Что такое радиус контура питания скважины

Обновлено: 04.07.2024

Радиус дренирования скважины

Добрый день ответь пожалуйста на вопрос , от чего зависит радиус дренирования скважины?

07 Июн 2012 Активность участников

Контекст

из формулы Дюпюи выведи и увидишь

Если по матбалансу: 1) От дрен. запасов, а те: 2) Кол-во добытой нефти, 3) Разницей между начальными PVT-свойствами нефти и текущими (при текущем давлении). Особенно чувствительна формула ММБ именно к значению разницы начального газосодержания нефти и текущего ГФ (при текущем Рпл). Если у Вас НЕЗНАЧИТЕЛЬНАЯ добыча при значительном падении давления (и соответственно разница Гнач и ГФтек), советую на формулу ММБ не обращать внимания, искать другие пути.

Немного не в тему, просто интересно, а ведь должна быть какая-то зависимость от разницы горизонтальных напряжений породы (при условии, что максимальное напряжение - вертикальное), т.е. чем больше эта разница, тем больше видоизменяется структура порового пространства в направлении перпедикулярном минимальному напряжению, т.е. вдоль данного направления будет лежать большая ось эллипса дренирования, соответственно перпендикулярно - малая ось.

oilgirl пишет:

Добрый день ответь пожалуйста на вопрос , от чего зависит радиус дренирования скважины?

от PVT свойств флюида, характеристик порового пространства (пласта), режима експлуатации скважины.

От действия капиллярных, вязкостных и гравитационных сил

Milanisto пишет:

Для нефти:

Если по матбалансу: 1) От дрен. запасов, а те: 2) Кол-во добытой нефти, 3) Разницей между начальными PVT-свойствами нефти и текущими (при текущем давлении). Особенно чувствительна формула ММБ именно к значению разницы начального газосодержания нефти и текущего ГФ (при текущем Рпл). Если у Вас НЕЗНАЧИТЕЛЬНАЯ добыча при значительном падении давления (и соответственно разница Гнач и ГФтек), советую на формулу ММБ не обращать внимания, искать другие пути.

если в этом случае использовать формулу матбаланса для упругого режима то да, не стоит:) а так вобще по-хорошему этот метод применим для разных случаев жизни, в том числе и для описанного вами, просто формула немного видоизменяется в зависимости от режима разработки, это надо учитывать. по крайней мере меня она еще не подводила)

не мог бы кто-нмбудь скинуть литературу по мат.балансу?

Дейка качни, там есть.

коллеги, все что вы перечислили есть в формуле дюпюи!! посмотрите внимательнее.

Жесть. Самые эпичные sander и Гоша с капилярными и pvt-свойствами

RomanK. пишет:

Жесть. Самые эпичные sander и Гоша с капилярными и pvt-свойствами

Надо ведь произвести впечатления на "нефтяную девушку" умными словами!

По секрету, за ником OilGirl кроется мужик

радиус дренирования и радиус контура питания есть одно и то же? тогда вопрос. что влияет на изменение радиуса дренирования? режим работы скважины и соседних? что еще?

Радиус дренирования зависит (только) от площади дренирования (другими словами площадь нефтеносности приходящаяся на одну скважину), которая зависит (в первую очередь) от расстояния между скважинами и во вторую - геологическими ограничениями. Само слово "радус" - это некоторая историческая условность - "радиус" не значит "радиус круга". Контур может быть произвольной формы.

То что пишут, что факторы влияющие на радиус контура можно найти из Дюпюи, в корне неправильное рассуждение. Вот пример.

Известно, что дебит есть продуктивность на депрессию Q=PI*dP, следуя ошибочной логике можно предположить, что "продуктивность зависит от дебита" или "продуктивность зависит от депрессии". Ни то, ни другое утверждение не отражает факторов влияющие на продуктивность.

R есть функция площади нефтеносности и не надо вмешивать капиллярные и прочие свойства :)

тогда вопрос, а как в ГД симуляторе как можно найти "радиус" контура питания и соответственно продуктивность? контур питания=voidage drinage region? но ведь он меняется шаг от шага и зависит от режима работы скважин.

только ли от расположения скважин и геологии зависит радиус дренирования?

и что в ГД значит PI1, PI4, PI5, PI9?

WPI1,WPI4,WPI5,WPI9 Well voidage productivity index based on pressure in completion cells, or 4-,5- and 9-point averages around completion cells

как я понимаю это коэф-т продуктивности для разных условных радиусов контуров питания. 1 - "радус" одна ячейка, 5, и 9 вроде как тоже понятно, вскрытая+соседние (1+4 и 1+8) ячеек. а 4 как нарисовать на сетке?

RomanK. пишет:

Радиус дренирования зависит (только) от площади дренирования (другими словами площадь нефтеносности приходящаяся на одну скважину), которая зависит (в первую очередь) от расстояния между скважинами и во вторую - геологическими ограничениями.

Согласен. Но если уж быть совсем конкретным, то зависит от системы разработки. На практике ведь берём радиус по системе разработки и его уже подставляем в формулу Дюпюи, а не наоборот.

Airat55 пишет:

тогда вопрос, а как в ГД симуляторе как можно найти "радиус" контура питания и соответственно продуктивность? контур питания=voidage drinage region? но ведь он меняется шаг от шага и зависит от режима работы скважин.

Для ГД симулятора "радиус" бесполезное понятие, как и "пластовое давление".

Airat55 пишет:

и что в ГД значит PI1, PI4, PI5, PI9?

WPI1,WPI4,WPI5,WPI9 Well voidage productivity index based on pressure in completion cells, or 4-,5- and 9-point averages around completion cells

как я понимаю это коэф-т продуктивности для разных условных радиусов контуров питания. 1 - "радус" одна ячейка, 5, и 9 вроде как тоже понятно, вскрытая+соседние (1+4 и 1+8) ячеек. а 4 как нарисовать на сетке?

Насколько я понял, это способы расчета давления в ячейках скважины (усредняя по 1, 5, и т.д. соседним ячейкам), соответственно, их можно подставлять для расчета продуктивности перфораций скважины (вместо "пластового давления", назовем его так условно, если говорить в терминах формулы Дюпюи). Эта продуктивность не имеет ничего общего с продуктивностью скважины в целом (с тем, что мы имеем в виду, когда говорим о формуле Дюпюи) и ничего общего с радиусом контура питания.

Wasteland Rat пишет:

Насколько я понял, это способы расчета давления в ячейках скважины (усредняя по 1, 5, и т.д. соседним ячейкам), соответственно, их можно подставлять для расчета продуктивности перфораций скважины (вместо "пластового давления", назовем его так условно, если говорить в терминах формулы Дюпюи). Эта продуктивность не имеет ничего общего с продуктивностью скважины в целом (с тем, что мы имеем в виду, когда говорим о формуле Дюпюи) и ничего общего с радиусом контура питания.

мне так же кажется, но как нарисовать эти 1, 4(. ), 5, 9. ячеек. но 4 ячейки включая вскрытую уж никак не можем придумать.

и что есть продуктивность скважины в ГД симуляторе, без этих условных усреднений давлений по 1-9 ячейкам, а с реальным радиусом? тангенс угла наклона Q=f(dp)?

вот просят спрогнозировать изм-е коэф-та продуктвиности после ГРП например. строим Q=f(dp) и Q=f(dp) до и после?

Airat55 пишет:

мне так же кажется, но как нарисовать эти 1, 4(. ), 5, 9. ячеек. но 4 ячейки включая вскрытую уж никак не можем придумать.

Airat55 пишет:

и что есть продуктивность скважины в ГД симуляторе, без этих условных усреднений давлений по 1-9 ячейкам, а с реальным радиусом? тангенс угла наклона Q=f(dp)?

вот просят спрогнозировать изм-е коэф-та продуктвиности после ГРП например. строим Q=f(dp) и Q=f(dp) до и после?

Хи-хи. Ну, можете попробовать, только вопрос в том, что вместо dP подставлять будете. :) Потому я и говорил, что "радиус" и "пластовое давление" в симуляторе смысла не имеют. Это надо нарисовать ручками контур питания, снять с него усредненное давление и его взять за пластовое, тогда наверное получится близко к тому, что надо. А хотя, если у вас ячейки метров по 100, а между скважинами метров по 300, то можно и эти WPI4, WPI5, WPI9 взять. Они у вас сильно различаются?

Wasteland Rat пишет: Wasteland Rat пишет:

Хи-хи. Ну, можете попробовать, только вопрос в том, что вместо dP подставлять будете. :) Потому я и говорил, что "радиус" и "пластовое давление" в симуляторе смысла не имеют. Это надо нарисовать ручками контур питания, снять с него усредненное давление и его взять за пластовое, тогда наверное получится близко к тому, что надо. А хотя, если у вас ячейки метров по 100, а между скважинами метров по 300, то можно и эти WPI4, WPI5, WPI9 взять. Они у вас сильно различаются?

PI по 5 и 9 точкам действительно не сильно различаются..но всё-таки это упрощение, может и целесообразное и усложнять смысла нет.

вашу мысль понял, действительно dP какой-то условный параметр. но мы же можем по изменению Q при тех же самых забойных до и после мероприятния говорить об dPI?

RomanK. пишет:

Радиус дренирования зависит (только) от площади дренирования (другими словами площадь нефтеносности приходящаяся на одну скважину), которая зависит (в первую очередь) от расстояния между скважинами и во вторую - геологическими ограничениями. Само слово "радус" - это некоторая историческая условность - "радиус" не значит "радиус круга". Контур может быть произвольной формы.

То что пишут, что факторы влияющие на радиус контура можно найти из Дюпюи, в корне неправильное рассуждение. Вот пример.

Известно, что дебит есть продуктивность на депрессию Q=PI*dP, следуя ошибочной логике можно предположить, что "продуктивность зависит от дебита" или "продуктивность зависит от депрессии". Ни то, ни другое утверждение не отражает факторов влияющие на продуктивность.

R есть функция площади нефтеносности и не надо вмешивать капиллярные и прочие свойства :)

радиус зависит от площади это круто ;). судя из вашего предположения следует что радиус дренирования независит даже от времени (если не меняется количество скважин) и смены режима работы системы скважина-пласт а фильтрационные характеристики пласта здесь тем более ни при чем. и равен грубо говоря половине растояния между скважинами или растоянию до геологического барьера? а откуда же тогда берутся недренируемые или плохо дренируемые зоны пласта?)

Airat55 пишет:

Доказательства у меня нет. Но если есть более логичный вариант, то назовите :) Косвенным доказательством может служить то, что всегда WPI4<WPI5, можете попробовать это проверить экспериментально, мне лень :)

Airat55 пишет:

PI по 5 и 9 точкам действительно не сильно различаются..но всё-таки это упрощение, может и целесообразное и усложнять смысла нет.

вашу мысль понял, действительно dP какой-то условный параметр. но мы же можем по изменению Q при тех же самых забойных до и после мероприятния говорить об dPI?

Наверное, можно говорить об относительных изменениях коэффициента продуктивности (в процентах от начального, dPI/PI).

sander пишет:

радиус зависит от площади это круто ;). судя из вашего предположения следует что радиус дренирования независит даже от времени (если не меняется количество скважин) и смены режима работы системы скважина-пласт а фильтрационные характеристики пласта здесь тем более ни при чем. и равен грубо говоря половине растояния между скважинами или растоянию до геологического барьера? а откуда же тогда берутся недренируемые или плохо дренируемые зоны пласта?)

Ответьте на простой вопрос: откуда вы берете радиус, когда подставляете в формулу Дюпюи, и от чего он при этом зависит? Очень сомневаюсь, что он у вас динамический и зависит от фильтрационных характеристик. Говорить о радиусе вне контекста формулы Дюпюи смысла нету.

Хорошо что крыса меня понимает, уже неплохо.

Площадь нефтеносности на скважину это прямое следствие системы разработки (обратная велчина количеству скважин). Радиус дренирования и неустановившийся режим - это влияние на ваш разум книг по ГДИ, как только волна возмущения достигла пресловутого "радиуса дренирования" начинается власть установившегося режима. Какова его роль на разработку? Наибольшее влияние это при запуске скважины (на глаз первый месяц работы я всегда пропускаю при анализе), а дальше изменения вызванные сменой режима не так важны. Можно и уточнить про половину расстояния между скважинами - я могу показать формулы где есть это "уточнение", но это не меняет существенно физической основы.

Откуда берутся недренируемые запасы.

Уж точно не из-за радиуса дренирования. Недренируемые запасы - это часть пласта который гидродиамически не связан со скважиной (пресловутый коэффициент сетки скважины) или связанная часть пласта, но не имеющая источников давления (это то что называется "пласт вскрыт, но не работает"). Например, если вы возьмете пятиточку и посчитаете её на модели у вас будую отобраны все запасы в вашей модельке. Что кстати вызывает шок у новичков. "А где же недренируемые запасы?". Статья кажется была в нефтяном хозяйстве где чудак один искал недренируемые запасы в пятиточке и сначала не нашел их, а потом уж понавводил критериев которые позволили нарисовать картинку.

Касательно ГД симуляторов, то как верно отметил крыса, в них нет ни радиуса дренирования (что ещё терпимо) и нет коэфициент продуктивности. То есть, они конечно есть, но в лоб не расчитываются.

Как все таки расчитать -

Для это берем один слой модели и свойство "давление" и прослеживаем в произвольном направлении от скважины по ячейкам. Там где мы упираемся в геологическое ограничение - там и расстояние до контура. Там где мы приближаемся к добывающей скважине берем максимальное давление (отнесение дренируема ли ячейка конкретной добывающей скважиной основа расчета "площади дренирования", реализованная например в ResView. Всё просто, берем шарик, ставим в ячейку, к какой скважине шарик покатится, та и есть). Сложнее с нагнетательными скважинами. Максимум давления это забойное давление нагнетательной скважины. Поэтому прослеживая профиль давления, ищем место где воронка депрессии сходится с воронкой нагнетания.

Теперь очевидная проблема - в какую сторону не начинай отсчёт расстояние будет разным (например, на юг 200 метров (разлом) на север 400 метров (добывающая скважина), на восток 230 метров (нагнетательная). А ещё если учесть что слоев в модели у нас больше одного :) Кароче всё сложно. Разные расстояния и разные давления на контурах питания. Связать это с ГДИ маловозможно. Остается только повторять ГДИ в модели. Только вот что делать когда радиус и давление по ГДИ не совпадает с моделью? А почему собственно они должны совпасть :) Это было есть и остается плевком в сторону ГД симуляторов, которым приписывается "технологичность".

Определение дебита горизонтальной скважины

В статье рассмотрены основные формулы, используемые для расчета производительности горизонтальных скважин. Автор производит расчет, задав исходные параметры и определяет степень погрешности дебита горизонтальной скважины для Авиловского месторождения Волгоградской области.

Определим дебит горизонтальной скважины, длиной L , расположенную в пласте толщиной h, контур питания скважины примем - радиус Rк, давление на контуре питания - Pк, с абсолютной проницаемостью - K, динамическая вязкость дренируемой жидкости - m, , давление на забое скважины - Pс, приведенный радиус скважины - rс. Предположим, что данная скважина расположена симметрично относительно кровли и подошвы пласта (рис. 1).



Рис. 1- Схема расположения симметричного ствола горизонтальной скважины по толщине пласта.

Над решением данной задачи работали Ю.Т.Борисов и В.П.Табаков 5. Согласно их исследованиям дебит горизонтальной скважины выражается формулой:



Если мы рассмотрим с физической точки зрения знаменатель, то первое слагаемое в отражает внешнее фильтрационное сопротивление, второе - внутреннее сопротивление скважины.

Данная формула строится на основании предположения, что контур питания горизонтальной скважины предполагается радиальным, и не зависит от длины горизонтальной скважины.

С учетом того, что Giger F [6] выдвинул предположение, согласно которому контур питания горизонтальной скважины носит эллипсообразный, а не круговой характер, он представил свою формулу для расчета горизонтальной скважины:



здесь Rк – контур питания, представляющий большую полуось эллипса.

oshi S. [7] предположил, что есть большая полуось эллипса, аналогичного по площади кругу с радиусом дренирования Rк, подставив которую в формулу (1.2) он получил выражение:





есть большая полуось эллипса.

В работе Renard G., Dupuy J. [8] была предложена формула, для расчета дебита горизонтальной скважины:



где x = 2a / L и a вычисляются по формуле (1.4).

Вышеуказанные формулы применимы для изотропных пластов, которые практически не встречаются в процессе разработки месторождений! Для анизотропных пластов предложены другие формулы:

Renard, Dupuy [8] предложил следующую формулу для анизотропного пласта





Joshi [7] предложена формула определения дебита горизонтальной скважины, учитывающая анизотропию пласта по проницаемости:





кг - проницаемость пласта в горизонтально направлении;

кв - проницаемость по вертикали.

Однако, формулы 2 – 6 можно применять и в случае анизотропных пластов, если выполняются следующие условия: Длина скважины много больше толщины пласта, половина длины горизонтальной скважины меньше чем 90% от радиуса контура питания и длина скважины больше произведения коэффициента анизотропии на толщину пласта (L > b × h)

И.А. Чарный [9] предложил следующую формулу для условия, когда горизонтальный ствол скважины расположен симметрично контуру питания:



где k - проницаемость пласта; Pк, Pс - давления на контуре питания и на забое скважины; μ - вязкость нефти; Н – расстояние от скважины до границы пласта; h – толщина пласта; rc - радиус скважины.

Произведем расчет прогнозного дебита нефти для горизонтальных скважин Авиловского месторождения волгоградской области. Авиловское месторождение расположено на территории Котовского района Волгоградской области на Авиловской площади. В 2007 году с целью изучения сводовой залежи была пробурена поисковая скважина 6 Авиловская, которая стала первооткрывательницей Авиловского газонефтяного месторождения. Продуктивными отложения расположены на уровне бобриковского горизонта. Введено в пробную эксплуатацию в 2013 году. На данном месторождении пробурено 8 скважин из них: Авиловская-1 – ликвидирована; Авиловские-8 и -112 – остановлены по причине достижения предельной обводненности; Авиловские-6, -111, -114, -7, -113– добывающие. По состоянию на 01.12.2016 г. Залежь нефти водоплавающая, с газовой шапкой.

Исходные данные по скважинам представлены в таблице ниже в таблице 1, коэффициенты эллипса дренирования выбирались следующим образом: а – эффективная нефтенасыщенная толщина для горизонтальной скважины, а b – средняя толщина пласта. – проницаемость керна по нефти, Рк-давление на расстоянии R от оси скважины, Рс- забойное давление, - приведенный радиус скважины, k- проницаемость пласта. -динамическая вязкость, а и в – радиусы эллипса дренирования.

Контроль пластового давления и температуры при разработке залежей

Энергетические ресурсы залежи на каждом этапе ее разработки характеризуются значением пластового давления Рплтек.

Энергетические ресурсы залежи на каждом этапе ее разработки характеризуются значением пластового давления Рплтек.

С началом эксплуатации залежи в результате отбора из нее нефти (газа) в зоне отбора происходит снижение пластового давления.

В последующем в зависимости от режима работы залежи, годовых объемов добычи и т.д. в изменении пластового давления могут наблюдаться различные тенденции.

Пластовое давление в продуктивном горизонте на какую-либо дату, устанавливающееся при работе практически всего фонда скважин, называют текущим или динамическим пластовым давлением.

Получение и анализ данных о текущем пластовом давлении в различных точках залежи и по залежи в среднем - важнейшая часть контроля за разработкой залежи.

Использовать для контроля за изменением пластового давления абсолютные его значения неудобно, особенно при большой высоте залежи, поскольку значение начального пластового давления тесно связано с глубиной залегания пласта - оно увеличивается с возрастанием глубины.

В процессе разработки на одних участках залежи давление может снижаться, на других - стабилизироваться, на третьих - возрастать.

Рост давления после некоторого периода его снижения может быть обусловлен уменьшением отбора жидкости из пластов или искусственным воздействием на пласты. Выявление этих, иногда противоположных тенденций на фоне различных, обусловленных глубинами залегания горизонта значений начального давления в разных частях залежи, встречает значительные трудности. Поэтому при контроле за энергетическим состоянием залежи обычно пользуются значениями приведенного пластового давления.

Приведенное пластовое давление - это давление, замеренное в скважине и пересчитанное на условно принятую горизонтальную плоскость. Обычно это плоскость, соответствующая значению средней абсолютной отметки начального ВНК или ГВК. В некоторых случаях могут быть использованы и другие горизонтальные плоскости, например, при большой высоте залежи - плоскость, делящая объем залежи пополам.

Положение поверхности приведения сохраняется постоянным до завершения разработки. Приведенное давление Рпл.пр. вычисляют по формуле:

где Рпл.з - замеренное в скважине пластовое давление; h- расстояние между точкой замера и условной плоскостью; r - плотность воды, нефти или газа (в зависимости от того, в какой скважине - нагнетательной, добывающей нефтяной или газовой - сделан замер), g - ускорение свободного падения

Поправку rgh вычитают при положении точки замера давления ниже условной плоскости и прибавляют при ее положении выше этой плоскости. На рис 80 в законтурных водяных скв.

1 и 2 замеры давления произведены ниже условной плоскости, поэтому поправка должна вычитаться из замеренной величины.

В водяной законтурной скважине 3 замер по техническим причинам выполнен выше условной плоскости, поэтому поправка прибавляется к значению замеренного давления.

В этих трех скважинах поправку определяют с учетом плотности пластовой воды. По всем остальным скважинам замеры выполнены выше условной плоскости, поэтому поправку прибавляют к замеренным значениям, при этом учитывают плотность: по скважине 4, где пласт обводнен в процессе разработки, - воды, по скважине 5 - нефти.

Характер распределения приведенного текущего пластового давления в пределах залежи можно показать в виде схематического профиля.

На рис 81 горизонтальная линия 1 соответствует приведенному начальному пластовому давлению, имеющему одинаковые значения по площади залежи. При вводе в эксплуатацию первой скважины в пласте происходит радиальное движение жидкости или газа к ней, и вокруг

скважины образуется локальная (местная) воронка депрессии давления.

В пределах воронки давление изменяется по логарифмической кривой 2. При этом начальное пластовое давление остается практически постоянным.

Линия 2 в сочетании с линией 1 отражает распределение давления в пласте после ввода первой скважины.

Давление в пласте у забоя скважины при ее работе называют забойным давлением P заб.

По мере разбуривания залежи, дальнейшего ввода скважин в эксплуатацию и увеличения таким путем общего отбора жидкости из залежи воронки депрессии давления на забоях скважин сближаются, одновременно происходит постепенное снижение пластового давления в залежи в целом.

Образуется общая для залежи воронка депрессии давления, осложненная локальными воронками скважин.

Повышенное положение точек на кривой давления между действующими скважинами соответствует значению текущего (динамического) пластового давления. Кривая 3 на рис 81, проходящая через эти точки, характеризует текущее пластовое давление в залежи.

Видно, что приведенное текущее пластовое давление снижается от контура питания к центральной части залежи.

Характер распределения в пласте давления при внутриконтурном нагнетании в пласт воды или другого рабочего агента (в приведенном случае - при разрезании залежи на блоки) показан на рис 82. Локальные воронки действующих нагнетательных скважин обращены вершинами вверх.

Динамическое пластовое давление вблизи нагнетательных скважин обычно превышает начальное пластовое давление на 15-20%, а иногда и более. Положение каждого разрешающего ряда соответствует искусственному контуру питания.

Динамическое пластовое давление в различных частях залежи можно определить путем замера его в имеющихся отдельных простаивающих скважинах и в специально останавливаемых единичных скважинах (при сохранении фонда ближайших к ним скважин в работе).

Замеренное в остановленной скважине давление будет соответствовать динамическому при условии, что замер выполнен после прекращения движения жидкости в прискважинной зоне и стволе скважины.

Значения забойного давления в скважине определяют в период установившегося режима ее работы, пластового - после продолжительной остановки скважин (от нескольких часов до суток и более).

Для получения данных о забойном и пластовом давлении глубинный манометр спускают в скважину к середине пласта и в течение некоторого времени фиксируют забойное давление. Затем скважину останавливают, после чего перо манометра регистрирует выполаживающуюся кривую восстановления давления (КВД)

рис 82. Схематический профиль приведенного пластового давления залежи при внутриконтурном нагнетании воды.

Скважины: 1 - нагнетательные, 2 - добывающие; части пласта: 3 - нефтенасыщенные, 4 - промытые водой, 5 - динамическое пластовое давление (общие воронки депрессии давления); 6 - локальные воронки депрессии (репрессии); Р пл.нач - начальное пластовое (приведенное) давление; забойное давление: Р заб.д - в нагнетательной скважине, Р заб.наг. - в добывающей скважине

от забойного до динамического пластового.

Характер КВД в добывающей и нагнетательной скважинах показан на рис 83. По окончании исследования скважину вводят в эксплуатацию.

При наличии достаточного опыта, когда становится известной необходимая в конкретных геологических условиях продолжительность остановки скважины для восстановления давления, замер динамического пластового давления можно проводить, спуская манометр в конце остановки, без снятия КВД.

Динамическое пластовое давление залежи в целом освещается замерами его в скважинах, останавливаемых в последовательности, обеспечивающей неизменность условий дренирования залежи в районе исследуемой скважины.

Не следует допускать одновременной остановки близко расположенных друг к другу скважин, поскольку при этом давление на исследуемом участке залежи восстановится до значений выше динамического, сформировавшегося при работе всех скважин.

В то же время для оценки состояния пластового давления залежи на определенную дату данные о нем должны быть получены в возможно большем количестве скважин в короткий срок.

Контроль за изменением пластового давления в продуктивном пласте в целом в процессе разработки залежи проводят с помощью карт изобар.

Картой изобар называют нанесенную на план расположения забоев скважин систему линий (изобар) с равными значениями динамического пластового давления на определенную дату.

Эта карта отображает особенности общего распределения динамического пластового давления в залежи, без учета локальных воронок депрессии каждой скважины.

Карты изобар составляют обычно на конец каждого квартала.

В периоды продолжительной стабилизации давления их можно составлять раз в полугодие.

Полугодовой интервал может быть установлен также в исключительно сложных для исследования скважин условиях - при резкой пересеченности рельефа, заболоченности местности, в условиях шельфа и др.

При построении карты используют данные о приведенном пластовом давлении. Для решения некоторых специальных задач могут быть построены карты абсолютного (замеренного у пласта) динамического пластового давления.

При построении карты на установленную дату следует использовать замеры давления в скважинах, максимально приближенные во времени к этой дате.

На практике в связи с необходимостью поочередной остановки скважин для замера выполнение нужного количества измерений требует значительного времени - до 1-2 месяцев, и более.

При использовании данных о давлении, полученных значительно раньше даты составления карты, необходимо в замеренные значения давления вносить поправку на время.

Это можно приближенно выполнить с учетом общей тенденции снижения давления, выявленной по данным прошлых карт изобар (рис 84, сплошная линия) и проявляющейся в периоде накопления последних данных (штрихпунктирная линия).

Интервал между изобарами на карте выбирают исходя из общего диапазона значений давления в пределах залежи.

Карта изобар (рис 85) служит основой для определения среднего динамического пластового давления на определенную дату по залежи (или отдельным ее частям).

Среднее динамическое пластовое давление в залежи можно представить как давление, которое установилось бы в ней после прекращения эксплуатации залежи и полного его перераспределения и выравнивания (в условиях изоляции залежи от окружающей среды).

Среднее динамическое пластовое давление залежи определяют с помощью карты изобар как среднее взвешенное по ее площади или объему.

рис 85 Карта изобар

1- внешний контур нефтеносности; 2 - добывающие скважины; 3 - законтурные (пъезометрические); 4 - изобары, атм; 5- элемент залежи между соседними изобарами

Среднее взвешенное давление по площади находят по формуле

где pi - среднее арифметическое значение давления в пределах i-го элемента залежи между соседними изобарами; fi - площадь i-го элемента залежи, замеряемая по карте; F -площадь залежи; n - количество элементов площади залежи с разными средними значениями давления.

Для определения среднего взвешенного давления по объему залежи -последовательно выполняют следующие операции.

1. Строят карту равных значений нефте(газо)насыщенной толщины пластаh и по ней определяют значения fi, и hi, для элементов площади между отдельными изопахитами.

2. Строят карту равных значений произведения ph, где р - приведенное пластовое давление.

Значения этого произведения в разных точках пласта могут быть получены одним из двух способов: путем совмещения карты нефтегазонасыщенной толщины с картой изобар и определения значений ph в точках пересечения изолиний этих карт; по данным замеренных значений р и h по скважинам.

3. По карте равных значений произведения ph определяют площади элементов s, между соседними изолиниями и соответствующие элементам площади средние значения (ph)i

4. Находят среднее значение по формуле

где V - нефте(газо)насыщенный объем залежи; n - количество элементов площади с разными средними значениями ph; т - количество элементов площади залежи с разными средними значениями h.

По нефтяным залежам среднее пластовое давление определяют как среднее взвешенное по площади при относительно небольшой толщине

продуктивных пластов (единицы и первые десятки метров), как среднее взвешенное по объему - при большой средней толщине (многие десятки и сотни метров).

Залежам газа свойственна обычно значительная толщина продуктивных пластов, для них определяют среднее пластовое давление как среднее взвешенное по объему.

Средние значения давления определяют не только для залежи в целом, но при необходимости и для различных ее зон и участков, представляющих самостоятельный интерес.

С помощью карт изобар можно выявлять степень связи залежи с законтурной зоной, определять фильтрационную характеристику пластов. Они дают наглядное представление об энергетических возможностях залежи в целом и отдельных ее частей.

Совместное рассмотрение карт изобар, составленных на несколько дат, позволяет судить об эффективности принятой системы разработки и отдельных технологических мероприятий по совершенствованию процесса разработки.

Карты изобар можно использовать для прогнозирования поведения давления и перемещения контуров нефтеносности.

Перепады давления в пласте при добыче нефти и газа. комплексные показатели фильтрационной характеристики пластов

Как уже указывалось, при разработке залежи в продуктивном пласте образуются воронки депрессии давления - общая по залежи в целом и локальные в районе каждой добывающей и нагнетательной скважины.

Перепад давления, соответствующий локальной воронке, применительно к добывающей скважине называют депрессией на забое скважины DРскв.д, применительно к нагнетательной скважине -репрессией на забое скважины DРскв.д. В качестве обобщающего термина (для добывающих и нагнетательных скважин) наиболее часто применяют терминперепад давления в скважине.

В добывающей скважине забойное давление DРзаб.д
меньше текущего пластового давления DРпл.тек
величину депрессии, в нагнетательной скважине DРзаб.н больше DРпл.тек
на величину репрессии. Соответственно перепады давления в добывающей и нагнетательной скважинах определяются выражениями

При установившейся фильтрации жидкости депрессия на забое добывающей скважины и репрессия на забое нагнетательной скважины находятся в прямой связи соответственно с дебитом по жидкости qж и приемистостью W:

Здесь К' и К- коэффициент продуктивности и коэффициент приемистости скважины, выражаемые соответственно в (т/сут)/0,1 MПа и в (м3/сут)/0,1 МПа и характеризующие изменение дебита и приемистости скважины на единицу изменения перепада давления в скважине. Коэффициенты К' и К. для одной и той же скважины обычно имеют разные значения.

Поэтому для скважины, сначала дававшей нефть, а затем переведенной под нагнетание воды с целью совершенствования системы воздействия, эти коэффициенты должны определяться самостоятельно при добыче нефти и при закачке рабочего агента.

Дебит скважины по жидкости qж и приемистость скважины W при установившейся фильтрации жидкости определяют по уравнениям:

где kпр - проницаемость пласта; h - толщина пласта; DРскв.д(н) =Рпл-Рзаб в добывающей (нагнетательной) скважине; Rк - радиус условного контура питания скважины: rпр - приведенный радиус скважины; и m,- соответственно вязкость нефти и воды.

Радиус условного контура питания скважины Rк принимают равным половине расстояния между скважинами.

Приведенный радиус скважины rпр - радиус условной совершенной скважины, принимаемой в качестве эквивалента реальной скважины, несовершенной по качеству и степени вскрытия пласта, но имеющей те же дебит и депрессию.

Соответственно : коэффициенты продуктивности и приемистости
представляют собой комплексные характеристики соответственно добывных возможностей и приемистости скважины.

На практике коэффициент продуктивности (приемистости) определяют путем исследования скважины методом установившихся отборов. Метод основан на измерении дебита и забойного давления при нескольких стабилизировавшихся режимах работы скважины. Полученные результаты выражают в виде зависимости между дебитом и депрессией на забое скважины (индикаторной диаграммы) (рис 86).

При фильтрации жидкости индикаторные линии обычно прямолинейны по всей длине или на начальном участке.

рис 86. Индикаторные диаграммы добывающих (а) и нагнетательных (б) скважин:

q" - дебит скважин по нефти; W - приемистость скважин; Др - депрессия (репрессия) на забое скважины

По добывающим скважинам при больших значениях дебита они могут быть изогнутыми в результате нарушения линейного закона фильтрации вблизи скважины, уменьшения проницаемости в связи со смыканием трещин при значительном снижении забойного давления. По нагнетательным скважинам основной причиной искривления индикаторных линий является раскрытие микротрещин в пласте по мере увеличения забойного давления.

Уравнение прямолинейной индикаторной линии добывающей нефтяной скважины имеет вид

При прямолинейном характере индикаторной кривой коэффициент K'(K")остается постоянным в интервале исследованных режимов и численно равен тангенсу угла между кривой и осью перепада давления.

На искривленном участке индикаторной кривой коэффициент продуктивности (приемистости) изменчив и для каждой точки кривой определяется как отношение дебита (приемистости) к соответствующему перепаду давления. Значение коэффициента продуктивности (приемистости) используют для прогноза дебитов (приемистости) скважины при перепадах давления, допустимых в рассматриваемых геологических и технических условиях.

В промыслово-геологической практике часто пользуются удельным коэффициентом продуктивности (приемистости) Куд, характеризующим значение коэффициента продуктивности (приемистости) К' ( К) на 1 м работающей толщины пласта h:

Этот показатель используют при обосновании кондиционных значений параметров продуктивных пластов, при сравнении фильтрационной характеристики пластов разной толщины и в других случаях.

Дебит газа qг в скважине при установившейся фильтрации прямо пропорционален разности квадратов значений давления P2пл - P2заб

где kпр - коэффициент проницаемости; h - эффективная толщина; Тст = 273 К; Тст
- (273 - tпл); Pат = 105
Па; m -вязкость пластового газа; Z - коэффициент сверхсжимаемости газа; Rк - условный радиус контура питания; rпр - приведенный радиус скважины.

В отличие от уравнения притока нефти к скважине в уравнении притока газа дробь в его правой части не является коэффициентом продуктивности, так как в связи с нелинейностью фильтрации газа дебит его пропорционален не депрессии, а некоторой нелинейной функции давления. Этот коэффициент пропорциональности может быть определен с помощью индикаторной линии, построенной в координатах qг и (P2пл.тек - Р2заб)/ qг (рис 87). Уравнение индикаторной линии имеет вид

где А и В-
коэффициенты фильтрационного сопротивления, зависящие от параметров пласта в призабойной зоне (А) и от конструкции скважины (В).

Коэффициент А
численно равен значению (P2пл.тек - Р2заб)/ qг в точке пересечения индикаторной линии с осью ординат. Дробь в правой части уравнения соответствует 1/А, т.е.

По данным исследования скважин (по методу установившихся отборов)оценивается основная фильтрационная характеристика пласта -коэффициент проницаемости, а также комплексные характеристики пластов, учитывающих одновременно два-три основных свойства продуктивных пластов, оказывающих влияние на разработку залежей.

Наиболее применяемые комплексные характеристики продуктивных пластов.

1. Коэффициент гидропроводности

где kпр - проницаемость пласта в районе исследуемой скважины; h -работающая толщина пласта; m - вязкость жидкости или газа. Размерность коэффициента м5/(Н×с).

Коэффициент e - наиболее емкая характеристика продуктивного пласта, определяющая его производительность в скважине.

2. Коэффициент проводимости

Размерность коэффициента м4/(Н×с): он характеризует подвижность флюида в пластовых условиях в районе скважины.

3. Коэффициент пьезопроводности

где kп - коэффициент пористости пласта; bж и bс - коэффициенты сжимаемости пластовой жидкости и пористой среды; kпbж - bс - коэффициент упругоемкости пласта b*.

Размерность коэффициента пьезопроводности м2/с.

Коэффициент характеризует скорость перераспределения давления в пласте (последнее происходит не мгновенно, а в течение некоторого времени вследствие упругости породы и содержащейся в ней жидкости).

Значения параметров пласта, необходимые для получения комплексных характеристик указанным путем, получают другими независимыми методами. Коэффициент проницаемости и комплексные характеристики пласта можно определить с помощью других гидрогазодинамических методов исследования скважин и пластов

Основными источниками пластовой энергии являются: напор краевой и подошвенной вод, давление газа газовой шапки и растворенного газа в нефти после его выделения из раствора, сила тяжести, упругость пласта и насыщающих его флюидов (нефти, воды, газа). Эти силы проявляются совместно или раздельно.
Таким образом энергетические ресурсы пласта характеризуются существующим в нем давлением. Чем оно выше, тем полнее может быть использована залежь нефти.
В процессе эксплуатации для рационального использования энергии пласта необходим постоянный контроль распределения пластового давления в залежи.

Осуществляется это путем систематических замеров забойных и пластовых давлений и построением карт изобар.

Изобара - это линия, соединяющая точки с одинаковыми значениями пластовых давлений, приведенных к условной уровенной поверхности.

Под забойным давлением понимается давление на забое скважины, которое замеряется во время установившейся работы скважины.

Ему соответствует динамический уровень в скважине.

Под пластовым давлением понимают давление в пласте между скважинами, установившееся во время работы всех скважин.

Это давление берется за основу при вычислении коэффициента продуктивности скважины и проницаемости пласта, а также используется при анализе разработки месторождения и в гидродинамических расчетах.

Значения Рпласт. в различных точках залежи неодинаковы.

Они меняются во времени и в процессе разработки.

За начальное пластовое давление принимают статистическое забойное давление 1й скважины, вскрывшей пласт, замеренное до отбора из пласта какого-нибудь значительного количества пластовой жидкости.

Эти единичные замеры, возможные лишь в определенных точках залежи не могут быть приняты для всей залежи в целом.

Поэтому для определения среднего Р пласт. , полученные замеры по первым скважинам пересчитывают на среднюю точку объема залежи, на середину этажа нефтеносности .

Когда размеры залежи значительны - желательно иметь данные о начальном Р пласт. по скважинам , расположенным в центральной ее части и замеры Р пласт. по каждой скважине , пробуренной в период пробной эксплуатации.

При извлечении из залежи нефти или газа Р пласт. падает и оказывается ниже начального ( в случае естественной разработки, без воздействия на пласт).

Поэтому, чтобы определить Р пласт. на любую дату определяют текущее пластовое давление, т.е. статистическое забойное давление, замеренное по состоянию на ту или иную дату в скважине, в которой после ее остановки установилось относительное статистическое давление.

Все другие скважины являются рабочими, в пласте не устанавливается относительное статистическое равновесие.

Поэтому в качестве текущего пластового давления замеряют динамическое пластовое давление.

Для наблюдения за процессом разработки пласта необходимо систематически замерять пластовое давление в эксплуатационных скважинах.

Эти замеры производятся глубинными манометрами.

Их использование (когда измерение идет манометром по стволу скважины ) дает возможность определить истинную плотность жидкости и газа при данных давлении и температуре с учетом наличия растворенного газа в водонефтяной смеси.

При фонтанном или компрессорном способе эксплуатации, когда невозможно применять глубинный манометр, Р пласт. определяют по формулам расчетным путем.

Читайте также: