В каких скважинах контролируют забойное давление

Обновлено: 07.07.2024

Поддержание пластового давления (ППД) на нефтяных залежах

​Схема системы ППД для подготовки, транспортировки, закачки рабочего агента.

1.1. Принципиальная схема системы ППД

Система ППД представляет собой комплекс технологического оборудования необходимый для подготовки, транспортировки, закачки рабочего агента в пласт нефтяного месторождения с целью поддержания пластового давления и достижения максимальных показателей отбора нефти из пласта.

Система ППД должна обеспечивать:

- необходимые объемы закачки воды в пласт и давления ее нагнетания по скважинам, объектам разработки и месторождению в целом в соответствии с проектными документами;

- подготовку закачиваемой воды до кондиций (по составу, физико-химическим свойствам, содержанию мех. примесей, кислорода, микроорганизмов), удовлетворяющих требованиям проектных документов;

- проведение контроля качества вод системы ППД, замеров приемистости скважин, учета закачки воды как по каждой скважине, так и по группам, пластам и объектам разработки и месторождению в целом;

- герметичность и надежность эксплуатации системы промысловых водоводов, применение замкнутого цикла водоподготовки и заводнения пластов с использованием сточных вод;

- возможность изменения режимов закачки воды в скважины, проведения ОПЗ нагнетательных скважин с целью повышения приемистости пластов, охвата пластов воздействием заводнения, регулирование процесса вытеснения нефти к забоям добывающих скважин.

Система ППД включает в себя следующие технологические узлы (см. рис.10.1)

- систему нагнетательных скважин;

- систему трубопроводов и распределительных блоков (ВРБ);

- станции по закачке агента (БКНС), а также оборудование для подготовки агента для закачки в пласт.

Рис.1.1.1. Принципиальная схема системы ППД

1.2. Система трубопроводов ППД

К трубопроводам системы поддержания пластового давления относятся:

- нагнетательные линии (трубопровод от ВРБ до устья скважины);

- водоводы низкого давления (давление до 2 МПа);

- водоводы высокого давления (в водоводах высокого давления нагнетание воды осуществляется насосными агрегатами);

- внутриплощадочные водоводы (водоводы площадочных объектов).

Транспортируемой продукцией трубопроводов является агрессивная смесь вод, содержащая: механические примеси, серу, кальцит и другие вредные вещества.

Технологии сбора и транспорта продукции

Подача воды на блочные кустовые насосные станции (БКНС) осуществляется из нескольких источников:

- по водоводам низкого давления подается пластовая вода (УПСВ и ЦППН (ЦПС));

- по водоводам низкого давления подается вода из водозаборных скважин;

- из открытых водоемов по водоводам низкого давления подается пресная вода.

Рис.1.2.1. Кольцевая (а) и лучевая (б) водораспределительные системы 1 водоочистная станция; 2 магистральный водовод; 3 водовод высокого давления; 4 нагнетательная линия; 5 колодец; 6 нагнетательные скважины; 7 подводящие водоводы; 8 подземные резервуары чистой воды; 9 кустовая насосная станция; 10 перемычка

Из БКНС рабочий агент (вода) через водораспределительные блоки (ВРБ) по водоводам высокого давления и нагнетательным линиям скважин подается для закачки в пласт с целью поддержания пластового давления.

Основные технологические параметры

Конструкция промысловых трубопроводов (диаметр, толщина стенки), способ их прокладки, материал для их изготовления определяются проектной организацией и обеспечивают:

- безопасную и надежную эксплуатацию;

- промысловый сбор и транспорт вод системы ППД в нагнетательные скважины;

- производство монтажных и ремонтных работ;

- возможность надзора за техническим состоянием водоводов;

- защиту от коррозии, молний и статического электричества;

- предотвращение образования гидратных и других пробок.

Рабочее давление в трубопроводах системы ППД

1.3. Напорные трубы

Размеры и масса нефтепроводных труб (по ГОСТ 3101 46) приведены в табл. 1.3.1. Нефтепроводные трубы испытываются на гидравлическое давление не более 40 МПа, рассчитываемое по формуле

Р = 20 δ ơ/ d (1.3.1)

где Р гидравлическое давление в МПа; δ минимальная толщина стенки в мм.; ơ допускаемое напряжение, принимаемое равным 35% предела прочности, в кг/мм 2 ; d внутренний диаметр трубы, в мм.

Графитовые смазки для резьбовых соединений труб

Для смазывания резьбовых соединений труб применяют графитовые смазки следующих составов:

1) 5 массовых частей машинного масла, 1 массовая часть графитового порошка (смесь тщательно размешивается до мазеобразного состояния);

2) 50…60 % графитового порошка, 5% технического жира, 1,5 % каустической соды крепостью 32 градусов Ве, 33,5 43,5 % машинного масла (все составляющие части берутся в процентах к общей массе);

3) 24% солидола, 36% графита, 8% известкового молока, 2% канифоли (все составные части берутся в процентах к общей массе).

Размеры и масса нефтепроводных труб

1.4. Насосные станции и установки для закачки воды

Для закачки воды используются насосные станции и установки, базирующиеся, в основном, на центробежных поршневых насосных агрегатах (рис. 1.4.1).

Рис.1.4.1 Установка погружного центробежного электронасоса а для подачи пластовых вод: 1 погружной электродвигатель; 2 - погружной насос; 3 - оборудование устья скважины; 4 - силовой кабель; 5 - комплексное оборудование; 6 - трансформатор; б - для закачки воды: 1 - шурф; 2 - разводящий водовод; 3 - электронасосный погружной аппарат; 4 - контрольно-измерительные приборы; 5 - нагнетательный водовод; 6 - комплексное устройство; 7 - трансформатор
К насосным станциям, называемым кустовыми насосными станциями (КНС), подключается до нескольких десятков нагнетательных скважин.
Наибольшее развитие получили кустовые насосные станции блочного исполнения.
Выделяются блочные кустовые насосные станции (БКНС) на базе центробежных насосов 1 2 3 5 6 4 7 6 5 4 3 2 1 а б ЦНС-180 и ЦНС-500.
Состав БКНС в зависимости от числа насосов приведен в табл.1.4.1.

Описание конструкции и принцип действия БКНС

Насосный блок включает в себя в качестве основных элементов центробежные многоступенчатые секционные насосы типа ЦНС-180 или ЦНС-500, основные показатели которых, в зависимости от числа ступеней, приведены в табл.1.4.1. Насосный блок включает электропривод насоса (синхронного типа серии СТД со статическим возбуждением или асинхронного типа серии АРМ), масляную установку для насосного агрегата, осевой вентилятор с электроприводом, пост местного управления с кнопкой аварийного останова, стенд приборов, запорно-регулирующую арматуру насосного агрегата, технологические трубопроводы.

На типовой технологической схеме БКНС (рис. 1.4.2) цифрами обозначено: 1, 2, 7 - шкафы соответственно трансформаторные, вводы кабеля и управления дренажными насосами; 3 - станция управления; 4 - распределительное устройство низковольтное; 5, 6 - щиты приборный и общестанционный; 8, 13, 23 - насосы 1СЦВ, ЦНСК и ЦНС180; 9, 11, 21 - клапаны соответственно: обратный, подъемный и обратный; 10, 19, 26, 28 - вентили соответственно: запорный, электро- магнитный, регулирующий, угловой; 12, 14, 16, 17, 20 - задвижки ЗКЛ и электроприводная; 15 - фильтр; 18 - маслоохладитель; 22 - бак масляный; 24 - муфта зубчатая; 25 - электродвигатель; 27 - диафрагма; I - насосные блоки; II - блок дренажных насосов; III - блок низковольтной аппаратуры и управления; IV - блок напорных гребенок; V - распределительное устройство РУ-6(10) кВ; VI - трансформаторная комплектная подстанция КТПН 66-160/6КК; VII - резервуар сточных вод.

В состав БКНС входят насосные блоки двух видов: НБ-1 (крайний насосный блок) и НБ-2 -средний. Блок НБ-1 обязателен независимо от числа насосных агрегатов в составе БКНС. Различие этих блоков - в исполнении их укрытия.

Приемная линия насосного агрегата оборудуется сетчатым фильтром и ручной задвижкой типа ЗКЛ2, нагнетательная линия - обратным клапаном и электроприводной задвижкой типа В-403.

Блок напорной гребенки (БГ), предназначенный для учета и распределения поступающей от насоса ТЖ по напорным трубопроводам, размещают в отдельном цельнометаллическом боксе на расстоянии не менее чем 10 м от остальных блоков. Включает в себя распределительный коллектор, коллектор обратной промывки, пункт управления, расходомер с сужающим устройством, запорный вентиль, вентилятор, площадку для обслуживания, электропечь.

Рис. 1.4.2 - Типовая технологическая схема БКНС

Перспективным направлением является применение гидропроводных модульных насосов с «абсолютной» регулируемостью подачи.

Электропровод и кабели уложены в металлических коробах, стальных трубах, гибких металлорукавах. В БА электропроводы (стянутые в жгуты) и кабели проложены в лотках под настилом, доступ к которым осуществляется через люки.

Работа станции происходит следующим образом. Технологическая вода через всасывающий трубопровод подается на вход центробежного насоса ЦНС-180. От насоса по напорному трубопроводу вода подается в БГ, где распределяется на восемь, пять или четыре водонапорных водовода (в зависимости от типа БГ) и далее подается на нагнетательные скважины.

Для сброса воды из водоводов при ремонте БГ имеется специальный коллектор. Насосные агрегаты с насосами ЦНС 180-1900 и ЦНС 180-1422 снабжены индивидуальными маслосистемами, обеспечивающими принудительную подачу масла для смазки и охлаждения подшипников насоса и электродвигателя.

Система водяного охлаждения предусматривает:

- охлаждение масла при принудительной смазке подшипников насосного агрегата НБ;

- охлаждение подшипников НА с насосом ЦНС- 1050;

- подачу воды для охлаждения и запирания сальников концевых уплотнений насосов ЦНС-180 в случае падения давления во всасывающем патрубке насоса до 0,1 МПа, а также охлаждение электродвигателей с ЗЦВ.

Из резервуара сточная вода периодически перекачивается основными насосами БД ЦНСК-60/254 на вход насосов ЦНС-180.

В БА установлена аппаратура, обеспечивающая пуск, контроль основных параметров и эксплуатацию станции, аппаратуры распределения электроэнергии, щитов управления двигателями, отопления и дренажных насосов. Измерение, запись давления и расхода воды. поступающей в нагнетательные скважины производится расходомерными устройствами, расположенными на каждом водоводе БГ.

В качестве основного варианта рассмотрим насосный блок с принудительной смазкой подшипников насосного агрегата НА (давление на выкупе насосов выше 10 МПа).

В НБ установлены:

- насосный агрегат НА, состоящий из насоса типа ЦНС-180 и электродвигателя;

- маслоустановка и трубопроводы системы смазки с арматурой;

- трубопроводы и арматура технологической воды;

- трубопроводы и арматура системы охлаждения;

- трубопроводы подпора и охлаждения сальников насоса;

- кнопочный пост управления маслоустановкой,

- кнопочный пост управления электроприводной задвижкой;

- короба и трубы электропроводки,

- кнопочный пост управления вентиляцией.

Установленное оборудование смонтировано и закреплено на санях и ограждающих конструкциях блока.

Центробежный секционный насос ЦНС-180 имеют номинальную производительность 180 м 3 /ч при расчетном (номинальном) давлении на выкиде насоса. Допускается изменение расхода воды от 50 до 180 м 3 /ч при плотности воды равной 1000-1001кг/м 3 .

Для защиты проточной части насоса от крупных механических примесей во всасывающем патрубке установлен сетчатый фильтр.

Для привода насоса используются электродвигатели двух типов - синхронные и асинхронные. Охлаждение воздуха в двигателях с ЗЦВ осуществляется пресной водой. В двигателях с РЦВ охлаждение обмоток статора осуществляется воздухом из машинного зала.

Маслосистема НА состоит из маслобака емкостью 0,6 м 3 , шестеренного маслонасоса с электроприводом производительностью 2,1 м 3 /ч и давлением 0,27 МПа, маслоохладителя с фильтрами и системы трубопроводов с запорной арматурой.

На всасывающем трубопроводе технологической воды установлены клиновая задвижка типа ЗКЛ2 и сетчатый фильтр. На напорном трубопроводе установлены обратный клапан и электроприводная задвижка В-407Э. В верхней точке напорного трубопровода установлен вентиль для стравливания воздуха.

Трубопроводы системы охлаждения предназначены для подвода охлаждающей воды к маслоохладителю и воздухоохладителям двигателей с ЗЦВ. От системы охлаждения вода подается вода для запирания и охлаждения концевых сальниковых уплотнений насоса при падении давления а приемном патрубке насоса ниже 0,1 МПа.

При работе насоса с давлением во входном патрубке от 0,6 до 3,0 МПа происходит разгрузка сальников с отводом воды через щелевые уплотнения насоса в безнапорную емкость. Отвод воды из камеры гидропяты насоса производится во всасывающий трубопровод. Дренаж от концевых уплотнений насоса производится в дренажный бак, установленный в БД.

Местный контроль технологических и эксплуатационных параметров работы насосных агрегатов, настройка датчиков сигнализации осуществляются по манометрам и показаниям амперметра цепи возбуждения двигателя типа СТД.

После пуска кнопкой "пуск со щита управления, установленного в БА, включается масляный насос, и при достижении давления в конце масляной линии 0,05. 0,1 МПа начинается запуск основного насоса. После достижения давления за насосом 0,9 Рном начинает открываться электрозадвижка на линии нагнетания. После открытия задвижки в течение 60с насос выходит на установившийся режим работы.

В насосном блоке с системой виброизоляции насосных агрегатов насосный агрегат с рамой устанавливается на резино-металлические амортизаторы, закрепленные к саням. На всасывающем и напорном трубопроводах насоса устанавливаются компенсаторы, а на трубопроводах подачи смазки, подпора сальников - резиновые рукава.

При работе станции за счет амортизаторов и упругих компенсирующих вставок на трубопроводах снижается передача вибрации от насосного агрегата трубопроводам, несущим конструкциям, основаниям блоков и фундаментам, а также уменьшается передача шума.

В БД установлены:

- 2 насосных агрегата с насосами ЦНСК-60/264;

- 2 самовсасывающих насоса 1СЦВ-1,5М;

- 4 блока печей ПЭТ-4;

- защитные короба электропроводки;

- трубопроводы и арматура технологической воды.

1 насос является резервным. Блок напорной гребенки (БГ) служит для распределения технологической воды на скважины системы ППД. Разработано шесть типов блока напорной гребенки в зависимости от количества водоводов и типа устройства измерения расхода воды.

В БГ установлены:

- устройство измерения расхода;

- элементы вентиляции и отопления,

- кнопочный пост управления вентиляцией.

Блок трубопроводов состоит из напорного коллектора с регулирующими вентилями, высоконапорных водоводов, сбросного коллектора, вентилей и устройства измерения расхода. Изменение расхода технологической воды осуществляется регулирующими вентилями, установленными на напорном коллекторе.

При установке аппаратуры Электрон-2М и датчика расхода ДРК 1-100-50-5 первичные приборы устанавливаются непосредственно на напорных трубопроводах в БГ, а вторичные - на стойках в отдельно стоящем приборном блоке (ОП). Для отопления блока установлены 3 маслозаполненные печи мощностью по 2 кВт с контролем температуры. Вентиляция осуществляется путем забора воздуха через воздуховод, расположенный на полу блока, осевым вентилятором типа В-06-300№ 5H1C, установленным на боковой панели.

В таблице 1.4.3 приведена техническая характеристика четырех основных групп блочных кустовых насосных станций: БКНС¥100; БКНС¥150, БКНС¥200; БКНС¥500.

Центробежные насосы секционные типа ЦНС

Насосы типа ЦНС - центробежные насосы секционные: Г - для перекачивания воды с температурой 45-105 оС (масла - 2-60 о С), М - для перекачивания масла, УН - для перекачивания утечек нефти, после цифр указывается климатическое исполнение и категория размещения насоса при эксплуатации по ГОСТ 15150-69. Допустимая массовая доля механических примесей до 0,1% и размером твердых частиц не более 0,1 мм. Давление на входе в насос при перекачивании воды должно быть не менее: - 0,1 МПа и 0,07-0,015 МПа при перекачивании масла. Максимально допустимое давление на входе всех типов - не более 0,3 МПа. Общий вид центробежного секционного насоса (ЦНС) приведен на рис. 1.4.3.

В табл. 1.4.4 приведены технические характеристики центробежных секционных насосов производительностью 38 и 60 м 3 /час. В табл. 1.4.5 приведены технические характеристики центробежных секционных насосов производительностью 105, 180 и 300 м 3 /час.

Агрегаты ЦНС 300-120…540 и ЦНС 105-98…441 предназначены для перекачивания обводненной газонасыщенной и товарной нефти с температурой 0-45оС плотностью 700-1050кг/м 3 , содержанием парафина не более 20%, механических примесей размером твердых частиц до 0,2 мм и объемной концентрацией 0,2%, обводненностью не более 90%. Давление на входе в насос составляет 0.05-0,6 МПа.

Забой скважины

Забой - это нижняя часть скважины, вскрывающая продуктивный пласт.
Она служит для извлечения необходимого ресурса из недр земли.

Разработаны и эксплуатируются различные конструкции забоев для осложненных и неосложненных условий.
Наиболее распространенная из них - конструкция забоя с цементированной эксплуатационной колонной, перфорируемой в интервале продуктивного пласта.
Простота технологии ее создания привела к тому, что практически повсеместно она является основой проектирования конструкции всей скважины.

Требования к забою скважины:

  • обеспечение механической прочности призабойной зоны без ее разрушения;
  • возможность избирательного воздействия на различные части вскрытой части продуктивного пласта за счет направленного вторичного вскрытия или за счет гидродинамических / физико-химических обработок;
  • максимально возможный коэффициент гидродинамического совершенства скважины.

Конструкции забоя скважины включает оборудование забоя и призабойной зоны, обеспечивающее связь с пластом, при котором:

  • скважина работает с максимальным дебитом,
  • призабойная зона пласта без разрушения позволяет работать длительное время без ремонта ППР.

Параметры конструкции забоя:

Конструкция забоя должна обеспечивать:

  • устойчивость ствола,
  • разобщение пластов,
  • проведение технико-технологических воздействий на пласт,
  • выполнение ремонтно-изоляционных и геофизических работ,
  • длительную эксплуатацию скважин при оптимальном дебите.

Классификация типовых конструкций забоев скважин

  • скважина с перфорированным забоем;
  • скважина с забойным хвостовиком;
  • скважина с забойным фильтром;
  • скважина с открытым забоем.

Скважины с перфорированным забоем - наиболее распространены из-за преимуществ:

  • надежная изоляция пройденных горных пород;
  • возможность дополнительного вскрытия перфорацией временно законсервированных нефтенасыщенных интервалов в разрезе скважины;
  • простота поинтервального воздействия на призабойную зону в случае ее сложного строения;
  • упрощение технологии бурения, т.к. бурение под эксплуатационную колонну ведется долотом одного размера до проектной отметки.
После разбуривания ствола до проектной отметки в скважину спускается обсадная колонна, которая цементируется, а затем перфорируется.
В условиях крепких коллекторов такая конструкция забоя является длительно устойчивой.
  • предназначены для продуктивных горизонтов с очень крепкими коллекторами;
  • бурится до проектной отметки, затем в нее спускается обсадная колонна, нижняя часть которой на толщину продуктивного горизонта имеет насверленные отверстия;
  • после спуска обсадной колонны проводится ее цементирование выше кровли продуктивного горизонта. При этом пространство между стенкой и обсадной колонной на толщину продуктивного горизонта остается свободным;
  • приток в такую скважину аналогичен таковому в совершенную скважину, но забой является закрепленным, что исключает уменьшение Ø скважины даже в случае частичного обрушения призабойной зоны.

Скважины с забойным фильтром

  • предназначены для слабосцементированных (рыхлых) коллекторов;
  • до кровли продуктивного горизонта скважина бурится с диаметром, соответствующим Ø эксплуатационной колонны;
  • затем в скважину спускаются обсадные трубы и производится цементирование;
  • продуктивный горизонт разбуривается долотом меньшего Ø до подошвы;
  • перекрытие продуктивного горизонта осуществляется фильтром, закрепляемым в нижней части обсадной колонны на специальном сальнике. Фильтр предназначен для предотвращения поступления песка в скважину.

Скважины с открытым забоем

  • предназначены для однородных устойчивых коллекторов;
  • нижняя часть скважины (до кровли продуктивного горизонта) не отличается для скважин с забойным фильтром;
  • продуктивный горизонт разбуривается также долотом меньшего Ø до подошвы; при этом ствол скважины против продуктивного пласта остается открытым. Конструкция обладает наилучшим гидродинамическим совершенством, но имеет ограниченное распространение в силу ряда недостатков, основными из которых являются:
      • ограниченность или даже невозможность эксплуатации продуктивных горизонтов сложного строения;
      • небольшая толщина продуктивного горизонта;
      • невозможность эксплуатации скважины с достаточно большими депрессиями вследствие разрушения продуктивного горизонта (обвалы призабойной зоны ствола).

      Открытый забой

      Условия выбора конструкции:
      • низкая проницаемость прочных коллекторов;
      • отсутствие высоконапорных горизонтов,
      • наличие подошвенных вод и газовой шапки;
      • в случае пористых и трещиноватых коллекторов на перфорированном хвостовике, который не цементируется, устанавливают пакеры.
      Тип коллектора:
      • однородный прочный;
      • поровый, трещинный, трещинно-поровый или порово-трещинный
      Такие коллекторы по своим геолого-физическим характеристикам не могут быть зацементирован без ухудшения коллекторских свойств в призабойной зоне пласта (ПЗП).
      Способ эксплуатации: раздельный.
      Коллектор должен сохранять устойчивость при создании депрессии на пласт.
      • из пласта извлекается жидкость или газ;
      • жидкость нагнетается в пласт;
      • движение жидкости отсутствует.

      Горная порода Значение коэффициента Пуассона
      Глины пластичные 0,41
      Глины плотные 0,30
      Известняки 0,31
      Песчаники 0,30
      Песчаные и глинистые сланцы 0,25

      При устойчивом и неустойчивом коллекторе, если grad рпл > 0,1 МПа/10 м, а коллектор имеет поровую проницаемость кп > 0,1 мкм 2 , применяют конструкцию открытого забоя.

      В случае заканчивания скважины при grad рпл > 0,1 МПа/10 м, кп > 0,1 мкм 2 или кт > 0,01 мкм 2 вскрытие продуктивного объекта осуществляют совместно с вышележащими отложениями, до забоя спускают эксплуатационную колонну, оборудованную в нижней части фильтром, и скважину цементируют с подъемом тампонажного раствора от кровли продуктивного пласта, для чего используют пакеры типа ПДМ.

      При аномально низком пластовом давлении (grad рпл < 0,1 МПа/10 м) независимо от проницаемости пород продуктивного объекта:

      • при устойчивом коллекторе применяют нижеуказанную конструкцию забоя,
      • при неустойчивом коллекторе - конструкцию забоя - ниже:

      При создании конструкции такого забоя с неустойчивым коллектором:

      • до кровли продуктивного пласта спускают и цементируют эксплуатационную колонну,
      • вскрытие объекта проводят с учетом пластового давления, поровой и трещинной проницаемости коллектора,
      • при grad рпл < 0,1 МПа/10 м, кп < 0,1 мкм 2 или кт < 0,01 мкм 2 применяют специальные буровые растворы на нефтяной основе, пены и др,
      • неустойчивый порово-трещинный коллектор перекрывается хвостовиком-фильтром,
      • если кровля продуктивного объекта сложена из неустойчивых пород и не перекрыта эксплуатационной колонной, при установке хвостовика-фильтра используют заколонные пакеры, которые располагают в неперфорированной части около кровли продуктивного горизонта и в башмаке эксплуатационной колонны с целью предупредить обрушение стенок скважины и зашламление открытого ствола
      • перед вызовом притока в случае необходимости выполняют обработку ПЗП (солянокислотная обработка, гидроразрыв пласта и т.д.).

      При создании конструкции такого забоя с устойчивым коллектором технология идентична, но не нужно коллектор перекрывать хвостовиком.

      Забой смешанного типа

      Конструкции забоя этого типа используют в однородном коллекторе порового, трещинного, трещинно-порового или порово-трещинного типа; при наличии близко расположенных напорных горизонтов или газовой шапки около кровли пласта, а также при низких значениях поровой или трещинной проницаемости пород (соответственно кп < 0,01 мкм 2 или кт < 0,01 мкм 2 ); если коллектор сложен из прочных пород, сохраняющих устойчивость при создании депрессии на пласт во время эксплуатации скважины, а также при раздельном способе эксплуатации продуктивных объектов.

      Выбор конструкции забоя смешанного типа предусматривает соответствие условий залегания и эксплуатации продуктивного объекта с учетом его физико-механических свойств; оценку устойчивости пород ПЗП. При устойчивом коллекторе применяют конструкцию забоя , при неустойчивом - конструкцию .

      Технологии создания конструкций изображенных забоев аналогичны:

      • скважину бурят до проектной глубины со вскрытием всей мощности продуктивного объекта;
      • эксплуатационную колонну спускают до глубины, обеспечивающей перекрытие и изоляцию близко расположенных около кровли пласта напорных объектов, газовой шапки или верхней неустойчивой части продуктивных отложений;
      • после цементирования колонны ее перфорируют в интервале высокопродуктивной части объекта, а перед вызовом притока в случае необходимости осуществляют обработку ПЗП;
      • забой, представленный неустойчивыми коллекторами трещинного или порово-трещинного типа, перекрывают потайной колонной-фильтром.
      Закрытый забой

      Конструкции с таким забоем применяют для крепления неоднородных коллекторов с целью изолировать близко расположенные пласты в неоднородном коллекторе порового, трещинного, трещинно-порового или порово-трещинного типа, в котором отмечается чередование устойчивых и неустойчивых пород, водо- и газосодержащих пропластков с разными пластовыми давлениями, в случае если коллектор характеризуется высокими значениями поровой или трещинной проницаемости пород (кп > 0,1 мкм 2 или кт > 0,01 мкм 2 ), а также для обеспечения совместной, раздельной или совместно-раздельной эксплуатации объектов.

      При выборе конструкции закрытого забоя устанавливают соответствие условий залегания и эксплуатации продуктивного объекта общепринятым положениям.

      Расчет основных элементов конструкции закрытого забоя проводят в соответствии с действующими руководящими документами.

      При заканчивании скважины с конструкцией забоя, продуктивный объект вскрывают совместно с вышележащими отложениями с использованием бурового раствора, не ухудшающего коллекторских свойств пласта, до забоя спускают эксплуатационную колонну, скважину цементируют, а гидродинамическую связь с пластом осуществляют, применяя кумулятивную, пулевую или гидропескоструйную перфорацию.

      Конструкции забоя для предотвращения выноса песка

      Эту конструкцию забоев применяют для предотвращения выноса песка в слабосцементированном коллекторе, представленном мелко-, средне- и крупнозернистыми песчаниками и характеризующемся разрушением призабойной зоны пласта и выносом песка при эксплуатации скважины, а также при раздельном способе эксплуатации продуктивных объектов.

      Применяют проницаемый полимерный тампонажный состав .

      Материал включает состав ТС-10, уротропин, наполнитель ШРС-С, получаемый при совместном помоле шлака, руды и соли (хлористого натрия), и водный раствор едкого натра.

      Начальная прочность материала при сжатии не ниже 6 МПа, а после вымывания из него соли 3,5 - 5,0 МПа; соответственно начальная проницаемость камня 0,12 - 0,20 мкм 2 , после вымывания 1-5 мкм 2 .

      Выбор конструкции забоя для предотвращения выноса песка предусматривает соответствие условий залегания и эксплуатации продуктивного объекта; при этом определяют средний фракционный состав пластового песка. В скважинах со средне- и крупнозернистыми песчаниками используют конструкцию забоя, показанную на рисунке выше.

      Конструкция забоя, изображенная на рисунке выше, включает зацементированную эксплуатационную колонну и забойный фильтр (щелевой, с проволочной обмоткой, металлокерамический, титановый), установленный в интервале перфорации.

      В скважинах с мелкозернистым песчаником применяют только конструкцию забоя на рисунке справа, которую можно использовать в скважинах со средне- и крупнозернистыми песчаниками.

      Конструкция забоя на рисунке справа отличается от предыдущей тем, что забойный фильтр не устанавливают, а вынос песка предотвращают путем создания в перфорационных каналах искусственного фильтра из проницаемого тампонажного материала.

      Для этого после перфорации колонны осуществляют вызов притока, отрабатывают скважину в течение 1-5 суток, проверяют приемистость пласта и закачивают на поглощение тампонажный состав.

      Предельно допустимая депрессия на пласт после крепления призабойной зоны тампонажным составомне должна превышать 3 МПа.

      Основные понятия о давлениях в скважине

      Основные понятия о давлениях в скважине

      Основным условием начала ГНВП является превышение пластового давления вскрытого горизонта над забойным давлением.

      Забойное давление в скважине во всех случаях зависит от величины гидростатического давления бурового раствора заполняющего скважину и дополнительных репрессий вызванных проводимыми на скважине работами ( или простоями ).

      ЕТПБ требуют, чтобы гидростатическое давление ( Р г ) превышало пластовое ( Р пл ) в следующих размерах:
      для скважин с глубиной до 1200м Р=10-15% Р пл, но не более 1,5 МПа
      для скважин с глубиной до 2500м Р=5-10% Р пл, но не более 2,5 Мпа
      для скважин с глубиной свыше 2500м Р=4-7% Рпл, но не более 3,5 Мпа

      При известном пластовом давлении горизонта необходимая плотность промывочной жидкости, на которой должен вскрываться этот горизонт определяют:

      Определение забойных давлений ( Р заб )

      Забойное давление при механическом бурении и промывке

      Ориентировочно, для неглубоких скважин оно составляет :

      При промывке скважины после спуска труб или длительных простоях без промывки забойное давление может снижаться за счет подъема по стволу газированных пачек бурового раствора и резкого увеличения их объема к устью.

      Забойное давление после остановки циркуляции первое время равняется гидростатическому

      Забойное давление при отсутствии циркуляции длительное время снижается за счет явлений седиментации, фильтрации, контракции, а так же температурных изменений бурового раствора на величину D Рст

      Для того, чтобы не возникало ГНВП при наличии вскрытого продуктивного горизонта необходимо, чтобы во всех случаях забойное давление превышало пластовое Рзаб > Рпл.

      Основные принципы анализа давлений

      Общее давление в любой точке скважины будет складываться из этих трех давлений Pобщ=Рr+Рr. c+Pиз, поэтому представляет интерес рассмотреть вопрос, как рассчитать каждое из этих давлений, а также четко уяснить, как и где эти давления будут способствовать или отрицательно влиять на процесс ликвидации проявлений.

      Читайте также: