «кило» обозначает тысячу. То есть один киловатт электроэнергии содержит 1000 ватт.

мощность тока формула

Для удобства перевода одной единицы в другую существуют различные программы. Но перевод из одной величины в другую несложно выполнить самостоятельно.

Например, в доме имеется несколько потребителей электроэнергии, люстра с тремя лампами по 60 Вт, телевизор 150 Вт и музыкальный центр 100 Вт. Получаем 3*60+150+100, результат равен 430 Вт. Мы знаем, что 1КВт содержит 1000 Вт. Делим это значение на 1000, получаем 0,43 Квт.

Для наглядности произведем несколько расчетов. Полученный перевод из Вт в кВт сведем в таблицу.

Вт5901002505007501000250010500
кВт0,0050,090,10,250,50,7512,510,5

Зачастую требуется произвести обратную функцию. Перевод из Квт в Вт. Для этого мощность в киловаттах необходимо умножить на 1 000. Произведем вычисления и для наглядности сведем в таблицу.

кВт52,510,850,40,250,080,007
Вт5 00025001000850400250807

На промышленных предприятиях используются потребители электроэнергии мощностью в несколько тысяч киловатт. Для удобства введено понятие мегаватт, обозначается как мВт. Приставка «мега» обозначает 1 000 000. То есть в 1 мВт содержится 1 000 000 Вт, или 1 000 кВт.

Наряду с обозначением киловатт можно встретить единицу киловатт в час. Например, в величинах КВт ч отображаются показания электросчетчиков. Неспециалисты эти понятия не различают, считают, что это одно и то же. Однако это совершенно разные величины.

Киловатт в отличие от кВтч представляет величину, обозначающую потребленную или сгенерированную мгновенную мощность.

Как посчитать общую мощность бытовых приборов

Установленная мощность дома или коттеджа важна при выполнении расчета и подбора электропроводки и автоматов. Без этого параметра невозможно спроектировать электроснабжение дома.

Чтобы узнать установленную мощность, необходимо из паспортов на оборудование выбрать данные о потребляемой мощности. Например, как указано в табличке.

НаименованиеМощность, Вт
Телевизор150
Бойлер1 500
Электропечь2 000
Стиральная машина
Светильники (общее количество лампочек во всем доме)1 000
Компьютер100
В С Е Г О:3 750 Вт или 3,75 КВт

Для правильного расчета электроснабжения дома учитывают коэффициент совмещения. Он обозначает, сколько потребителей работает одновременно.

Для установленной мощности в доме, коттедже, квартире до 14 кВт, в расчетах применяется коэффициент, равный 0,8. То есть берется общая величина нагрузок и умножается на 0,8. Для нашего примера в расчетах берут мощность равную 3,75*0,8=3 кВт.

В чём измеряется электричество?

Международная система единиц подскажет любому человеку, в чём измеряется электроэнергия. Такая информация нужна для того, чтобы правильно и безопасно использовать в домашних условиях электрические бытовые приборы.

Единицы измерения напряжения

Напряжение измеряется в вольтах. Чтобы снабдить электроэнергией частные дома используется однофазная сеть с напряжением 220 Вольт.

Но, существует также и трёхфазная сеть, для которой напряжение равно 380 Вольт. В 1000 Вольтах состоит 1 киловольт. Согласно этому показателю, напряжение 220 и 380 Вольт равно 0,22 и 0,4 киловольт.

Измерение силы тока

Сила тока представляет собой потребляемую нагрузку, которая возникает во время работы бытовых приборов или оборудования. Её измеряют в амперах.

Измерение сопротивления

Сопротивление является важным показателем, который показывает, с каким противодействием материалу проходит электроток. При замере сопротивления специалист сможет сказать, рабочий ли электрический прибор или же он вышел из строя. Сопротивление измеряется в Омах.

Человеческое тело имеет сопротивление от двух до десяти килоОм.

Для оценки сопротивляемости материалов, чтобы в дальнейшем их использовать для производства электротехнических продуктов используется показатель удельного сопротивления проводника. Такой показатель зависит от площади поперечного сечения и длины проводника.

Измерение мощности

Количество электроэнергии, которую потребляют приборы за определённую единицу времени, называют мощностью. Она измеряется в Ваттах, киловаттах, мегаваттах, гигаваттах.

Измерение электроэнергии по счётчику

В чем измеряется электричество?

Чтобы просчитать, сколько электроэнергии потребляет семья за определённый период времени (например, за месяц) устанавливаются электрические счётчики. На больших предприятиях устанавливают счётчики реактивной энергии.

Для определения потребления электроэнергии в квартире или доме используют такое измерение как 1 киловатт за 60 минут. Когда проводится запись потребления электричества важно мощность умножить на время, чтобы правильно измерить электроэнергию.

Теперь вам известно, в чём измеряется электричество. Теперь без труда сможете определить мощность прибора и какое напряжение в розетке, чтобы не вывести его из строя. Благодаря описанным показателям можно избежать серьёзных и опасных ошибок в использовании электрических приборов.

Как измерить потребляемую мощность домашних электроприборов

Иногда бывает полезно убедиться в том, что домашний счетчик работает правильно и не насчитывает ничего лишнего. Для этого достаточно измерить реальную потребляемую мощность своих домашних электроприборов. А может быть у вас возникли сомнения, не потребляет ли обогреватель или водонагреватель слишком много, если больно уж внушительные счета в последнее время приходят за электроэнергию.

Так или иначе, существует несколько способов выяснить это. Первый способ — при помощи самого счетчика узнать потребление, которое он насчитывает, второй — с помощью мультиметра или токовых клещей узнать потребление прибора? третий путь — измерить потребление конкретного прибора бытовым ваттметром. Давайте рассмотрим каждый способ подробно, и пусть читатель выберет наиболее удобный и подходящий для себя.

Узнаем потребление по счетчику

На каждом счетчике, будь он электронным или механическим, есть индикация кВт-часов в реальном времени. На счетчиках с диском это - оборот диска, а на более новых счетчиках — мигание соответствующего светодиода или значка.

Короче говоря, необходимо выключить в доме все приборы и оставить работать лишь тот, потребляемую мощность которого нужно измерить. Итак, оставьте работать интересующий вас прибор, а все остальные (даже холодильник и свет во всех комнатах) выключите, после чего подойдите к счетчику.

Если ваш счетчик с диском, то на нем будет написано например, что 1кВт-ч — это 1200 оборотов диска. Следовательно нужно посчитать, сколько оборотов сделает диск за 10 минут. Затем умножить полученное количество оборотов на 6 — так мы вычислим количество оборотов диска за 60 минут (то есть за час). Разделите это число на 1200, полученное в итоге число как раз и будет мощностью прибора в кВт.

Если ваш счетчик с мигающим светодиодом, то скорее всего на нем будет написано что-то вроде 1600 imp/(kW*h) – 1600 миганий светодиода за час при мощности потребления в 1 кВт.

Посчитайте количество миганий светодиода за 10 минут, умножьте полученное количество на 6 — так вы получите количество миганий с работающим прибором за час. Разделите это число на 1600, полученное в итоге число как раз и будет мощностью прибора в кВт.

Прикинув, сколько часов в месяц работает данный прибор, вы сможете узнать, сколько он наматывает киловатт-часов, просто умножив мощность данного прибора (в кВт) на это количество рабочих часов. Подобное можно проделать с любым бытовым электроприбором.

Измеряем потребление при помощи мультиметра или (и) токовых клещей

Если в вашем домашнем арсенале есть токовые клещи , то придется накинуть их на один из проводов двужильного провода, соединяющего интересующий вас прибор с розеткой. Переведите клещи в режим измерения приблизительного диапазона тока и проведите замер.

Если под рукой вместе с токовыми клещами есть еще и мультиметр, то одновременно можно замерить точное напряжение в сети. Перемножьте показания тока и напряжения в сети — так вы получите мощность данного прибора в ваттах.

При проведении измерений токовыми клещами и мультиметром обязательно соблюдайте правила техники безопасности!

Если клещей под рукой нет, но есть хотя бы мультиметр с возможностью измерения переменного тока, то переведите его в режим измерения переменного тока подходящего диапазона, и присоедините последовательно между розеткой и одним из сетевых вводов прибора (соблюдая технику безопасности!). Так вы узнаете потребляемый прибором ток. После этого останется умножить величину этого тока на напряжение сети. Так вы узнаете мощность прибора.

Следующим шагом лучше всего проделать процедуру измерения мощности, которую при этом наматывает счетчик (описана в предыдущем пункте). Так будет проще понять, правильно ли измеряет счетчик мощность или нет.

Замер потребляемой мощности бытовым ваттметром

Для измерения текущей мощности сетевых электроприборов хорошо подходит бытовой ваттметр в виде сетевого адаптера. Он просто отобразит мощность на дисплее, а при необходимости подсчитает и киловатт-часы за время пользования прибором.

Тут же можно сверить показания данного прибора учета с той мощностью, которая указана на справочной табличке потребителя. Далее желательно сверить мощность со счетчиком по методике, описанной в первом пункте статьи.

Как правильно: кВт, кВт*ч и кВт/ч? Вы тоже путаетесь? Это очень просто

Очень часто сталкиваюсь с такой ситуацией - многие не знают. Между тем здесь все просто и достаточно школьных знаний, кажется за 7 класс школы по физике. Решила написать, коротенькую статью, чтобы напомнить.

Мощность (кВт)

Мощность - это работа в единицу времени Джоуль/секунда.

Измеряется в Ваттах. Для бытового использования более удобна производная единица кило ватты, точно также как кило грамм.

Типичное значение мощности в квартирах и частных домах около 10 кВт.

Необходимая мощность

Для бытовых потребителей мощности не суммируются!!

Основано это на том, что разные потребители включают бытовые приборы в разное время (закон больших чисел), хотя понятно, что какие-то действия они делают более менее синхронно: утром кипятят чай, а вечером, например, если идет футбол, смотрят телевизор.

Зависимость необходимой мощности от количества квартир получается опытным путем и выглядит приблизительно так:

Как видно, суммарная мощность множества квартир больше, чем необходимая мощность для всего дома.

Энергия (кВт*ч)

Энергия получается умножением мощности на время.

Если мощность переменная во времени (то включили утюг, то выключили), то нужно суммировать время с постоянной мощностью умноженной на это время. Или брать интеграл от мощности по времени ∫W(t)dt, где W(t) - мощность в зависимости от времени.

Единица измерения Джоуль=Мощность*время= Ватт* секунда.

Для бытовых нужд используется производная единица

киловатт (1000 Ватт) * час (3600 секунд) = кВт*ч = 3,6 МДж

Кстати, это очень большая величина. Такая же энергия требуется (с КПД 100%) чтобы поднять на 12 этаж (12х3 метра=36 метров) 10 тонн груза!!
А мы за такое количество энергии платим от 80 копеек до 10 рублей!!

Суммарная энергия всех потребителей (квартиры и ОДН для МКД) просто суммируется и равна суммарному потреблению всего дома.

Киловатт в час (кВт/ч)

Я не знаю что это такое и где используется.

Исходя из размерности - это что-то вроде скорости изменения мощности или ускорения энергии.

Как видите все просто и путаться здесь негде. Просто надо не забывать))

__________________________
Подписывайтесь на мой канал, впереди много интересного
Ставьте 👍🏻 чтобы мои статьи были у вас в ленте
Моя страничка в инстаграм @zaytsevayv
Спасибо что со мной!
Ваша Беседка ☀️
___________________________

Сколько выделено киловатт в квартире?

Купили квартиру и не знаете какая выделена мощность . Решили повысить комфорт в старой квартире, сделать ремонт и добавить больше потребителей (теплые полы, кондиционеры, сушильная машина, духовка и тд.), а в квартире выделено всего 5 киловатт, как получить больше мощности?

Если мощности достаточно, то можно пользоваться необходимым количеством электроприборов, не боясь проблем, сбоев, выбивания автомата.

Неизвестна выделенная мощность на квартиру, как узнать?

Способ 1. Посмотреть номинал установленного автомата возле счетчика (не самый точный способ)

Посмотреть какие автоматические выключатели (автоматы) стоят возле счетчика. По номиналу автомата можно определить выделенную мощность и количество фаз.

К примеру, если мы видим однополюсный, либо двухполюсный автомат, значит фаза одна. Цифры подскажут выделенную мощность:

Двухполюсный автомат ABB, 32 А Двухполюсный автомат ABB, 32 А
  • С16 — означает 16 ампер, умножаем 16A на 230 вольт, получаем 3680 ватт, итог 3,6 киловатт. Обычно такие мощности выделяли в квартирах 50-х годов, оборудованных газовой плитой.
  • C25 — означает 25 ампер, умножаем 25A на 230 вольт, получаем 5750 ватт, итог 5,7 киловатт.
  • C32 — означает 32 ампера, умножаем 32A на 230 вольт, получаем 7360 ватт, итог 7,3 киловатт.
  • C50 — означает 50 ампер, умножаем 50A на 230 вольт, получаем 11500 ватт, итог 11,5 киловатт.
  • C63 — означает 63 ампера, умножаем 63A на 230 вольт, получаем 14490 ватт, итог 14,5 киловатт.

Если автоматический выключатель трех или четырех полюсный, значит сеть трехфазная , то можно смело умножать на 3 посчитанное выше значение для однофазной сети.

Трехполюсный автомат с номиналом 25 ампер Трехполюсный автомат с номиналом 25 ампер

К примеру, трехфазный автомат C25 будет выдерживать мощность 17,1 киловатт, но это максимальная мощность, а не выделенная, и обычно для автомата C25 выделенная мощность ровна 15 киловаттам .

Как видим, определение выделенной мощности по автоматическому выключателю не самый точный метод .

Тогда как узнать точную цифру? Договор с энергосбытом?

Способ 2. Посмотреть мощность указанную в договоре на электроснабжение .

Что такое договор об электроснабжении?

Договор на электроснабжение — это официальное соглашение с энергосбытом , по которому электроснабжающая компания обязуется предоставлять потребителю электроэнергию.

Что делать если договора на электроснабжение нет у Вас на руках?

Необходимо обратиться в энергосбыт (компанию ответственную за предоставление электричества) по вашему адресу, и запросить данный договор.

Образец договора энергоснабжения Образец договора энергоснабжения

Как получить большую мощность, если выделено недостаточно?

Многие владельцы жилья в многоквартирных домах сталкиваются с необходимостью увеличения мощности . Обычно такие потребности возникают после установки электрических тёплых полов, мощной системы кондиционирования воздуха или электроплиты. Как правило, квартирам хватаем увеличения мощности до 15 кВт.

Увеличение мощности электроустановки требует выполнение потребителем определенных законодательством РФ действий:

  • подготовка соответствующей документации
  • получение технических условий
  • разработка электропроекта
  • выполнение соответствующего объема электромонтажных работ

Перечень документов, которые понадобятся для выделения мощности

  • свидетельство о праве собственности
  • документы, которые подтверждают наличие ранее выделенной мощности, а также ее текущий объем;
  • акт, подтверждающий подключение к электрическим сетям;
  • акты разграничения, оформленные в процессе предыдущего присоединения;

Последовательность прохождения процедуры

  1. Подача соответствующей заявки в представительство электросетевой организации.
  2. Заключение договора на присоединение недостающей мощности.
  3. Получение техусловий на электричество (технические условия разрабатываются и выдаются заявителю представителями сетевой компании).
  4. Разработка и согласование нового электропроекта.
  5. Выполнение работ , предусмотренных техническими условиями.
  6. Фактическое присоединение мощности , которое заключается в выполнении перечня электромонтажных работ.

Конечно, заниматься решением вопросов, связанных с оформлением дополнительной мощности, можно самостоятельно. Но гарантированно сэкономить собственное время и нервы вам помогут услуги профильных организаций.

Покупаете квартиру на вторичном рынке, планируете сделать ремонт, обязательно уточните выделенную мощность.

Покупая квартиру, никто не задумывается о выделенной мощности, мы подбираем по квадратным метрам и удобному расположению, сопоставляя это со стоимостью. Мы планируем делать ремонт со всей необходимой для комфортного проживания техникой, это и электроплита, духовой шкаф, стиральная и сушильная машина, посудомоечная машина, побольше света, возможно даже проточный водонагреватель! И тут не нужно быть электриком, чтобы посчитать необходимую мощность. Достаточно сложить мощность всех планируемых потребителей (просто по средним их значениям), и умножить на коэффициент спроса 0.5 (коэффициент говорит о том что вы наверняка не включите все сразу).

Таблица средних нагрузок для расчета. Таблица средних нагрузок для расчета.

При этом мало кто интересуется договором электроснабжения, в котором указан объем электрической мощности, который выделен на приобретаемое жилье.

Если квартира приобретается на вторичном рынке жилья, то присоединение электрической мощности к ней уже было выполнено прежними хозяевами. Задача будущего владельца состоит в том, чтобы выяснить ее текущий объем. Ведь мало кого обрадует, если в только что приобретенной квартире будет наблюдаться дефицит электроэнергии (при таком раскладе квартиру можно считать плохо приспособленной для комфортного проживания).

Нормативы мощности для современного жилья

Современный уровень бытового энергопотребления предполагает выделение на среднестатистическую квартиру электрической мощности, объем которой не должен быть менее 10…15 кВт. В указанные параметры не входит мощность, необходимая для обеспечения работы бойлерных, саун и других помещений с высоким уровнем энергопотребления. Их наличие характерно для частных домовладений, а электрическая мощность на квартиру всего лишь должна обеспечивать бесперебойную работу стандартного перечня бытовых устройств и систем:

  • внутренние осветительные системы;
  • сеть розеток;
  • мощные бытовые электроприборы (стиральные машины, водонагревательные приборы, микроволновые печи и. т. д.).

Даже эксплуатация мощных электрических плит не всегда возможна при наличии стандартного объема мощности, выделяемой на квартиру. Например, техусловия на подключение электричества запрещают устанавливать электрические плиты в многоквартирных домах старой постройки. При этом очень часто объем электрической мощности, выделяемый на расположенные в таких домах квартиры, редко превышает показатель – 4…6 кВт.

Речь в данном случае идет о максимальном объеме мощности, выделяемой на квартиру. А если учесть, что средняя мощность современной электрической плиты составляет 6…8 кВт, то нетрудно представить, какой уровень комфорта может ждать собственника, которому «посчастливилось» приобрести квартиру в таком доме.

Как бороться с недостатком мощности

Если перед покупкой квартиры вы выяснили объем выделенной на нее мощности и поняли, что данный параметр вас не устраивает, не следует сразу отказываться от возможно выгодного приобретения. Для начала поинтересуйтесь у представителей местной электросетевой компании: можно ли выполнить повторное подключение к электрической сети , одновременно восполнив недостаток выделенной мощности?

Если техническая возможность для выполнения подобной процедуры существует, то вам крупно повезло. Но при этом не забывайте, что покупая квартиру и планируя в будущем увеличение выделенной мощности, сразу следует приготовиться к дополнительным расходам:

  • расходы на переоформление мощности;
  • затраты на получение соответствующих разрешений;
  • издержки на заключение нового договора электроснабжения.

В конце концов, повторное подключение к электросетям также потребует определенных вложений. И даже если вы обратитесь к услугам профильной организации, которая окажет всестороннюю помощь в урегулировании вопросов, касающихся повторного подключения, платить за оформление и выполнение процедуры все равно придется собственнику жилья.

Читайте также: