Устройство печи парового риформинга

Обновлено: 15.05.2024

Мягкая утилизация

Попутный нефтяной газ (ПНГ) — ценное сырье, но во многих случаях он становится для нефтяных компаний источником проблем. Отправлять его на переработку с удаленных и небольших месторождений дорого, а сжигание наносит вред окружающей среде. Одно из решений — превращать тяжелые углеводороды ПНГ в метан, который можно транспортировать вместе с природным газом или использовать для генерации электроэнергии и тепла. Испытания такой технологии успешно прошли на Крапивинском месторождении «Газпромнефть-Востока» в Омской области

Сложный газ

ПНГ состоит из множества компонентов, которые можно разделить на две фракции. Одна из них — это сухой отбензиненный газ (СОГ), преимущественно метан, который может транспортироваться с месторождения по газопроводу вместе с природным газом. Вторая — широкая фракция легких углеводородов (ШФЛУ), включающая этан, пропан, бутан и другие высшие гомологи метана. ШФЛУ, в свою очередь, может быть подвергнута дополнительному фракционированию с получением стабильного газового бензина и пропан-бутановой фракции (ПБФ).

Все это востребованные продукты, реализация которых делает переработку ПНГ вполне рентабельной. Однако на многих удаленных или малодебитных месторождениях возможность вывезти ШФЛУ или ПБФ просто отсутствует. Автомобили на такие активы могут доехать только несколько месяцев в году — когда работают зимники, а строительство дополнительной трубопроводной инфраструктуры может значительно ухудшить экономику месторождения или вовсе сделать его эксплуатацию убыточной.

Сжигание ПНГ — самое простое, но и самое плохое решение. Факелы наносят вред окружающей среде, ценное сырье растрачивается впустую. К тому же использование такого метода утилизации чревато большими штрафами для нефтяников: плата за ненормативное сжигание ПНГ на факелах была существенно увеличена в 2013 году.

Максим Мишарин,
заместитель начальника департамента развития газового бизнеса «Газпром нефти»

Технология мягкого парового риформинга перспективна на удаленных месторождениях, когда вывоз ШФЛУ или СПБТ экономически нецелесообразен, при этом существует возможность реализовывать дополнительные объемы метана на рынок или на собственные нужды. Там, где нехватку газового топлива на энергокомплексе приходится компенсировать дизельным топливом, как в случае Крапивинского месторождения, установка окупится достаточно быстро.

В некоторых случаях ПНГ закачивают в пласт. Это поддерживает пластовое давление и увеличивает нефтеотдачу, однако требует применения дорогостоящего оборудования и технически сложной подготовки ПНГ. Кроме того, этот способ утилизации лишь отодвигает решение проблемы на более поздний срок, поскольку значительная часть закачанного в пласт газа все равно окажется на поверхности вместе с добытой нефтью.


Компактность и блочно-модульная конструкция установки для риформинга делает ее удобной для использования на отдаленных месторождениях

Газ можно использовать и в качестве топлива для выработки электроэнергии прямо на промысле. Но использование жирного ПНГ без соответствующей подготовки на газотурбинных и газопоршневых электростанциях, рассчитанных на природный газ, понижает эффективность их работы и может привести к преждевременному выходу из строя энергоагрегатов. Решить эти проблемы на многих месторождениях может технология мягкого парового риформинга.

Переработка и использование ПНГ на месторождении



Инфографика: Татьяна Удалова

В щадящих условиях

Мягкий паровой риформинг — технология, позволяющая преобразовать содержащуюся в попутном нефтяном газе ШФЛУ в газовую смесь, состоящую примерно на 90% из метана. Процесс протекает на никельсодержащем катализаторе. В результате образуется также некоторое количество углекислого газа и водорода.

Сама технология известна давно, однако ранее она использовалась исключительно как часть процесса газохимического производства или как источник дешевого водорода. Отдельные установки для риформинга, которые можно было бы использовать для переработки ПНГ на месторождении, появились на рынке лишь недавно. В 2014 году во многом уникальное решение было предложено российской компанией «Би Ай Технолоджи», дочерней структурой Института катализа им. Г.К.Борескова Сибирского отделения Российской академии наук, где ранее был разработан процесс мягкого парового риформинга (МПР).

«Идея о том, чтобы превратить нестабильные жидкие углеводороды в продукт, который может быть выведен на рынок с минимальными затратами, возникла давно, — рассказал начальник управления поддержки проектов развития газового бизнеса „Газпромнефть НТЦ“ Радий Янышев. — Было много предложений, однако все прочие варианты требуют намного более сложных и дорогостоящих технологических решений, а также иных компетенций персонала на месторождении».

Юрий Аристович,
генеральный директор компании «БИ АЙ Технолоджи»

В отличие от природного газа, основной компонент которого — метан, ПНГ без соответствующей подготовки не может применяться в качестве топливного газа на газотурбинных и газопоршневых электростанциях. Из-за содержащихся в ПНГ высших гомологов метана происходит повышенное сажеобразование, местные перегревы, отложение нагара в цилиндрах двигателя, вибрационное горение, что приводит к неэффективной работе энергоагрегатов и в конечном счете к их преждевременному разрушению. Учитывая, что стоимость ремонта энергоагрегата может достигать от его первоначальной цены, использование неподготовленного ПНГ в качестве газомоторного топлива хоть и снимает проблему его утилизации, но сопряжено с неприемлемо высокими финансовыми и производственными издержками.

«Мягкость» процесса определяется в первую очередь более низкими температурами в реакторе — 250—350°C, в зависимости от состава исходного сырья и требуемого результата конверсии. На газохимических производствах риформинг проходит при температуре около 550°C, соотношение водяного пара и углерода в смеси также отличается.

Испытыния на промысле

После ознакомления с технологией в «Газпром нефти» было принято решение провести опытно-промышленные испытания (ОПИ) установки МПР на Крапивинском месторождении в Омской области, куда была доставлена блочно-модульная установка производительностью 300 кубометров газа в час. Первый запуск провели в сентябре 2015 года, но в конструкции установки тогда были выявлены недочеты. Повторные испытания состоялись в декабре, и на этот раз все прошло успешно. Технология показала свою надежность, способность адаптироваться к разнообразным условиям на месторождениях, возможности изменения параметров процесса для широкого диапазона нагрузок и состава ПНГ.


Специфические условия добычи Крапивинского месторождения позволили промыслу стать идеальной площадкой для испытания новой технологии

Особенность Крапивинского месторождения состоит в том, что газа там не много, и весь он утилизируется на энергокомплексе. Более того, добываемого газа недостаточно, поэтому топливо для выработки электроэнергии приходится закупать на месторождение дополнительно. Технология МПР позволяет не только превратить проблемные углеводороды в метан, но и увеличить объемы топлива. Так, из одного кубометра этана получается два кубометра метана, а из пропана — уже три. Испытания показали, что применение мягкого парового риформинга позволяет увеличить объем газа почти на 30%.

Установка производства водорода

Установка производства водорода предназначена для обеспечения техническим водородом вновь вводимых установок:

  1. изомеризации,
  2. гидроочистки,
  3. гидрокрекинга,
  4. каталитического риформинга.

Строительство установки производства водорода позволит:

  • ликвидировать недостающую потребность в водороде на НПЗ
  • производить водород высокой чистоты (не менее 99,5 % об.), что сокращает объём газа в последующих схемах потребления водорода;
  • улучшить экологические условия на территории предприятия за счёт применения в качестве топлива обессеренного газа с блока КЦА.

Методы производства водорода

  • паровая конверсия метана и природного газа;
  • газификация угля;
  • электролиз воды;
  • пиролиз;
  • частичное окисление;
  • биотехнологии.

Сырье и продукты

На российских НПЗ наиболее распространенным методом получения водорода является паровая конверсия углеводородов (СУГ, нафты, природного газа).

Продуктами являются чистый водород с концентрацией >99% об., а также отдувочный газ, который чаще всего используется в качестве топлива для печей.

Катализаторы

Наиболее часто используемыми в промышленности катализаторами для процесса паровой конверсии являются катализаторы на основе никеля, однако в ряде специфических процессов допускается использование благородных металлов платиновой группы.

Технологическая схема

В состав установки производства водорода входят следующие блоки и узлы:

  • блок подготовки и очистки сырья;
  • блок предриформинга;
  • блок парового риформинга;
  • блок конверсии и охлаждения конвертированного газа;
  • блок очистки водородсодержащего газа по технологии КЦА;
  • блок утилизации тепла продуктовых потоков и дымовых газов.

Очистка сырья

Природный газ поступает в подогреватель, нагревается до температуры 40 °С. Для гидрирования сернистых соединений, содержащихся в сырье, до серо­водорода, требуется небольшое количество водорода.

С этой целью часть водоро­да, полученного на установке, подается в качестве рециркуляционного водорода в поток сырья. Смесь сырья и рециркулирующего водорода, последова­тельно поступая в теплообменники, нагревается до температуры 380 °С, необходимой для предварительной очистки сырья.

Кстати, прочтите эту статью тоже: Установка ЭЛОУ-АВТ-6

Подогретая газосырьевая смесь поступает в реактор гидрообессеривания, где происходит гидрирование соединений серы до H2S. Газосырьевая смесь из реактора последо­вательно проходит через адсорберы, где происходит улавливание хлоридов (НСl) и сернистых соединений (H2S). В каждом из этих реакторов имеется три слоя катализатора:

  • модифицирован­ный оксид алюминия для удаления НСl,
  • оксид цинка,
  • слой специального катализатора для эффективного и глубо­кого удаления H2S.

Предриформинг

Очищенная газосырьевая смесь смешивается с перегретым паром высокого давления. Соотношение расходов регулируется с поддержанием заданного мольного соотношения водяного пара и углерода. Величина значения этого соотношения зависит от типа сырья, подаваемого на установку.

Предриформинг служит для превращения тяжелых углеводородов, содер­жащихся в сырье, в метан, а также для частичного проведения реакций рифор­минга, при этом эффективность процесса повышается.

В зависимости от типа перерабатываемого сырья, может наблюдаться уве­личение или снижение общей температуры по реактору. Так при переработке бен­зинов увеличивается общая температура по реактору, за счет преобладания про­текания реакций с экзотермическим эффектом, а при переработке природного газа температура по реактору падает, за счет протекания реакций с эндотермическим эффектом.

Риформинг

Парогазовая смесь нагревается до температуры 650 °С в змеевике по­догрева сырья риформинга, расположенном в конвекционной секции печи парового риформинга, и затем поступает в коллектор, расположенный в радиантной секции печи парового риформинга.

В радиантной секции печи парового риформинга смесь сырья и пара посту­пает в катализаторные трубы, находящиеся в радиантной секции печи парового риформинга Н-1, проходит сверху вниз катализаторные трубы. В результате реак­ции, протекающей на катализаторе, загруженном в катализаторные трубы, полу­чается равновесная смесь, состоящая из Н2, СО, СO2, СН4 и Н2O.

Для предотвращения образования кокса и отложения его на катализаторе технологический пар подается в избытке, превышая стехиометрическое количест­во, требуемого на реакцию.

Полученный конвертированный газ (парогазопродуктовая смесь) выходит из печи парового риформинга при температуре 888 °С и далее направляется в те­плообменник. В теплообменнике происходит охлаждение питательной воды до температуры 320-343 °С, регенерированное тепло используется для генериро­вания насыщенного пара высокого давления.

Кстати, прочтите эту статью тоже: Гидродеароматизация

Общий тепловой эффект реакций парового риформинга является в сильной степени эндотермическим, поэтому для достижения требуемой степени конверсии необходим подвод тепла.

Конструкция печи парового риформинга

Печь парового риформинга

Печь парового риформинга

Печь имеет сложную конструкцию, разработанную с уче­том технологических требований процесса с целью обеспечения безопасной экс­плуатации и хорошими технико-экономическими показателями. Для обеспечения расчетной степени конверсии без перегрева внешней поверхности поддерживает­ся необходимая температура газа в катализаторных трубах. Благодаря небольшо­му диаметру труб увеличивается площадь теплообменной поверхности и улучша­ется перемешивание газа в слое катализатора. В результате печи риформинга ра­ботают при максимальных давлениях и температурах.

По конструкции печь состоит из двух одинаковых радиантных камер, рабо­тающих параллельно, и расположенной над ними общей конвекционной камеры. Процесс паровой конверсии метана осуществляется в реакционных трубах при температуре 780-888 °С за счет внешнего обогрева.

Конверсия окиси углерода и охлаждение синтез-газа

Водородсодержащий газ после парового риформинга и охлаждения поступает в реактор высокотемпе­ратурной конверсии, где избыточный пар превращает большую часть СО в С02 и Н2 при прохождении через слой катализатора.

Синтез-газ, подвергнутый конверсии, охлаждается, отдавая тепло потокам системы выработки водяного пара. Далее частично охлажденный синтез-газ поступает в воздушный, а затем на доохлаждение в водяной холодильник, где охлаждается до температуры 35 °С и поступает в сепаратор для разделения смеси на неочищенный водород и технологический конденсат.

Технологический конденсат смешивается с химочищенной водой, посту­пающей из сетей завода и направляется в деаэратор, а неочищенный водород подается в блок короткоцикловой адсорбции.

Короткоцикловая адсорбция водородсодержащего газа

Поток неочищен­ного водородсодержащего газа поступает в блок короткоцикловой адсорбции (КЦА), где происходит удаление примесей в процессе циклической адсорбции. Для выполнения заданной степени концентрирования водорода и удаления при­месей в процессе используются многочисленные адсорбционные слои. Принятая схема блока позволяет извлечь водород с концентрацией 99,5 % (об.) из кон­вертированного газа, а сбросной газ направляется в качестве топлива в реакторную печь.

Кстати, прочтите эту статью тоже: Установка производства серы - процесс Клауса

Блок короткоцикловой адсорбции (КЦА)

Блок короткоцикловой адсорбции (КЦА)

В блоке КЦА происходит очистка конвертированного водородсодержащего газа от примесей метана, окислов углерода путем адсорбции загрязнений на ад­сорбенте при высоком давлении и десорбции при низком давлении.

Блок утилизации тепла дымовых газов

В блоке утилизации тепла дымовых газов и продуктовых потоков произво­дится водяной пар высокого давления за счет охлаждения дымовых газов и про­дуктовых потоков. Одновременно с этим предусмотрено использование тепла дымовых газов для нагрева питательной воды, перегрева производимого водяного пара и подогрева воздуха, подаваемого к горелкам печи.

Материальный баланс

Достоинства и недостатки

Недостатки

  • Высокие выбросы дымовых газов в атмосферу
  • Высокие капитальные затраты
  • Высокая стоимость перегретого водяного пара

Достоинства

  • Наиболее проработанный и распространенный вид производства водорода в нефтехимической промышленности
  • Относительно низкие температуры процесса
  • Вариативность проекта установки в зависимости от требований заказчика

Существующие установки

Спрос на водород растет в связи с переходом на потребление более чистых и легких нефтяных топлив, в то время как нефтяное сырье становится все тяжелее. В связи с этим трудно представить современный НПЗ без установки производства водорода. УПВ может отсутствовать только в составе НПЗ, работающих по профилю первичной переработки нефти. Стоит отметить, что для производств, обладающих развитой архитектурой вторичных процессов, ресурсов одной УПВ может быть недостаточно.

Трубчатые печи: конструкция и характеристики

Трубчатая печь является аппаратом предназначенным для передачи нагреваемому продукту тепла выделяющегося при сжигании топлива в топочной камере печи.


Характеристики

Основными характеристиками трубчатых печей являются: производительность печи, количество сырья, нагреваемое в трудных змеевеках в единицу времени.

Коэффициент полезного действия печи и экономичность ее эксплуатации выражается отношением количества полезно используемого тепла к общему количеству тепла, которое выделяется при полном сгорании топлива.

Принцип работы


Внутри печи расположен многократный изогнутый стальной трубопровод змеевик, по которому непрерывно прокачивается нагреваемой смесь. Смесь подается в конвекционную секцию после чего проходит радианную секцию. Жидкое и газообразное топливо сжигают в горелках радиантной камеры.

В результате повышается температура дымовых газов и светящегося факела представляющего собой раскаленные частицы горячего топлива. Тепловые лучи падают на наружные поверхности труб и внутренние поверхности стен радиантной камеры печи.

Нагретые поверхности стен в свою очередь излучают тепло, которые также поглощается поверхностями радиантных труб. Большая часть используемого тепла передается в радиантные секции остальное в конвекционные секции.

Дымовые газы проходят конвекционную секцию, омывают находящиеся там трубы отдавая тепло. Эффективность передачи тепла конвекцией обусловлено скоростью движения дымовых газов. Пройдя конвекционную камеру дымовые газы уходят в дымовую трубу.

Конструкция

Каркас

Нагрузка от веса печных труб, двойников, кровли площадок и лестниц в большинстве конструкций воспри­нимается каркасом, состоящим из стоек, ферм и связующих элементов. В зависимости от размеров печи принимается та или иная система каркаса.

Кстати, прочтите эту статью тоже: Шатровая печь

Каркас каждой из печей входящих в блок выполнен в виде 6 пролетной пространственной конструкции состоящий из п-образных рам установленных на фундаментные опоры и связанных между собой сводовой и подовой рамами.


Каркасы обеих печей связаны горизонтальными балками по высоте радиантных камер, торцевыми балками потолочный рамы. Дымовая труба шибером устанавливается на потолочную раму.

Всегда предусматривают защиту каркаса от излиш­него перегрева путем применения тепловой изоляции или оста­вления зазоров между стойкой каркаса и обмуровкой.

Змеевик

Нагреваемый продукт движется в змее­вике, расположенном в п е чи. Змеевик состоит из труб и соеди­нительных частей. Различают однопоточные, двухпоточные и многопоточные змеевики.

Соедините льные части — двойники (ре турбенды) и калачи дают возможность очищать внутренние по­верхности труб от отложений солей и различных загрязнений, осматривать их и замерять толщины стенок труб в различных местах змеевика.

При полном отсутствии загрязнения внутрен­ней поверхности змеевика и наличии надежных способов кон­троля толщины стенки трубы возможно применение цельно­сварного змеевика (без ретурбендов).

Змеевик изготовляют из гладких бесшовных труб с толщиной стенок от 4 до 30 мм в за­висимости от температуры, давления и диаметра. В некоторых конвекционных печах для деструктивной гидрогенизации с целью увеличения поверхности нагрева применяют толстостен­ные трубы из легированной стали с ребристой насадкой из угле­родистой стали.

Выбирая материал труб, нужно учитывать разность темпе­ратур при передаче тепла через ряд тепловых сопротивлений. Во время эксплуатаций печи эти сопротивления не остаются по­стоянными и в какой-то период температура стенки трубы по­вышается до некоторого предела, когда дальнейшая работа мо­жет привести к аварии.

В данном примере, все сырьевые змеевики горизонтального типа. Радиантные и конвективные змеевики каждой печи, входящих в блок, 4-х поточные. Радиантные змеевики размещены вдоль фронтовых стен радиантных камер по одному потоку с каждого фронта. Направление потока снизу вверх.


Трубные решетки

Трубные решетки яв­ляются опорами для труб продуктового змеевика.

Трубные решетки, омывае­мые дымовыми газами с температурой до 800° С, изготовляют из серого чугуна марки СЧ 21-40, а иногда из листовой стали.

Трубные решетки, кото­рые омываются дымовыми газами с температурой до 1000° С, изготовляют из жа­ростойкого чугуна, а при температуре выше 1000° С их марки ЭИ-316. Толщину отливок рекомендуется принимать не менее 20 мм. Под каждую трубу в месте соприкосно­вения ее с решеткой подкладывают асбестовый картон толщи­ной 5—6 мм .

В зависимости от количества опирающихся труб трубные решетки радиантной секции делятся на двух-, трех-, четырех-, пяти- и шеститрубные. Решетки покрывают слоем термоизо­ляции.

Трубные подвески

Трубные подвески поддерживают радиантные трубы в про­лете между трубными решетками и предотвращают их прови­сание.

Кстати, прочтите эту статью тоже: Форсунки и горелки

Трубные подвески устанавливают внутри топочной камеры, где температура дымовых газов достигают 1100° С.

Панели


Горелки

Короба герметично по периметру сварены между собой и с каркасом. В каждой печи установлены по 12 газомазутных горелок. На каждой основной горелке установленные сигнализаторы наличия пламени и постоянно действующая пилотная горелка.

Шибер

Шибер слу­жит для регулирования тя­ги. Материал для лопасти шибера — серый чугун СЧ 15-32.

Лестницы и площадки

Система лестниц и площадок обслуживания включает: три яруса замкнутых площадок вокруг блока печей, 5 ярусов торцевых площадок для обслуживания блоков камер конвекции и торцевых гляделок. Основные площадки соединены маршевыми лестницами.


Схемы трубчатых печей

Ниже приведены распространенные схемы отечественных трубчатых печей.

Печи типа СС

Кстати, прочтите эту статью тоже: Цилиндрические печи типа ЦС

Цилиндрическая камера радиации установлена на столбчатом фундаменте для удобства обслуживания газовых горелок, размещенных в поду печи. Радиантный змеевик собран из вертикальных труб на приваренных калачах; в центре пода печи установлена газомазутная горелка. Змеевики упираются на под печи, вход и выход продукта осуществляется сверху.

Печь типа ЦД4

Печь типа ЦД4, продольный разрез которой показан на рис. XXI-13, является радиантно-конвекционной, у которой по оси камеры радиации имеется рассекатель-распределитель в виде пирамиды с вогнутыми гранями, представляющими собой настильные стены для факелов горелок, установленных в поду печи.

Рассекатель-распределитель разбивает камеру радиации на несколько независимых зон теплообмена (см. рис. XXI-13, их четыре) с целью возможной регулировки теплонапряженности по длине радиантного змеевика. Внутренняя полость каркаса рассекателя разбита на отдельные воздуховоды; в кладке грани рассекателя по высоте грани есть каналы прямоугольного сечения для подвода вторичного воздуха к настильному факелу каждой грани. Каждый воздуховод оснащен поворотным шибером, управляемым с площадки обслуживания.

В кладке граней рассекателя на двух ярусах по высоте граней расположены каналы прямоугольного сечения для подвода вторичного воздуха из воздуховодов к настильному факелу каждой грани. Изменяя подачу воздуха через каналы, можно регулировать степень выгорания топлива в настильном факеле, что позволяет выравнивать теплонапряженность по высоте труб в камере радиации.

Радиантный подвесной змеевик состоит из труб, расположенных у стен цилиндрической камеры. Настенные радиантные трубы размещены в один ряд и имеют одностороннее облучение, а радиальные с двусторонним облучением размещены в два ряда.

Печи типа КС

Печи типа КД4






Технология получения синтез-газа паровой конверсией углеводородов


Cинтез-газ является смесью водорода и оксида углерода и широко используется в химической промышленности для получения базовых продуктов – аммиака, метанола, уксусной кислоты и др. Кроме того, он применяется в качестве экологически чистого источника тепловой энергии.

Сегодня существуют три основных метода производства синтез-газа. 1. Газификация угля. Данный процесс основан на взаимодействии каменного угля с водяным паром и протекает по формуле

Приведенная реакция является эндотермической, и равновесие при температуре 900…1000°С сдвигается вправо. Разработаны различные технологические процессы, использующие парокислородное дутье, благодаря которому наряду с упомянутой реакцией параллельно протекает экзотермический процесс сгорания угля, который обеспечивает необходимый тепловой баланс. 2. Конверсия метана – взаимодействие водяного пара и метана при повышенных значениях температуры и давлении в присутствии никелевых катализаторов (Ni–Al2O3):

CH4 + H2O → CO + 3H2.

Вместо метана можно использовать любое сырье, содержащее углеводороды. 3. Парциальное окисление углеводородов. Данный процесс, происходящий при температурах выше 1300°С, заключается в термическом окислении углеводородов:

CnH2n +2 + 1/2nO2 → nCO + (n + 1)H2.

Настоящее исследование посвящено усовершенствованию промышленного способа получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья в трубчатых реакторах с использованием катализаторов определенной конструктивной формы с целью внедрения на крупнотоннажных производствах аммиака, метанола, уксусной кислоты и водорода.

При осуществлении указанного процесса реализуются следующие эндои экзотермические реакции:

СnHm + nH2O → nCO + (n + m/2)H2 (–ΔHо 298 < 0) (1)

CO + H2O ↔ CO2 + H2 (–ΔHо 298 = 41 кДж/моль) (2)

CH4 + H2O ↔ CO + 3H2 (–ΔHо 298 = –206,4 кДж/моль)(3)

Промышленный паровой риформинг осуществляют в присутствии никельсодержащего катализатора в виде гранул различных размеров и форм, которыми заполняют трубы реактора. В контактных аппаратах указанного типа (печах риформинга) необходимая для протекания химического процесса теплота передается из зоны сжигания топлива путем ее конвективного и излучательного переноса на внешние поверхности реакционных труб. Благодаря высокой теплопроводности металла труб теплота аккумулируется газовой фазой и гранулами катализатора. Температура последних, как правило, на 100°С ниже (особенно в центральной части слоя катализатора) температуры внутренней стенки трубы.

Указанный способ производства синтез-газа имеет следующие характерные недостатки:

  • необходимость поддержания более высокой температуры наружных стенок труб по сравнению с температурой слоя катализатора, что приводит к повышенному расходу энергоносителей и сокращению срока эксплуатации реакционных труб;
  • выбор оптимальных размеров гранул катализатора зачастую не согласуется с диаметром трубы, вследствие чего могут возникать неоднородности полей температур и скоростей газа по сечению труб.

Авторам работ [1–4] удалось преодолеть большинство из перечисленных недостатков. Предложенный ими усовершенствованный способ получения синтез-газа, обогащенного водородом и монооксидом углерода, основан на калитическом риформинге углеводородсодержащего сырья, подаваемого в смеси с водяным паром в обогреваемые трубы реактора с загруженным катализатором.

При этом впервые в мировой практике катализатор представляет собой гранулы сферической формы с отношением их диаметра к высоте загруженного слоя 1,0⋅10–3… 2,0⋅10–3 , в которых имеются цилиндрические каналы размером в 2–10 раз меньше, чем диаметр шаров. Содержание никеля в катализаторе составляет 9…25 мас. % в пересчете на монооксид никеля, в качестве материала для изготовления шаров используют глинозем определенной марки.

Недостатком данного процесса получения синтезгаза является повышенный перепад давления по высоте реакционных труб, что препятствует наращиванию мощности агрегатов аммиака.

С целью оптимизации процесса паровой конверсии углеводородов предложено вести его в реакционных трубах со стенками меньшей толщины, что может быть достигнуто повышением активности катализатора, снижением газодинамического сопротивления, улучшением эксплуатационного ресурса реакционных труб и снижением расхода топливного газа [5–7].

Поставленная задача решается в способе получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородного газа. Процесс включает подачу технологического углеводородного газа после сероочистки в смеси с водяным паром в обогреваемые жаропрочные трубы увеличенного внутреннего диаметра, внутри которых размещают катализатор с определенными поверхностью и порозностью в виде слоя гранул, содержащих никель, при этом периферийные гранулы находятся в непосредственном контакте с внутренними поверхностями стенок труб

Основные отличительные признаки предлагаемого способа состоят в том, что катализатор загружают в виде слоя перфорированных гранул в форме шара или цилиндра с удельной площадью поверхности слоя 400…700 м2/м3 и порозностью 0,5…0,7 м3/м3, имеющих параллельные цилиндрические каналы с отношением диаметра цилиндра или шара к диаметру канала цилиндра или шара от 4,0 до 6,0, а отношение внутреннего диаметра обогреваемой трубы реактора к диаметру цилиндра или шара катализатора составляет от 4,0 до 12,5.

Дополнительные отличительные признаки предлагаемого способа заключаются в том, что в качестве обогреваемых реакционных труб используют трубы со стенками толщиной 9…14 мм, изготовленные методом центробежного литья из жаропрочного сплава, включающего углерод, хром, никель, ниобий, церий, кремний, марганец, ванадий, титан, алюминий, вольфрам и железо при следующем соотношении компонентов, мас. %: углерод – 0,30…0,40; хром – 20…23; никель – 30…33; ниобий – 1,0…1,7; церий – 0,07…0.11; кремний – 0,45…0,95; марганец – 0,8…1,45; ванадий – 0,0005…0,15; титан – 0,0005…0,15; алюминий – 0,005…0,10; вольфрам – 0,05…0,5; железо и примеси – остальное. Такой сплав аустенитной структуры, с одной стороны, характеризуется улучшенными физико-механическими показателями при высоких температурах, что позволяет уменьшить толщину стенки трубы и улучшить процесс теплопередачи, а с другой – это делает возможным ведение процесса в более мягком температурном режиме, способствуя тем самым лучшему использованию углеводородного сырья и продлению прогнозируемого срока эксплуатации реакционных труб с 12,5 до 15 лет [6].

Апробация в условиях, максимально приближенных к промышленным режимам, осуществлялась следующим образом.

Предлагаемый усовершенствованный способ парового риформинга (пример №1)

В трубы реактора первичного риформинга опытнопромышленной установки по производству аммиака, содержащего семь труб наружным диаметром 125 мм, толщиной стенки 12 мм и длиной 14 м, непрерывно поступает смесь водяного пара с природным газом при расходе 588 нм3/ч и абсолютном давлении 3,1 МПа.

Температуру смеси на входе в реактор поддерживают на уровне 460°С, соотношение пар: газ составляет 3,5.

В межтрубное пространство печи риформинга на горелки подается топливный природный газ, при сжигании которого теплота конвекцией и излучением нагревает наружную поверхность труб и находящийся в них слой катализатора высотой 12 м.

В роли катализатора используют серийно выпускаемый катализатор НИАП-03-01 по ТУ №2171-006-00209510– 2007 удельной площадью поверхности 450 м2/м3 и порозностью 0,535 м3/м3 в форме цилиндров с параллельными каналами с отношением диаметра цилиндра к диаметру цилиндрического канала, равном 5. Отношение внутреннего диаметра обогреваемой трубы реактора к диаметру цилиндра катализатора составляет 6,5.

Способ, взятый для сравнения (пример №2 – прототип)

Условия получения синтез-газа аналогичны описанному выше. В качестве катализатора выбран НИАП03-01Ш шаровой формы, отвечающий требованиям ТУ №2171-007-83940154–2011, удельной площадью поверхности 390 м2/м3 и порозностью 0,485 м3/м3, загруженный в реакционные трубы наружным диаметром 125 мм и толщиной стенки 16 мм. Отношение диаметра шара к диаметру цилиндрического канала составило 5, а внутреннего диаметра обогреваемой трубы к диаметру шара катализатора – 6.

Предлагаемый усовершенствованный способ парового риформинга (пример №3)

Способ осуществления аналогичен прототипу. Катализатор в форме шара площадью поверхности 470 м2/м3 и порозностью 0.605 м2/м3 загружен в реакционные трубы толщиной стенки 9 мм и наружным диаметром 125 мм.

Отношение внутреннего диаметра обогреваемой трубы к диаметру шара катализатора составило 7.

Предлагаемый усовершенствованный способ парового риформинга (пример №4)

Условия осуществления аналогичны указанным в примере 1. В реакторе первичного риформинга опытно-промышленной установки использовали трубы толщиной 14 мм. Отношение внутреннего диаметра обогреваемой трубы к диаметру цилиндра катализатора составило 6.0.

Полученные данные в сравнении с прототипом приведены в табл. 1.

Влияние условий проведения парового риформинга природного газа на параметры работы реакционных труб

Как видно, по сравнению с известным методом наблюдается снижение содержания метана в вырабатываемом синтез-газе, что указывает на повышение активности катализатора.

Согласно выполненным кинетическим и теплофизическим расчетам, установка в печи риформинга реакционных труб с уменьшенным внутренним диаметром (101 мм) позволит снизить температуру конвертированного газа и содержание остаточного метана, существенно повысить производительность установки по синтезгазу (табл. 2).

Параметры работы печи риформинга с реакционными трубами разного диаметра

Производительность, т/сутки 1950…2000 1750…1800 1440 1440 (база)
Внутренний диаметр трубы, мм 101 101 102 89
Температура конвертированного газа, °С:
в центре трубы 718,5 721,1 732,1 732,9
у стенки 743,5 745,8 755,6 752,4
Линейная скорость, м/с:
в центре трубы 2,233 2,084 1,996 2,536
у стенки 2,288 2,126 2,002 2,549
Содержание метана в сухом газе на выходе из трубы, мол. % 13,2557 12,1942 11,7262 12,6346
Соотношение пар : газ на выходе из реакционной трубы 0,8831 0,8533 0,8009 0.8260

Выводы

Использование предлагаемого технического решения позволяет улучшить теплоперенос через стенку труб в печи риформинга и как результат снизить разность температур между их наружной поверхностью и выходящим синтез-газом. Одновременно с этим удается уменьшить перепад давления по катализаторному слою, сократить расход топливного газа на проведение конверсии, увеличить выработку синтез-газа на агрегатах аммиака.

Читайте также: