Сколько пенообразователя потребуется для заполнения подвала жилого дома объемом 150 куб м

Обновлено: 30.04.2024

РАСЧЕТ ПАРАМЕТРОВ ТУШЕНИЯ ПОЖАРОВ В ПОМЕЩЕНИЯХ, ЗАПОЛНЯЕМЫХ ВОЗДУШНО-МЕХАНИЧЕСКОЙ ПЕНОЙ

В свою очередь, объем пены Vпены, получаемой из пеногенератора, опре-деляется по формуле

Vпены= Vр.р K,

где Vр. р — расход раствора пеногенератора, м 3 /мин; K — кратность пены, по-лучаемой из пеногенератора.

Объем пены равен Vпены ГПС-2000 = 1,2 м 3 /мин · 100 = 120 м 3 / мин. Расход раствора пеногенератора составит Vр. р = 20 л/с = 1200 л/мин = 1,2 м 3 /мин.

2. Определяют количество генераторов пены средней кратности (ГПС-600, ГПС-2000, установка комбинированного тушения пожара «Пурга»):

NГПС= VпKр/ qГПСTн,

где Vп — объем (помещения) пожара, м 3 ; Tн — расчетное время тушения, принимается равным 10 мин.

3. Определяют количество (требуемый запас) пенообразователя (или во-ды) для получения раствора:

Vп-о= NГПС qп-о Tн K + Nсвп qп-о Tн K

Vп-о= (NГПС qп-о+ … + Nсвп qп-о)Tн K,

где Vп-о — количество пенообразователя (воды), л; qп-о — расход пенообразова-теля (воды) из ствола, л/с (для ГПС-600 qп-о = 0,36 л/с); K — коэффициент запа-са пенообразователя (или воды), в большинстве случаев Kп-о = 3, Kвод = 5 [1].

Тушение по объёму (объёмное тушение)

Для объемного тушения пожаров подразделениями пожарной охраны используются, как правило, генераторы пены средней кратности. Требуемое число генераторов в объёме помещения рассчитывается:


(49)


– число генераторов, шт ;

Vп – объем помещения, заполняемый пеной, м 3 ;

Kз – коэффициент, учитывающий разрушение и потерю пены;


– расход пены из пеногенератора, м 3 мин -1 ;


– расчетное время тушения пожара, мин.

Требуемое количество пенообразователя на тушение пожара определяется по формуле.


(50)


где – общий расход пенообразователя, л;


– расход определяемого огнетушащего вещества, пенообразователя,

Объем, который можно заполнить одним генератором пены средней кратности, вычисляют по формуле:


– возможный объем тушения пожара одним генератором ГПС, м 3 ;


– подача (расход) генератора по пене, м 3 /мин (см. табл. 133);

Кз – коэффициент, учитывающий разрушение и потерю пены (обычно принимается равным 3, а при расчете стационарных систем – 3,5).

Необходимое количество генераторов при известном объеме заполнения пеной одним генератором определяют по формулам:

= / (52)


– число генераторов ГПС-600, шт.;


–объем помещения, заполняемый пеной, м 3 .

Требуемое число генераторов ГПС для объемного тушения пожаров

Объем, заполняемый пеной, м 3 Требуется на тушение Объем, заполняемый пеной, м 3 Требуется на тушение
ГПС-600, шт. пенообразователя, л ГПС-2000, шт. пенообразователя, л
До 120

В практических расчетах по определению требуемого числа генераторов для объемного тушения пеной можно пользоваться табл. 66 или помнить, что один ГПС-600 обеспечивает тушение 120 м 3 , ГПС-2000 –400 м 3 , ПГУ на базе ПД-7 –300 м 3 , а ПГУ на базе ПД-30 – 700 м 3 . За 10 мин тушения пожара один ГПС-600 расходует 210 л пенообразователя, а ГПС-2000 – 720 л.

8. Гидравлические характеристики водопроводной сети и напорных пожарных рукавов

Водоотдача водопроводных сетей

Напор в сети, м Вид водопроводной сети Водоотдача водопроводной сети, л/с, при диаметре трубы, мм
Тупиковая
Кольцевая
Тупиковая
Кольцевая
Тупиковая
Кольцевая
Тупиковая
Кольцевая
Тупиковая
Кольцевая
Тупиковая
Кольцевая
Тупиковая
Кольцевая
Тупиковая
Кольцевая

Скорость движения воды по трубам зависит от их диаметра, а также от напора, и может быть определена по таблице 68. Водоотдача тупиковых водопроводных сетей примерно на 0,5 меньше кольцевых.

Скорость движения воды по трубам

Напор в сети, м Скорость движения воды, м/с, при диаметре трубы, мм
1,2 1,2 1,2 1,0 0,9 0,9
1,4 1,4 1,4 1,2 1,0 1,0
1,5 1,5 1,5 1,3 1,2 1,2
1,6 1,6 1,6 1,4 1,3 1,3
1,7 1,7 1,7 1,5 1,4 1,4

В период эксплуатации водопроводных сетей диаметр труб уменьшается за счет коррозии и отложений на их стенках, поэтому для выявления фактических расходов воды из трубопроводов их испытывают на водоотдачу. Существует два способа испытания водопроводов на водоотдачу. В первом случае на пожарные гидранты устанавливают пожарные автомобили и через стволы при рабочем напоре определяют максимальный расход воды, или на гидранты устанавливают пожарные колонки, открывают шиберы, а затем аналитически определяют расход при существующем напоре в водопроводе. Для определения водоотдачи сети в наихудших условиях испытания проводят в период максимального водопотребления.

Испытание водопроводных сетей вторым способом производят путем оборудования пожарной колонки двумя отрезками труб длиной 500 мм, диаметром 66 или 77 мм (2,5 или 3”) с соединительными головками и на корпусе колонки устанавливают манометр. Полный расход из колонки слагается по сумме расходов через два патрубка, а водоотдача сети определяется по суммарному расходу воды из нескольких колонок, установленных на пожарные гидранты испытуемого участка водопровода.

При небольшой водоотдаче водопроводных сетей можно пользоваться одним патрубком колонки, а к другому присоединить заглушку с манометром.

Расход воды через пожарную колонку определяют по формуле


, (53)


– расход воды через колонку, л/с;

Н – напор воды в сети (показание манометра), м;

Р – проводимость колонки (см. табл. 69).

Число открытых патрубков колонки Среднее значение проводимости
Один патрубок диаметром 66 мм 10,5
Один патрубок диаметром 77 мм 16,6
Два патрубка диаметром 66 мм 22,9

Расход воды через один патрубок пожарной колонки

в зависимости от напора у гидранта

Напор у пожарного гидранта, м Расход воды, л/с, при диаметре патрубка присоединенного к колонке, мм
16,6 20,3 23,5 26,3 28,8 31,0 33,3 35,3 37,1 26,3 32,0 37,1 41,5 45,5 49,0 52,3 55,1 58,5

Расход воды через один патрубок колонки указан в таблице 70. На участках водопроводных сетей с малыми диаметрами (100. 25 мм) и незначительным напором (10. 15 м) забор воды осуществляют насосом из колодца с помощью всасывающей линии, заполняя его водой из гидранта на излив. В этих случаях расход воды из гидранта несколько больше расхода воды, забираемого насосом через колонку.

Объем одного рукава длиной 20 м в зависимости от его диаметра:

Диаметр рукава, мм
Объем рукава, л

Сопротивление одного напорного рукава длиной 20 м

Рукава Диаметр рукава, мм
Прорезиненные Непрорезиненные 0,15 0,3 0,035 0,077 0,015 0,03 0,004 - 0,002 - 0,00046 -

Потери напора в одном пожарном рукаве магистральной линии длиной 20 м

Диаметр рукава, мм
Количество и тип стволов Потери напора в рукаве, м Количество и тип стволов Потери напора в рукаве, м
Прорезиненном Непрорезиненном Прорезиненном Непрорезиненном
Один ствол Б 0,5 1,1 Один ствол Б 0,2 0,4
Один ствол А 1,9 4,2 То же, А 0,8 1,6
Два ствола Б 1,9 4,2 Два ствола Б 0,8 1,6
Три ствола Б 4,2 9,5 Три ствола Б 1,9 3,8
Один ствол А и один ствол Б 4,2 9,5 Один ствол А и один ствол Б 1,9 3,8
Два ствола Б и один ствол А 7,8 17,6 Два ствола Б и один ствол А 3,3 6,6

Примечание. Показатели таблицы даны при напоре у ствола 40 м и расходе воды из ствола А с диаметром насадка 19 мм – 7,4 л/с, а с диаметром насадка 13 мм – 3,7 л/с.

Расчет основных показателей, характеризующих тактические возможности пожарных подразделений.

Руководитель тушения пожара должен не только знать возможности подразделений, но и уметь определять основные тактические показатели:

  • время работы стволов и приборов подачи пены;
  • возможную площадь тушения воздушно-механической пеной;
  • возможный объем тушения пеной средней кратности с учетом имеющегося на автомобиле запаса пенообразователя;
  • предельное расстояние по подаче огнетушащих средств.

Определение тактических возможностей подразделения без установки пожарного автомобиля на водоисточник.

1) Определение времени работы водяных стволов от автоцистерны:

Vц – объем воды в цистерне пожарного автомобиля, л;

Nр – число рукавов в магистральной и рабочих линиях, шт.;

Vр – объем воды в одном рукаве, л (см. прилож.);

Nст – число водяных стволов, шт.;

Qст – расход воды из стволов, л/с (см. прилож.);

k – коэффициент, учитывающий неровности местности (k = 1,2 – стандартное значение),

L – расстояние от места пожара до пожарного автомобиля (м).

2) Определение возможной площади тушения водой SТ от автоцистерны:

где: Jтр – требуемая интенсивность подачи воды на тушение, л/с·м 2 (см. прилож.);

3) Определение времени работы приборов подачи пены от автоцистерны:

где: Vр-ра – объем водного раствора пенообразователя, полученный от заправочных емкостей пожарной машины, л;

Чтобы определить объем водного раствора пенообразователя, надо знать, насколько будут израсходованы вода и пенообразователь.

КВ = 100–С / С = 100–6 / 6 = 94 / 6 = 15,7 – количество воды (л), приходящееся на 1 литр пенообразователя для приготовления 6-ти % раствора (для получения 100 литров 6-ти % раствора необходимо 6 литров пенообразователя и 94 литра воды).

Тогда фактическое количество воды, приходящееся на 1 литр пенообразователя, составляет:

где Vц – объем воды в цистерне пожарной машины, л;

Vпо – объем пенообразоователя в баке, л.

4) Определение возможной площади тушения ЛВЖ и ГЖ воздушно-механической пеной:

где: Sт – площадь тушения, м 2 ;

Jтр – требуемая интенсивность подачи раствора ПО на тушение, л/с·м 2 ;

5) Определение объема воздушно-механической пены, получаемого от АЦ:

К – кратность пены;

6) Определение возможного объема тушения воздушно-механической пеной:

где: Vт – объем тушения пожара;

Кз = 2,5–3,5 – коэффициент запаса пены, учитывающий разрушение ВМП вследствие воздействия высокой температуры и других факторов.

Примеры решения задач:

Пример № 1. Определить время работы двух стволов Б с диаметром насадка 13 мм при напоре 40 метров, если до разветвления проложен один рукав D 77 мм, а рабочие линии состоят из двух рукавов D 51 мм от АЦ-40(131)137А.

Пример № 2. Определить время работы ГПС-600, если напор у ГПС-600 60 м, а рабочая линия состоит из двух рукавов диаметром 77 мм от АЦ-40 (130) 63Б.

1) Определяем объем водного раствора пенообразователя:

2) Определяем время работы ГПС-600

Пример № 3. Определить возможную площадь тушения бензина ВМП средней кратности от АЦ-4-40 (Урал-23202).

1) Определяем объем водного раствора пенообразователя:

2) Определяем возможную площадь тушения:

Пример № 4. Определить возможный объем тушения (локализации) пожара пеной средней кратности (К=100) от АЦ-40(130)63б (см. пример № 2).

Решение:

Vп = Vр-ра · К = 2500 ·100 = 250000 л = 250 м 3 .

Тогда объем тушения (локализации):

Посчитать на калькуляторе

Определение тактических возможностей подразделения с установкой пожарного автомобиля на водоисточник.

1) Определение предельного расстояния по подаче огнетушащих средств:


Lпр – предельное расстояние (м),

Hн = 90÷100 м – напор на насосе АЦ,

Hразв = 10 м – потери напора в разветвлении и рабочих рукавных линиях,

Hст = 35÷40 м – напор перед стволом,

Zм – наибольшая высота подъема (+) или спуска (–) местности (м),

Zст – наибольшая высота подъема (+) или спуска (–) стволов (м),

S – сопротивление одного пожарного рукава,

Q – суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),

2) Определение необходимого напора на пожарном насосе Hн:

Нн = Nрук · S · Q 2 ± Zм ± Zст + Hразв + Hст (м),

где Nрук · S · Q 2 – потери напора в наиболее загруженной рукавной линии (м),

Нрук = Nрук · S · Q 2 – потери напора в рукавной линии (м)

2) Определение продолжительности работы водяных стволов от водоемов с ограниченным запасом воды:


VПВ – запас воды в пожарном водоеме (л);

VЦ – запас воды в цистерне пожарного автомобиля (л);

qСТ – расход воды из ствола (л/с);

3) Определение продолжительности работы приборов подачи пены:

Продолжительность работы приборов подачи пены зависит от запаса пенообразователя в заправочной емкости пожарного автомобиля или доставленного на место пожара.

Способ № 1 (по расходу водного раствора пенообразователя):

SNp ·Vp = 0, т.к. весь водный раствор пенообразователя будет вытеснен из рукавов и примет участие в формировании ВМП (пенообразователь расходуется полностью, а вода остается), поэтому формула имеет окончательный вид:

Способ № 2 (по расходу запаса пенообразователя):

t = Vпо / SNгпс ·Qгпс по ·60 (мин.),

Vпо – объем пенообразоователя в баке, л.

4) Определение возможного объема тушения (локализации) пожара:

Для ускоренного вычисления объема воздушно-механической пены средней кратности (К = 100, 4- и 6 % -ный водный раствор пенообразователя), получаемой от пожарных автомобилей с установкой их на водоисточник при расходе всего запаса пенообразователя, используют следующие формулы:

Vпо – количество пенообразователя (л);

КВ = 100–С / С = 100–6 / 6 = 94 / 6

Кп – количество пены, получаемой из 1 литра пенообразователя (для 6% раствора).

Примеры решения задач:

Пример № 1. Определить предельное расстояние по подаче ствола А с D насадка 19 мм и 2-х стволов Б с диаметром насадка 13 мм, если напор у стволов 40 м, напор на насосе 100 м, высота подъема местности 8 м, высота подъема стволов 12 м. Рукава магистральной линии Æ 77 мм.

Нр = Нст + 10 = 40 + 10 = 50 (м).

Пример № 2. Определить время работы двух стволов А с Æ насадка 19 мм и 2-х стволов Б с диаметром насадка 13 мм от автонасоса, установленного на пожарный водоем вместимостью 50 м 3 . Расстояние от места установки разветвления до водоема 100 метров.


Пример № 3. Определить время работы двух ГПС-600 от АЦ-5-40 (КАМАЗ – 4310), установленной на пожарный гидрант.

t = Vпо / Nгпс ·Qгпс по ·60 = 300 / 2 · 0,36 · 60 » 7 мин.

Пример № 4. Определить возможный объем тушения (локализации) воздушно-механической пеной средней кратности, если использовался 6 %-ный раствор пенообразователя от АЦ-4-40 (ЗиЛ-433104).

Vп = (Vпо / 6) ·10 = (300 / 6) ·10 = 500 м 3 .

Vт = Vп / Кз = 500 / 3 » 167 м 3 .

Расчет основных показателей тактических возможностей подразделений позволяет заблаговременно определить возможный объем боевых действий на пожаре и их реальное выполнение.

Упрощенный расчет сил и средств для тушения пожара

Приборы подачи огнетушащих веществ

Водяные стволы

Для лафетных стволов рабочим давлением является Р = 6 атм. Расход основных типов лафетных стволов приведен в табл. 4, 5. Как и для ручных стволов, с увеличением давления, несколько возрастает и расход воды (давление может быть поднято до 9-10 атм.)

Усредненно для лафетных стволов дальность подачи воды (длина струи) принимается 35-40 м, а расход от 16 до 70 л×с -1 .

dн диаметр насадка, мм

Например, диаметр ствола с насадком 25 мм


Подача стволов к месту пожара может быть обеспечена:

Достоинство насадков НРТ:

Расчет водяных стволов

В большинстве случаев количество стволов рассчитывают, исходя из величины площади тушения (Sт), что адекватно величине фронта пожара(Фп).

3. Лафетным стволом, также для Jтр = 0,l л×c -1 м -1 фронт пожара, который может быть потушен одним стволом, численно соответствует величине расхода воды из ствола. Например, с насадком 28 мм фронт тушения составит 28 м. При горении штабеля круглого леса (J = 0,3) фронт тушения будет в 3 раза меньше, чем для J = 0,1 т.е.

4. Площадь тушения лаф. ств. равна удесятеренному расходу из ствола


Схематично параметры тушения стволом можно представить :


Таким образом, расчет всех видов водяных стволов на практике целесообразно выполнять через возможную величину фронта тушения одним стволом, приняв за исходное значение фронт тушения стволами при


Например, для тушения (Jтр = 0,2) одним стволом А можно локализовать пожар по фронту 7 м (14:2)=7. Для лафетного ствола с насадком 38 мм

В точных расчетах (разработка планов тушения пожара, исследование пожаров….) количество стволов ручных, лафетных и пены определяют по формуле:


Чаще расчет ведут через площадь тушения (Sт).

Пенные стволы
Воздушно-пенные стволы


1. При объемном тушении ГПС-600 потушит объем в 10-12 раз больше;

3. Объемное тушение ТГМ и веществ пеной средней кратности ликвидирует пламенное горение, но в последующем не исключает тления.

4. Полезно запомнить- площадь тушения ЛВЖ и ГЖ от АЦ-40 (375):

для Sт ГЖ 100 (м 2 );

для St ЛВЖ 60 (м 2 );

Время работы стволов

-от АЦ-40(130)63(емкость 2100 л) – 5 мин.

Время работы ствола Б принимается в 2 раза больше. Несколько повысив давление (с 2-х до 3-х атм.) увеличивается и расход воды (на 1 л×с -1 для ствола А), поэтому можно использовать усредненные значения, приведенные выше.

Для цистерн с емкостью воды до 2400 л и баком с П.0. до 150 л без установки их на в/источник расчет ведется по воде.

  • Время работы СВП (без цифровой маркировки) такое же, как для ГПС-600, а для СВП-4 и -8 меньше (имеют большие расходы по воде иП.0. см. табл. 8).

Pacчет пенных стволов

Для объемного тушения.

Одним ГПС-600 за расчетное время (10 мин.) можно потушить пожар в помещении объемом 120 м 3 и при этом требуется запас ПО – 650 л.

Пример : горит подвальное помещение Wп = 400 м 3

Сколько П.0. и ГПС требуется ?


Расчет количества (объема) пены (Vп)

Для получения 1 м 3 ПСК надо израсходовать 0,6 л П.0. и 10 л воды.

Тогда, зная запас вывозимого П.0. на машине, можно сделать расчет количества пены и объема помещения, которое можно ею потушить.


этот расчет верен для всех машин с установкой их на водоисточник и для автоцистерн у которых соотношение Vb/Vпo > 16. При данном соотношении менее 16 расчет ведется по запасу вывозимой воды.


Расчет для тушения по площади

Количество ГПС для наземных стальных резервуаров определяется, исходя из 15 мин нормативного времени тушения, т.е. это повлияет на запас пенообразователя (на 1 ГПС требуется 1000 л П.0.).


q в = 5,64 л×с -1 ; q по = 0,36 л×с -1 ; q р-р = 6 л×с -1 .

Запас пенообразователя можно рассчитать по формуле:

Используются для тушения установок и отдельных материалов в химической, нефтехимической промышленности, нефтепродуктов, самолетов и т.д. Автомобили порошкового тушения укомплектованы стволами ручными (расход 1,2; 3,5; 4,5 кг×с -1 ) и лафетными (40 кг×с -1 ).

Эффективны при тушении магниевых сплавов, алюминийорганических соединений в сочетании с пенным тушением.

Отделение на автоцистернах (АЦ) без установки на водоисточник:

С установкой на водоисточник:

Отделение на автонасосе (АН)

Тактические возможности отделений можно определить исходя из тактико-технической характеристики пожарного автомобиля и норматива людей, необходимых для выполнения вероятных работ на пожаре.

Расчет тактических возможностей основных машин.

Время работы стволов:


Возможный объем тушения



Возможная площадь тушения ЛВЖ и ГЖ на поверхности земли

а) если первым закончится П.0. для АЦ-40(375), АЦ-40(131)


б) если первой закончится вода для АЦ-40(133),АЦ-40(130)


Таким образом, основным показателем для расчета тактических возможностей являются запасы вывозимых воды и пенообразователя.

Насосно-рукавные системы


Для тупиковой сети водоотдача в 2 раза меньше.

Например, для сетиd=150 мм Qc = 150:2 = 75 л×с -1 .

(тупиковая сеть 150 мм = 32 л×с -1 ).

При установке машины на гидрант следует помнить, что лимитировать расход воды будет стояк пожарного гидранта (до 40 л×с -1 ), а не колонка.

Предельная дальность подачи стволов L пр (длина магистральной линии).




2) От передвижной насосной станции (ПНС-110) по I рукаву 150 мм



Из приведенных таблиц наибольший интерес представляют варианты подачи ручных и лафетных стволов:

лаф. ств. 28 мм – подать на150 м (q = 21л×с -1 )

Лаф. ств. 38 мм (подача только от 2-х машин) по каждой магистрали подается 19 л×с -1 . Это соответствует подаче 2А и 1 Б, следовательно расстояние подачи = 200 м.

ПОЛЕЗНО ЗАПОМНИТЬ

Для схем боевогоразвертывания

При разработке планов и карточек тушения пожара, эпизодов ПТЗ и ПТУ возникает необходимость в выполнении схем тушения пожара. Для их выполнения надо соблюдать выполнение правил:

1. Использование пожарных машин на полную мощность. Это значит стремиться подать максимально возможное количество стволов от машины ближе других расположенной к месту пожара. В этом случае следует учесть, что расход насоса не должен превышать 32-34 л×с -1 , а напор на насосе (продолжительный режим работы) не должен быть выше 8 атм. Возможно поднятие давления и до 10 атм., но это допустимо на непродолжительный режим работы.

Например, лаф. ств. 38 мм от одной машины с насосом 40 л×с -1 подавать нельзя, т.к. для его работы надо расход 38 л×с -1 (насос обеспечит 32-34 л×с -1 ).

От одной машины подавать 5 ств. А не желательно, т.к. обеспечить их работу можно при увеличении напора на насосе.

2. Суммарный расход воды из стволов от одной магистрали не должен превышать максимальную пропускную способность рукава.


3. Упрощенные величины дальности подачи стволов следует сверить с реальным расстоянием от места пожара до в/источника. Если это расстояние больше, чем максимальная дальность подачи стволов, необходимо изменять схему боевого развертывания (убрать один или несколько стволов или организовать подвоз (перекачку) воды).

Для упрощенного расчета :

1. При подаче стволов на высоту на каждые 10 м теряется 1 атм.

2. При подаче стволов по горизонтали теряется 1 атм. (на каждые 100 м).

3. При подаче воды по 2-м магистральным линиям (как между машинами при перекачке, так и к лафетным стволам) расстояние может быть увеличено в 4 раза. (Используется при наличии рукавов, но малом количестве техники).

Подача воды перекачкой:

Целесообразно использовать подачу воды перекачкой:

1. При наличии в гарнизоне 1-го рукавного автомобиля с расстояния от места пожара до в/источника до 2-х км.

2. При наличии 2-х рукавных автомобилей до 3-х км.

Схема развертывания при подаче воды на перекачку:


Из таблицы полезно запомнить:

2. При подаче воды по двум магистралям расстояние между машинами увеличивается в 4 раза.

Подвоз воды

Для быстрого запоминания представим таблицу:


Из таблицы видно, что при расстоянии до пожара 5 км надо 9 АЦ емкостью 2000 л или 5 АЦ емкостью 4000 л. Легко запоминается кратность для АЦ = 2000 л 3-6-9, а для АЦ = 4000 л 3-4-5.

При подаче большего числа стволов, чем ЗБ количество машин удваивается.

Время боевого развертывания
  1. Прокладка двумя пожарными магистральной линии 77 мм на

Интенсивность подачи огнетушащих веществ

Интенсивность подачи огнетушащего вещества – это количество огнетушащего средства, подаваемого в единицу времени на единицу соответствующего геометрического параметра пожара (площади, объема, периметра или фронта).

Нормативная

Нормативная интенсивность подачи огнетушащего вещества – это интенсивность подачи огнетушащего вещества для тушения конкретного объекта, установ­ленная в действующей нормативной документации. При нормативной (оптимальной) интенсивности подачи различных огнетушащих веществ прекращение горения осуществляется за практически приемлемое время, называемое нормативным. Дальнейшее увеличение интенсивности подачи огнетушащего веще­ства сверх нормативного не приводит к заметному сокращению времени прекращения горения. Так, в соответствии с нормативным документом:

  • для установок водяного и пенного пожаротушения нор­мативные интенсивности подачи (интенсивности орошения) составляют от 0,08 до 0,50 л/(м 2 /с);
  • для автоматических установок газового пожаротушения (АУГП) модульного типа, где в качестве газовых огнетушащих веществ применяются сжиженные газы (кроме двуокиси углерода), установлено время их подачи не более 10 секунд;
  • для АУГП централизованного типа, в которых в качестве газовых огнетушащих веществ используются сжиженные газы (кроме дву­окиси углерода), установлено время их подачи не более 15 секунд;
  • для АУГП модульного и централизованно­го типов, в которых в качестве газовых огнетушащих веществ применяются двуокись углерода или сжа­тые газы, установлено время их подачи не более 60 секунд;
  • для АУГП в негерметичных помещениях интенсивность подачи огнетушащих веществ должна быть равна или свыше некоторой величины, обеспечивающей накопление огнетушащего аэрозоля в защищаемом помещении до концентрации, при которой возможно эффективное тушение пожара.

Нормативная интенсивность подачи огнетушащего вещества определяется, исходя из значений критической (пороговой) интенсивности подачи огнетушащего вещества, путём умножения последней на некоторый коэффициент безопасности.

Критическая

Критическая интенсивность подачи огнетушащего вещества – это предельное минимальное значение интенсивности подачи огнетушащих веществ, разделяющее области параметров, в которой происходит тушение пожара, и области, в которой невозможно тушение материалов данными огнетушащими средствами. Существует понятие нормативной (оптимальной) интенсивности подачи огнетушащего вещества, которая определяется произведением критической интенсивности и численного коэффициента, устанавливаемого специальными исследованиями.

Определение критических (предельных) условий горения материалов имеет очень важное значение в пожарном деле, так как на основе этих данных можно определить нормативные значения параметров, которые могут быть использованы для разработки установок пожаротушения.

Интенсивность подачи ОТВ

Интенсивность подачи огнетушащего вещества

Расчет

Интенсивность подачи огнетушащих средств определяют опытным путем и расчетами при анализе потушенных пожаров по формуле:

Методика проведения пожарно-тактических расчетов


I – интенсивность подачи огнетушащих средств, л/(м 2 ·с), кг/(м 2 ·с), кг/(м 3 ·с), м 3 /(м 3 ·с), л/(м ·с);

Qо.с. – расход огнетушащего средства во время тушения пожара или проведения опыта, л, кг, м 3 ;

tт – время, затраченное на тушение пожара или проведение опыта, мин;

П – величина расчетного параметра пожара: площадь, м 2 ; объем, м 3 ; периметр или фронт, м.

Интенсивность подачи можно определять через фактический удельный расход огнетушащего средства;

Qу – фактический удельный расход огнетушащего средства за время прекращения горения, л, кг, м 3 .

Для зданий и помещений интенсивность подачи определяют по тактическим расходам огнетушащих средств на имевших место пожарах:

Qф – фактический расход огнетушащего средства, л/с, кг/с, м 3 /с.

В зависимости от расчетной единицы параметра пожара (м 2 , м 3 , м) интенсивность подачи огнетушащих средств подразделяют на поверхностную [Is, л/(м 2 ·с), кг/(м 2 ·с)], объемную [Iv, л/(м 3 ·с), кг/(м 3 ·с)] и линейную [Iл, л/(м·с), кг/(м·с)]/

Если в нормативных документах и справочной литературе нет данных по интенсивности подачи огнетушащих средств на защиту объектов (например, при пожарах в зданиях), ее устанавливают по тактическим условиям обстановки и осуществления боевых действий по тушению пожара, исходя из оперативно-тактической характеристики объекта, или принимают уменьшенной в 4 раза по сравнению с требуемой интенсивностью подачи на тушение пожара:

Линейная интенсивность подачи огнетушащих средств для тушения пожаров в таблицах, как правило, не приводится. Она зависит от обстановки на пожаре и, если используется при расчете огнетушащих средств, ее находят как производный показатель от интенсивности поверхностной:

hт – глубина тушения пожарными стволами, м (принимается, при тушении ручными стволами – 5 м, лафетными – 10 м).

Общая интенсивность подачи огнетушащих средств состоит и двух частей: интенсивности огнетушащего средства, участвующего непосредственно в прекращении горения Iпр.г, и интенсивности потерь Iпот.

Средние, практически целесообразные, значения интенсивности подачи огнетушащих средств, называемые оптимальными (требуемыми, расчетными), установленные опытным путем и практикой тушения пожаров, приведены ниже и в таблицах.

Сколько баллонов пены понадобиться для заполнения резервуара 1куб метр (1000 литров)?

К сожалению, указанные данные по обьему пены носят рекламный характер. Иногда складывается впечатление, что замеры делались компаниями в вакууме с выходом их лаборанта в отрытый космос. Наверное, на околоземной орбите обьем от большого балона и составит до 65 литров.

Тут важна и ручная технология работы. Для максимального выхода хорошо выдувать небольшими порциями, давая возможность им расшириться по максимуму, но это скажется на бОльшем времени многократного запенивания за несколько проходов с переносом продолжения работы на следующий день-другой.

Считайте, что от большого балона емкостью в 1литр и содержанием полиуретана 750мл выход составит около 20 литров, а может и меньше. Не верьте в числа 40-45литров пены.

Довелось видеть демонстрационный стенд с затвердевшей пеной после полного опорожнения продаваемого балона с указанным выходом в 40л. На стенде, дай Бог, объем был больше 15л, больше приличного ведра для уборщицы.
Кстати, Вы очень сэкономите, если при запенивании в заполняемый объем будете вкладывать кусочки пенопласта, которые со всех сторон обтекутся пеной. У них практически одинаковые физические параметры по теплозбережению, но вот лист пенопласта стоит всего десятки рублей.

Расчет запаса и расход пенообразователя

Рассмотрим порядок расчета запаса пенообразователя исходя из действующих нормативных документов. Основой расчета запаса пенообразователя является расчет расхода раствора пенообразователя на тушения. Расход пенообразователя, точнее его раствора, основан на важнейшем параметре – нормативной интенсивности ( Jн [л/м 2 с]). Нормативная интенсивность, используемая для определения расхода, определяется через критическую (Jк) следующим образом:

J н = b · J к ,

где коэффициент запаса b = 2,3.

Зная площадь пожара (Sп [м 2 ]) и нормативную интенсивность можно определить минимальное значение расхода пенообразователя, точнее – расхода водного раствора пенообразователя – на тушение такого пожара (q р-ра [л/с]):

q р - ра = J н · S п

При этом следует помнить, что мы получаем минимальное значение расхода пенообразователя (раствора). Связано это с тем, что при реальном тушении помимо величины расхода пенообразователя (раствора) мы должны обеспечить так называемый «штатный» режим работы пеногенерирующей аппаратуры, т.е. нормативный расход (qств) при нормативном давлении на входе в устройство пеногенерирования (пеногенератор или ствол). Эти параметры определяются типом и конструкцией оборудования.

Количество требуемых генераторов (стволов) (N) в наиболее общем случае определяется так:

N = q р - ра /q ств . = No + a/b ,

где qств. – расход пенообразователя (раствора) при «штатном» режиме работы оборудования (номинальный расход);

No – целое число результата деления и a/b – дробная его часть.

Поскольку использовать пеногенерирующие изделия «лишь частично» не возможно, придется округлить необходимое количество стволов (генераторов) в большую сторону, т.е.

N = q р - ра /q ств . = No + a/b » No + 1 .

Следующим шагом мы должны определить важнейшие параметры нашей системы (установки) пожаротушения: расход пенообразователя (раствора) на тушение ( Q) и его запас (М). Формулы для определения расхода пенообразователя (раствора) и запаса просты и очевидны:

Q = q ств · (No + 1)

М = q ств · (No + 1) · t т ,

где tт – расчетное время тушения пожара (с).

Расчетное время тушения пожара, например, для резервуаров типа РВС составляет 10 или 15 минут. Величина зависит от принятой технологии подачи пены и организации пуска установки пожаротушения: подача сверху или под слой горючего, автоматический или ручной пуск, использование передвижной пожарной техники и т.п.

При разработке плана тушения пожара исходя из конкретных условий защищаемого объекта и тактико-технических возможностей пожарных подразделений возможно обоснование иной величины расчетного времени тушения пожара.

Для резервуарных парков расчет запаса пенообразователя (раствора) (МS) определяется как трехкратный, т.е. МS = 3·М. В СНиП «Склады нефти и нефтепродуктов. Противопожарные нормы» такой запас называется нормативным. Он же является и суммарным. Вместе с тем изменение терминологии и введение ничем не обоснованных терминов запаса «рабочий», «резервный» и т.п., приводит к необоснованному увеличению объема хранящегося пенообразователя с трехкратного до пятикратного. Это, конечно, не снижает общий уровень противопожарной защиты объекта, но оставляет открытым вопрос о целесообразности дополнительных финансовых затрат.

Проводя простейшие расчеты по приведенным выше формулам, хоть мы и говорили о расходе пенообразователя и расчете запаса пенообразователя, на самом деле речь шла о водном растворе пенообразователя. Чтобы внести ясность в используемые термины «расчет пенообразователя», «расход пенообразователя» и «запас пенообразователя» напоминаем, что по умолчанию под термином «пенообразователь» понимается жидкий концентрат поверхностно-активных веществ с различными добавками. Этот концентрат используется на первом этапе для получения водного раствора, который затем поступает на пеногенерирующую установку и уже в виде пены доставляется в зону пожара. Таким образом, пожар тушит не раствор пенообразователя и, конечно, не концентрат пенообразователя, а полученная из его водного раствора пена.

Для получения водного раствора концентрат пенообразователя должен смешиваться с водой. При этом концентрация (Сп) в водном растворе должна в точности соответствовать рекомендуемой изготовителем. Наиболее распространенными рабочими концентрациями в растворе являются 6%, 3%, 1,5%, 1%, 0,5%. В соответствии с этим окончательные величины расхода пенообразователя (Qконц.) и его запаса ( Мконц., МSконц.) (концентрата, т.е. без учета расхода воды) составят, например, для рабочей концентрации 6%:

Q конц. = Q · Сп = 0,06· Q ;

М S конц = 3 · Мконц. = 3 ·М· Сп = 0,18· М .

Таким образом, по отношению к критическим условиям тушения, т.е. к условиям подачи пены, когда пожар потушить мы вероятно не сможем, наш запас надежности составляет

b S рос. = 2,3 · 3 = 6,9 .

Анализ зарубежных методов определения параметров пожаротушения свидетельствует о том, что иностранные специалисты не используют понятие «критической интенсивности» и определяют нормативные параметры, используя иные подходы. Вместе с тем, численные значения этих параметров по отношению к критическим условиям, т.е. запас надежности (bSиностр.) составляет величину от 6 до7 единиц, что практически совпадает с российским запасом надежности при расчете расхода и запаса пенообразователя.

Кратность пены пенообразователя

Кратность пены пенообразователя – безразмерная величина, равная отношению объёмов пены и раствора, содержащегося в пене.

  • Пена низкой кратности (до 20)
  • Пена средней кратности (от 21 до 200)
  • Пена высокой кратности (свыше 200)

Кратность пенообразователя

Кратность пенообразователя (полученной воздушно-механической пены) в равной мере зависит как от физико-химических свойств исходного пеноконцентрата общего или целевого назначения, так и от технических особенностей генераторов пены, имеющих специфические конструктивные ограничения. В настоящее время в мире сформировалась тенденция применения на практике пены только низкой или только высокой кратности. Это обусловлено повсеместным применением фторсодержащих пенообразователей, которые за счёт эффекта образования саморастекаемой водной плёнки (локальное пожаротушение на поверхности горючей жидкости) позволяют ограничиться пеной низкой кратности для быстрого достижения целей пожаротушения. В случаях вынужденного объёмного пожаротушения (авиационные ангары, трюмы речных (морских) судов и т.д.) тандем совместимых пеноконцентратов и пеногенераторов позволяют получить высокую кратность пены, заполняющую защищаемый объект и оперативно ликвидирующую пожар. На территории России получение и применение пены средней кратности, тем не менее, продолжает сохранять свою актуальность из-за массового применения на практике генераторов пены средней кратности.

Воздушно-механическая пена, полученная из современных пеноконцентратов, является эффективным огнетушащим веществом. Пенный слой, сформированный на поверхности горящего вещества, одновременно обеспечивает его изоляцию от поступления новых порций кислорода, выступающего в качестве окислителя, и производит охлаждающий эффект за счёт большой теплоёмкости воды, входящей в состав пены.

Процесс пенообразования происходит на специальных пеногенерирующих устройствах, при подаче на них под давлением рабочего раствора пенообразователя, полученного из пеноконцентратов с различными объёмными долями применения, при смешении его с воздухом.

Пены, применяемые для целей пожаротушения, должны обладать высокой структурно-механической стойкостью к неблагоприятному воздействию на них разнообразных внешних факторов, присутствующих в зоне пожара.

Пены различной кратности позволяют решать задачи пожаротушения объектов различной природы происхождения путём выбора наиболее оптимального огнетушащего вещества.

ООО «Завод Спецхимпродукт» выпускает продукцию в ассортименте, разнообразные модификации которой позволяют полностью перекрыть все возникающие потребности при ликвидации пожаров классов А и В.

Методика получения пены различной концентрации:

1. Для получения пеноконцентрата 6%:

  • К 5-ти частям воды добавить 1-у часть пеноконцентрата 1%
  • К 1-ой части воды добавить 1-у часть пеноконцентрата 3%

2. Для получения пеноконцентрата 3%:

  • К 2-ум частям воды добавить 1-у часть пеноконцентрата 1%.

Пример: Из 1 т ПО (6%) можно получить 16,6 т рабочего раствора. Такое же количество рабочего раствора можно получить из 0,17 т ПО (1%)

Преимущества при использовании пеноконцентрата с высокими концентрациями ПАВ (объёмная доля применения 1% и ниже):

1. Осуществляется экономия площадей для хранения пенообразователя и снижение транспортных издержек при его перевозке

2. Увеличивается запас возимого объёма огнетушащего вещества при доставке к месту пожара в штатном пенобаке пожарного автомобиля (при наличии соответствующих систем дозирования)

3. Обеспечивается возможность оперативного приготовления 6% -го и 3%-го пеноконцентрата непосредственно на месте при отсутствии соответствующих систем дозирования (пеносмешения)

Общие определения

Пенообразователь (пенный концентрат) для тушения пожаров – концентрированный водный раствор стабилизатора пены (поверхностно-активного вещества), образующий при смешении с водой рабочий раствор пенообразователя или смачивателя.

Плёнкообразующий пенообразователь – пенообразователь, огнетушащая способность и устойчивость к повторному воспламенению которого определяется образованием на поверхности углеводородной горючей жидкости водной плёнки.

Партия пенообразователя – любое количество единовременно изготовленного пенообразователя, однородного по показателям качества, сопровождаемого одним документом о качестве.

Пена - дисперсная система, состоящая из ячеек – пузырьков воздуха (газа), разделённых плёнками жидкости, содержащей пенообразователь.

Огнетушащая воздушно-механическая пена – пена, получаемая с помощью специальной аппаратуры за счёт эжекции или принудительной подачи воздуха или другого газа, предназначенная для тушения пожаров.

Объёмные доли применения, раствор пенообразователя

Концентрация рабочего раствора пенообразователя - содержание пенообразователя в рабочем растворе для получения пены или раствора смачивателя, выраженное в процентах.

Раствор пенообразователя

Рабочий раствор пенообразователя (смачивателя) – водный раствор пенообразователя с регламентированной рабочей объёмной концентрацией пенообразователя (смачивателя). Рабочая концентрация пенообразователя составляет от 0,5% до 6%, смачивателя – от 0,1% до 3%.

Интенсивность подачи рабочего раствора – количество водного раствора пенообразователя, подаваемого в единицу времени на единицу поверхности горючей жидкости.

Методика получения рабочего раствора пенообразователя из пеноконцентрата с различными объёмными долями применения состоит в строгом выдерживании процентного соотношения воды и соответствующего пеноконцентрата при их перемешивании.

Устойчивость пены – способность пены сохранять первоначальные свойства.

Читайте также: