Принципиальная схема отопления для стадии п

Обновлено: 14.05.2024

Форумы по отоплению, кондиционированию, энергосбережению

что по Вашему должно входить в чертежи стадии П?

Проекты, расчеты, автоматизация проектирования

Модераторы: шидол, Code

По графике: листы Общих данных, структурная схема (вентиляция), принципиальная схема (отопление, холодоснабжение), функциональные схемы вентсистем и холодильных машин (например). Насколько помню из разговора с инспектором в экспертизе: планы "в линию" на "сложных" объектах могут потребовать. Что сложный объект, что не сложный - определяю интуитивно))) Давал планы вентиляции (в линию) подземных автостоянок.
Процессы в i-d диаграмме, таблица воздухообменов (уж не знаю к графике это отнести или к записке).
По сути: в хорошей стадии П заложены все идеи стадии РП. Определяются предварительные нагрузки по электрике, тепловой можности, что где планируется разместить и т.д. В РП всё это корректируется, вычерчивается, просчитывается, уточняется и т.д.
В Экспертизе утверждают ведь ключевые моменты (расчёты, соответствие нормам и т.д), нести туда чертежи РП (некоторые называют "Утв.часть") можно, но лучше не нужно, поскольку тогда формально проверяющему надо подписаться под всем этим. А это в их задачу не входит (насколько я понимаю).

Прошу прощения за поздний ответ, но возможно это кого-нибудь еще интересует.
Недавно столкнулся с аналогичной проблемой и вот что накопал:

В официальных документах различают две основных стадии проектирования:
"Проектная документация" - в простонародье "стадия П"
"Рабочая документация" - в простонародье "стадия Р"

Еще в некоторых документах иногда встречается промежуточное понятие "Рабочий проект" (или "стадия РП"), однако однозначно идентифицировать эту стадию и что в нее входит - мне не удалось.

Состав и содержание "Проектной документации" (т.е. стадии П) регламентируется Постановлением правительства РФ № 87 от 16.02.2008 г. - именно на этот документ привел ссылку выше уважаемый labuh.

Состав и содержание "Рабочей документации" (т.е. стадии Р) регламентируется соответствующими ГОСТами системы СПДС о правилах выполнения рабочей документации.

Например - Проект системы отопления и вентиляции:

Стадия П, в соответствие с Постановлением № 87 от 16.02.2008 г. должна включать:
- пояснительную записку (текстовую часть);
- принципиальные схемы систем отопления и вентиляции.

Стадия Р, в соответствие с ГОСТ 21.602-2003 должна включать:
- общие данные по рабочим чертежам;
- чертежи (планы, разрезы и схемы) систем;
- чертежи (планы и разрезы) установок систем;
- эскизные чертежи общих видов нетиповых изделий;
- спецификацию оборудования, изделий и материалов.

О проектировании современных систем отопления в многоэтажных зданиях жилого и общественного назначения

Действующие в настоящее время строительные нормы требуют установки у нагревательных приборов систем отопления термостатических клапанов, которые автоматически поддерживают в помещении постоянную, заданную потребителем, температуру. Это экономит до 20 % тепла за счет использования теплопоступлений от солнечной радиации, бытовых и производственных тепловыделений. В связи с тем, что различные нормативные документы по-разному трактуют необходимость установки термостатов (СНиП 41–01–2003 п. 6.5.13 – «как правило», МГСН 3.01–01 п. 5.36 – всегда), современными системами можно условно назвать системы, оснащенные термостатами.

Наиболее широкое применение в гражданском строительстве Москвы нашли три типа водяных систем отопления: вертикальные однотрубные, вертикальные двухтрубные и горизонтальные двухтрубные поквартирные системы. Все эти типы систем широко применяются при проектировании в нашей организации. Анализ многолетней работы этих систем в специфических условиях Москвы показывает, что каждая из этих систем обладает как своими достоинствами, так и своими, иногда неприемлемыми, недостатками. В тех или иных условиях строительства и эксплуатации диктующими становятся различные достоинства или недостатки систем.

Вертикальные однотрубные системы

В инженерном сообществе сложились некоторые мифы. Один из них – вертикально-однотрубная система устарела, не отвечает современным требованиям, ее проектирование нужно если не прекратить, то максимально ограничить.

На самом деле это совершенно не так. Однотрубная система обладает такими достоинствами, которые в наших обычных условиях эксплуатации зданий выдвигают ее на первое место.

Главное из достоинств заключается в том, что эта система гораздо более надежна, чем двухтрубная.

В узле обвязки нагревательного прибора (рис. 1) теплоноситель разветвляется на два потока. Один затекает в прибор, другой проходит по замыкающему участку, минуя его. Конструкция термостата создается таким образом, чтобы обеспечить максимальное количество теплоносителя в первом потоке. Для этого отверстие для прохода воды и диаметр плунжера делается максимальным. Термостат (в отличие от двухтрубной системы) практически не засоряется, если качество теплоносителя далеко от идеала. При несанкционированной замене отопительных приборов (чем часто грешат наши граждане) изъятие термостата не приводит к таким катастрофическим последствиям, как в двухтрубных системах. В журнале «Энерго-сбережение», № 6, 2004 наш киевский коллега В. Ф. Гершкович очень правильно описал картину, к чему приводит такая замена, – происходит «короткое замыкание», дезорганизующее всю работу системы.

Обвязка нагревательного прибора

Существуют и другие преимущества однотрубных систем: меньшая стоимость, большая простота заготовок, возможность унификации деталей системы, легкость монтажа и т. п., что в настоящее время не так актуально, но тоже имеет свое значение.

Обладают эти системы и недостатками. Основной из них – это то, что в том случае, если помещение перегрето и термостат закрылся, теплоноситель минует отопительный прибор не остывая. В этом смысле можно сказать, что однотрубная система не экономит, а не дает перерасходовать тепло. В течение отопительного сезона существуют такие периоды, когда температура на улице 18–20 °С, а система отопления работает потому, что завтра будет опять –5 °С и отключать систему нецелесообразно. Можно назвать такой режим режимом минимум. При этом режиме все термостаты могут быть закрыты, а теплоноситель из подающей линии перетекает в обратную, почти не остывая. Это крайне нежелательное явление, если источником теплоснабжения является ТЭЦ. Отсутствие массовых нареканий на это со стороны теплоснабжающих организаций при том, что в Москве построены тысячи однотрубных систем отопления с термостатами (все типовые жилые дома последнего времени), можно объяснить только тем, что эти явления краткосрочны и происходят при относительно высоких наружных температурах. К тому же, обратный теплоноситель прежде, чем вернуться в теплосеть, как правило, проходит предварительное охлаждение в первой ступени подогрева системы горячего водоснабжения.

Необходимо сказать, что зона применения вертикально-однотрубных систем отопления с термостатами ограничивается минимальным количеством этажей в стояке. Например, при количестве этажестояков меньше 7 температура воды, выходящей из последних приборов, снижается в расчетном режиме до 18–20 °С, что недопустимо. Объясняется это тем, что в домах, запроектированных в соответствии со вторым этапом энергозащищенности, теплопотери пониженные и, соответственно, расход теплоносителя в стояке также небольшой. При коэффициенте затекания теплоносителя в прибор 0,2–0,3 и малом количестве воды в стояке количество теплоносителя, затекающего в прибор, становится неприлично малым и вода остывает до указанных температур. В нашей практике мы рекомендуем не применять однотрубные системы при количестве приборов в стояке меньше 9–10. Максимальное количество приборов в стояке равно 25 (объясняется это возможностями программ для ЭВМ).

Еще одной особенностью однотрубных систем является то, что расход теплоносителя в системе мало зависит от степени открытия термостатов. Если в режиме максимум (все термостаты открыты) расход воды по стояку принять за 100 %, то расход по замыкающим участкам может быть 80 %. В режиме минимум (все термостаты закрыты) расход воды по замыкающим участкам несколько увеличится и общий расход по системе может достигать 90 %. С достаточной степенью правдоподобия можно сказать, что расход воды в однотрубных системах – величина постоянная.

Этот факт влияет на балансировку стояков в системе.

В некоторых случаях (например, при расчете системы методом постоянных перепадов температур на стояках) расчетный перепад давлений на стояках не соответствует расчетным располагаемым напорам в местах расположения этих стояков. При этом в стояк будет поступать количество теплоносителя, отличное от расчетного. Это приводит к перегреву или недогреву помещений. Такая же ситуация может иметь место, если сопротивление трубопроводов при монтаже или реконструкции системы будет отличаться от расчетного. Для уравнивания фактического количества теплоносителя в стояке с расчетным на стояках устанавливаются балансировочные клапаны (БК).

Факт постоянства расхода теплоносителя в стояке влияет на тип БК.

В качестве балансировочных в этих системах могут устанавливаться или клапаны типа регулируемой диафрагмы с ручным управлением, или автоматические клапаны типа регуляторов постоянства расхода. Нужно иметь в виду, что БК создают дополнительную потерю давления в системе в размере 15–20 кПа.

Здесь уместно поговорить о другом мифе – в системах отопления обязательно должны устанавливаться БК. Дело в том, что в Москве успешно работают многие тысячи вертикально-однотрубных систем, в том числе и с термостатами, без всяких БК.

Объяснение этому простое: эти системы рассчитаны методом переменных перепадов температур на стояках. При этом методе по выбранным диаметрам трубопроводов системы рассчитываются фактические (действительные) расходы теплоносителя в стояках, гидравлическая увязка стояков при этом равна 100 %. Это при правильном теплоснабжении здания приводит к соответствию теплопроизводительности нагревательных приборов теплопотерям помещений, системы в своей массе работают без нареканий. Большинство жалоб, связанных с недогревами помещений, объясняются неправильным распределением теплоносителя между системами (ближайший дом к ЦТП перегрет, дальний – недогрет). Многолетняя практика эксплуатации типовых зданий в Москве подтверждает все вышесказанное.

Вертикальные двухтрубные системы

В западном мире наибольшее распространение получили не однотрубные, а двухтрубные системы отопления.

В отличие от однотрубных систем, двухтрубные системы напрямую экономят тепло. В том случае, если помещение перегрето, термостат уменьшает или прекращает доступ теплоносителя в прибор. Если теплоноситель, который не поступил в прибор, попадет в прибор соседнего помещения, то он перегреет это помещение и термостат этого помещения прикроется. Таким образом, излишний теплоноситель из циркуляции исключается. В режиме минимум в двухтрубную систему поступает теплоноситель, циркулирующий только по нерегулируемым стоякам (лестничные клетки, лифтовые холлы, межквартирные коридоры). В этом отношении двухтрубные системы более прогрессивны, чем однотрубные.

На рис. 2 представлен фрагмент двухтрубной системы 25-этажного здания.

Фрагмент вертикальной двухтрубной системы отопления

Для обеспечения необходимой тепловой и гидравлической устойчивости в узлах обвязки нагревательных приборов устанавливаются термостаты, способные сдросселировать значительную потерю давления. Из теории автоматизации известно, что для качественной работы регулирующего органа его авторитет (отношение потери давления в регуляторе к потере давления на регулируемом участке) должен быть в пределах 30–70 %. Таким образом, эта потеря может колебаться от 8–10 кПа на периферии до 25–28 кПа у основания стояка.

Для обеспечения такой потери давления, учитывая, что расчетный расход теплоносителя в приборе может быть небольшим, размер дросселирующего отверстия термостата должен быть очень маленьким. Практически минимальное отверстие в термостатах для двухтрубных систем сравнимо даже не с булавочной головкой, а с булавочным острием. В том случае, если теплоноситель в системе имеет загрязнения, такие отверстия легко засоряются.

Для того чтобы этого не происходило, требуется качественное обслуживание системы, постоянная очистка грязевиков и еще ряд известных мероприятий. В том случае, если заказчик не в состоянии гарантировать такое обслуживание (а также сохранность термостатических клапанов у приборов), применение двухтрубной системы не является оптимальным решением. Поэтому при выборе типа системы отопления мы рекомендуем в первую очередь выяснять, в каких условиях будет эксплуатироваться здание.

При выборе типа термостатов следует обращать внимание, во-первых, на шумовые характеристики термостатов (не зашумит ли термостат при максимальных потерях давления в нем) и, во-вторых, на то, какое количество фиксированных настроек может этот термостат обеспечить. Чем больше это число, тем точнее можно обеспечить распределение теплоносителя по нагревательным приборам.

Вертикально-двухтрубные системы проектируются наиболее часто с нижней прокладкой разводящих магистралей. Объясняется это тем, что из-за разности температур в подающем и обратном стояках возникают значительные гравитационные давления (в 25-этажном доме до 10 кПа). Для приборов различных этажей эти давления различны, чем выше прибор, тем больше гравитационное давление. При нижнем расположении разводящих магистралей дополнительное гравитационное давление используется для преодоления теплоносителем трубопроводов стояка. В этих условиях система работает более равномерно. Однако, если это невозможно, можно проектировать системы и с верхним расположением подающей магистрали. Рекомендуется избегать систем с верхним расположением подающей и обратной магистралей, так как в этом случае трудно исключить засорение нижних приборов, они становятся естественными сборниками шлама.

Для балансировки в основании стояков устанавливаются БК. Однако балансировка системы и тип БК не такие, как в однотрубной системе. Как было сказано выше, расход теплоносителя в двухтрубной системе колеблется от максимума в режиме максимум почти до нуля в режиме минимум. При этом потери давления в трубопроводах и арматуре, имеющей постоянное гидравлическое сопротивление, изменяются и тоже стремятся к нулю. В этих условиях БК должны обеспечивать постоянный перепад давления в месте установки. Поэтому балансировку осуществляют регуляторы постоянства перепада давления. Таким образом, БК в двухтрубной системе не только гидравлически увязывают первый стояк с последним, но и обеспечивают постоянство условий работы всех стояков при различных режимах работы системы. Установка в двухтрубных системах в качестве БК регуляторов с ручным управлением типа регулируемой диафрагмы ошибочна, так как она обеспечивает балансировку системы только в расчетном режиме (режиме максимум). Установка этих регуляторов возможна для некоторой юстировки расходов теплоносителя по стоякам.

Хотелось бы вернуться ко второму мифу про системы отопления – необходимости повсеместной установки БК. Конечно, в том случае, если в разводящих магистралях мы теряем значительный напор, сравнимый с потерей давления в стояках и термостатах (например, 15–20 кПа), установка БК обязательна. Однако, если в разводящих магистралях мы теряем напор незначительный (3–4 кПа), то БК, по нашему мнению, можно не устанавливать.

Дело в том, что в двухтрубной системе разрегулировка наступает из-за изменения потерь давления в нерегулируемых элементах (трубопроводах, задвижках, вентилях и т. п.) при изменениях расхода теплоносителя, а также из-за изменения гравитационного напора. БК, установленные в основании стояка, не в состоянии изменить разбалансировки, возникающие после них (потери в стояках, гравитационный напор), потому что их основная функция – поддерживать постоянный перепад давления после себя, что бы после них ни происходило. Они могут ликвидировать только те разрегулировки, которые возникают до них (в случае установки регулятора постоянства перепада давления в узле ввода – разрегулировки от изменения потери давления в разводящих магистралях).

Зона применения двухтрубных систем отличается от зоны применения однотрубных: стояки двухтрубных системы могут быть и одноэтажными. Ограничение высотности должно быть скорее сверху. Хотя существующие программы для ЭВМ позволяют проектировать и 25-этажные системы, мы рекомендуем ограничивать высотность 17–20 этажами. При уменьшении высоты системы снижаются вертикальные разрегулировки и экономится большее количество тепла.

В заключение хочется предостеречь от ручного расчета двухтрубных систем, так как он достаточно трудоемок. Дело в том, что происходит значительное охлаждение теплоносителя в стояках, если они не изолированы. При 25-этажном стояке температура у последнего прибора снижается на 10–15 °С, и это нужно учитывать наряду с дополнительными теплопоступлениями от труб на первых этажах. Расчет двухтрубной системы не легче, чем расчет однотрубной.

Горизонтальные поквартирные системы

С теплотехнической и гидродинамической точек зрения горизонтальные поквартирные системы отопления оптимальны. Зона их применения – от одного этажа до максимума, который ограничивается прочностью элементов системы или высотой пожарного отсека высотного здания. Эти системы способны экономить наибольшее количество тепла. Такие системы наименее уязвимы в случае несанкционированного изменения или реконструкции. Они обладают несомненными эстетическими достоинствами. Словом, эти системы почти во всем самые лучшие. За исключением одного – они самые дорогие из рассматриваемых систем. Поэтому они применяются в основном в высокодоходных индивидуальных зданиях в том случае, если заказчик дает на это согласие.

На рис. 3 показана принципиальная схема горизонтальной поквартирной системы отопления. Здесь же приведены ориентировочные рекомендуемые потери давления в элементах системы.

Принципиальная схема горизонтальной поквартирной системы отопления:

1 – отопительный прибор;

3 – квартирный узел регулирования и учета (КУРУ);

4 – главный стояк;

5 – квартирная разводка;

6 – циркуляционный насос системы отопления;

7, 8, 9 – регуляторы перепада давления

Теплоноситель приготавливается в ИТП и циркуляционным насосом (6) подается к секционным узлам ввода. На выходе из ИТП при помощи регулятора (8) или другого устройства (например, частотного регулятора) поддерживается постоянство перепада давлений. В том случае, если на выходе из ИТП (в точках А и Б) располагаемый напор больше 130–150 кПа, в узле ввода также устанавливается аналогичный регулятор (9). Стояками теплоноситель подается на этажи. Здесь возможны варианты: через квартирные (КУРУ) или этажные (ЭУРУ) узлы регулирования и учета тепла теплоноситель распределяется по квартирам. Принципиальная схема КУРУ приведена на рис. 4. ЭУРУ отличаются от КУРУ тем, что к ним могут присоединяться все или несколько квартир этажа. КУРУ могут располагаться в квартире (например, в прихожей или в сантехнической шахте) или вне квартир, ЭУРУ – только вне квартир. Расположение УРУ вне квартир предпочтительнее, так как все обслуживание и контроль производится независимо от жильцов.

Квартирный узел регулирования и учета:

1 – отключающие краны;

4 – датчик температуры;

5 – БК (регулятор постоянства перепада давления);

6 – БК (регулируемая диафрагма);

7 – клапаны для замера давления;

8 – штуцеры для замера давления;

9 – воздушный кран;

10 – спускной кран

В КУРУ осуществляется:

– очистка теплоносителя (2);

– учет расхода тепла на отопление (3, 4);

– поддержание постоянства перепада давления на вводе в квартиру (5);

– в том случае, если на нагревательных приборах термостаты сняты, производится дополнительное дросселирование квартирной системы, которое ограничивает максимальный расход теплоносителя (6), отключение системы или ее части (2).

Для возможности настройки КУРУ и проверки его работоспособности служат штуцеры для замера давления (7 и 8).

На рисунке указаны рекомендуемые потери давления для подбора элементов КУРУ. БК (5) подбирается таким образом, чтобы при полном открытии в нем терялось до 5 кПа, однако в расчетном режиме он должен работать в полузакрытом состоянии (чтобы в случае необходимости он мог открыться). При этом потери давления в нем должны быть около 15 кПа.

Кроме очевидных достоинств: независимости, ремонтопригодности, легкости организации поквартирного учета тепла и т. п. – данная система превосходит вертикальную двухтрубную тем, что БК здесь максимально приближен к отопительным приборам и снимает все разрегулировки, которые возникают до него в процессе работы системы (гравитационные напоры, изменения потери давления в стояке). Это не только лучше стабилизирует систему, но и позволяет настраивать термостаты на большие настройки, что приводит к более плавному регулированию и большей экономии тепла. В поквартирных системах установка БК обязательна.

По нашему мнению, горизонтальные поквартирные системы наиболее перспективны в настоящее время.

Автор приносит благодарность В. В. Невскому (ООО «Данфосс») за сведения, использованные при подготовке статьи.

Системы водяного отопления многоэтажных зданий. Технические рекомендации по проектированию

I. Введение

Практически любое современное здания требуется оборудовать такими инженерными сетями как системы вентиляции. Данные системы должны обеспечивать оптимальные условия микроклимата в помещениях, как для пребывания людей, так и для осуществления различных технологических процессов.

В этой статье будут описаны основные этапы проектирования систем вентиляции, на что нужно обратить внимание и о каких нюансах при проектировании не забыть.


II. Состав проекта по системам вентиляции

Состав документации по системам вентиляции может несколько видоизменяться в зависимости от технического задания Заказчика, типа здания, предпочтений проектировщика, но основная структура проекта всегда имеет общепринятый вид. В больше степени это касается проектной документации (стадия П), состав которой регламентируются Постановлением №87 «О составе разделов проектной документации и требованиях к их содержанию».

Рассмотрим из каких основных элементов состоит документация по системам вентиляции стадий П и Р.

Стадия П:

  1. Титульный лист;
  2. Общий состав проекта (перечень документации по всем разделам, обычно его выдаёт главный инженер проекта);
  3. Содержание тома проекта по вентиляции;
  4. Пояснительная записка;
  5. Планы и/или принципиальные схемы систем вентиляции;
  6. Таблица воздухообменов;
  7. Характеристика отопительно-вентиляционных систем;
  8. Прочие приложения (сюда могут входить расчёты воздухообменов на определённые сложные помещения, расчёты противодымной вентиляции, технические подборки оборудования и прочие документы, которые по каким-либо причинам требуется предоставить вместе с проектом).


Стадия Р:

  1. Титульный лист;
  2. Общий состав рабочей документации (Не всегда прикладывается к документации. Если он требуется – его опять же выдаёт главный инженер проекта);
  3. Содержание тома проекта по вентиляции;
  4. Общие данные (основные отличия от пояснительной записки, выполняемой на стадии П – наличие план-схемы здания с указанием положения систем, большего количества монтажных указаний);
  5. Планы систем вентиляции (в сложных проектах могут дополняться разрезами нагруженных участков и/или венткамер);
  6. Аксонометрические схемы систем вентиляции;
  7. Различные узлы (узлы обвязки воздухонагревателя приточных вентиляционных систем, узлы проходов воздуховодов через ограждающие конструкции, узлы крепления воздуховодов, узлы установки вентиляторов и тд);
  8. Спецификация изделий, оборудования и материалов;
  9. Таблица воздухообменов (в проектах с технологическими процессами дополнительно прикладывают таблицу местных отсосов);
  10. Характеристика отопительно-вентиляционных систем (иногда данную характеристику требуют внести в раздел «Общие данные»);
  11. Прочие приложения (сюда могут входить расчёты воздухообменов на определённые сложные помещения, расчёты противодымной вентиляции, технические подборки оборудования и прочие документы, которые по каким-либо причинам требуется предоставить вместе с проектом).


III. Нормативные документы

При проектировании любых разделов проекта (как стадии П, так и стадии Р) всегда нужно обращаться к нормативной документации. В первую очередь при проектировании систем вентиляции нужно ориентировать на основные нормативные документы общего характера это:


Кроме основных нормативных документов, которые применяются для всех типов зданий, имеется масса нормативных и справочных документов для конкретных типов зданий и помещений. В список, приведённый выше, не включены «Санитарные правила и нормы» (СанПиН), так как обращаться к ним требуется в основном при проектировании производственных и медицинских зданий и помещений. Конечно, есть, например СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях», но за исключением и так очевидных проектировщику пунктов, касательно отопления, вентиляции и кондиционирования, и таблицы параметров микроклимата в жилых помещениях, которая есть в ГОСТ 30494, ничего важного для проектирования вы не найдёте.

IV. Проектирование – 1 этап. Сбор исходных данных для проектирования систем вентиляции

Первым этапом проектирования является сбор исходных данных. Обычно, в начале проектирования вы получаете от Заказчика раздел «Архитектурные решения» (архитектурные планы здания, разрезы), раздел «Технологические решения» (если он требуется в рамках данного здания) и Техническое задание.

Специалисты ООО «Инком Проектирование» формулируют основные положения каждого технического задания на проектирование по каждому из разделов. Составленное техническое задание нашими специалистами в итоге является неотъемлемой частью договора на проектирование.

Рассмотрим основные необходимые исходные данные для проектирования систем вентиляции:

  1. Раздел «Архитектурные решения». Для проектирования систем вентиляции необходимы: планы, разрезы, наличие и высота подвесных потолков. Бывает, что разрезов здания нет, так же как нет экспликации подвесных потолков с высотами, но, обычно, все эти данные можно более-менее точно получить по запросу у Заказчика;


  1. Раздел «Технологические решения». Если раздел выполняется в рамках проектируемого здания – нужно обязательно проектировать системы вентиляции в соответствии с этим разделом. В данном разделе содержится информация о:

а) технологическом оборудовании в здании;

б) вредных выделениях от технологического оборудования;

в) необходимых параметрах микроклимата;

г) количестве людей в помещениях;

д) режиме работы здания и так далее.


  1. Принципиальные решения по системам вентиляции. После получения и изучения АР (Архитектура) и ТХ (Технология), мы предлагаем и далее обсуждаем с Заказчиком принципиальные решения по системам вентиляции, такие как:

а) наличие естественной или механической вентиляции в помещениях

б) расположение вентиляционного оборудования;

в) разбивка на вентиляционные системы;

г) места прокладки основных магистралей воздуховодов и так далее;

  1. Способ теплоснабжения вентиляции. В подавляющем большинстве случаев в общественных и жилых зданиях (встроенная часть) присутствуют приточные вентиляционные системы. Для проектирования необходимо понимать, каким образом в них будет нагреваться поступающий наружный воздух, это может быть электрический воздухонагреватель, либо водяной. Для водяного воздухонагревателя необходимо знать параметры теплоснабжающей воды на подающем и обратном трубопроводе (обычно они в районе 90/70 ºС).


  1. Дополнительные требования к проекту. В зависимости от типа зданий и помещений, к проекту могут применяться дополнительные требования. Это могут быть требования к трассировкам воздуховодов, расположению воздухораспределительных устройств (диффузоры, решетки), расходам воздуха в тех или иных помещениях, компоновке и составу вентиляционных установок, оформлению документации, составлению спецификации и так далее. О наличии специальных требований к проекту желательно уточнять у Заказчика, а так же в процессе проектирования согласовывать с Заказчиком определённые принципиальные решения.

После сбора всех необходимых исходных данных можно приступать к проектированию.

V. Проектирование – 2 этап. Составление таблицы воздухообменов и характеристики отопительно-вентиляционных систем.

После сбора исходных данных, следующим этапом в проектировании систем вентиляции является составление таблицы воздухообменов (ТВО) и характеристики отопительно-вентиляционных систем (ХОВС). Вот один из примеров ТВО и ХОВС, выполненных в программе Excel. Удобство составления данных приложений именно в Excel – автоматизированный расчёт через введённые формулы.

Воздухообмен в помещении определяется по одному из основных типов воздухообменов. Обычно для каждого типа помещения (офис, магазин, кладовая, автостоянка и так далее) нормативными документами установлен определённый тип воздухообмена. Типы определения воздухообмена можно разделить на три группы:

  1. По кратности воздухообмена. Кратность воздухообмена – это отношение объёма воздуха, подаваемого в помещение или удаляемого из него в течение часа, к внутреннему объёму помещения. Так для помещения объёмом 170 м 3 , однократный воздухообмен будет равен 170 м 3 /ч.
  2. По людям. В данном случае количество воздуха подаваемого в помещение определяется через расчёт количества людей находящихся в помещении постоянно или временно (нахождение человека в помещении не более 2 часов непрерывно).
  3. По расчёту. Это самый интересный и в то же время сложный способ расчёта воздухообмена.

Если говорить о простом случае определения воздухообмена по расчёту – это расчёт воздухообмена в санузлах и душевых. К примеру, для административных и бытовых зданий по СП44.13330.2011 принимается расход вытяжного воздуха по количеству находящихся в помещении санитарных приборов:

-75 м 3 /ч на 1 душевую сетку;

-50 м 3 /ч на 1 унитаз;

-25 м 3 /ч на 1 писсуар.

Если говорить о более сложных случаях определения воздухообмена по расчёту – это расчёт воздухообмена помещениях, с какими либо сложными технологическими процессам, большими тепловыделения (от солнечной радиации, людей, технологического оборудования), выделениями в помещении вредных для человека или взрывоопасных веществ и так далее. Здесь для каждого случая выполняется расчёт воздухообмена по методикам, приведённым в нормативных документах, или профильной литературе.


В результате заполнения ТВО по основным помещениям часто получается, что объёмы подаваемого воздуха (к примеру, на этаж) меньше объёмов удаляемого воздуха. В этом случае необходимо сбалансировать количество приточного и вытяжного воздуха, подав дополнительный приточный воздух в коридоры или холлы здания. Можно принять положительный дисбаланс по зданию (больше подаётся приточного воздуха, чем вытяжного) до 10% от общего количества подаваемого воздуха. Отрицательный дисбаланс в здании создавать не рекомендуется, так как не хватающее количество приточного воздуха будет поступать в задание с улицы, а этот воздух будет не очищенный (не прошедший фильтрацию в вентиляционной установке) и не нагретый (это создаст дополнительную, возможно не учтённую в расчётах, нагрузку на систему отопления, а также может негативно повлиять на микроклимат в помещениях).

Когда расходы воздуха в ТВО заполнены и проверен баланс воздуха по зданию, нужно определиться с количеством вентиляционных систем, которые будут обслуживать те или иные помещения. Важно учесть, что часто разные типы помещений не всегда может обслуживать одна и та же вентиляционная система. При разбивке на вентиляционные системы нужно учитывать следующие факторы:


  1. Требования нормативных документов. Например, допустимое объединение помещений в одну систему регламентирует СП 60.13330.2016 п. 7.2.4. Так же нужно не забывать, что требования по объединению помещений в одну систему могут быть установлены нормативным документами, написанными для тех или иных типов зданий.
  2. Разбивку здания на пожарные отсеки. Согласно СП 7.13130.2013 п. 6.2 нельзя предусматривать одну вентиляционную систему для помещений, расположенных в разных пожарных отсеков.
  3. Геометрические параметры здания и расположение помещений. Если помещения или блоки помещений, которые можно объединять в одну систему, расположены на большом расстоянии друг от друга, проектировщик должен принять решение, что будет экономически и технически целесообразно предусмотреть для таких помещений одну вентиляционную систему или несколько вентиляционных систем, чтобы не прокладывать длинные транзитные воздуховоды по зданию.
  4. Удобство эксплуатации и учёта энергоресурсов. Здесь в качестве примера можно привести системы вентиляции помещений встроенных в жилой дом (обычно они на 1 этаже), которые предназначены для сдачи (или продажи) разным арендаторам. Если в жилом доме 4 встроенных помещения, для каждого из них нужно предусмотреть отдельную приточную и отдельную вытяжную систему вентиляции. Тогда каждый арендатор будет отвечать сам за обслуживание и снабжение энергоресурсами вентиляционных систем для своего помещения.

После разбивки на вентиляционные системы можно начать заполнять ХОВС. Сюда в порядке нумерации вписывают вентиляционные системы, указывают общий расход воздуха в системах и необходимый свободный напор вентиляторов. На стадии П, свободный напор обычно пишется примерный (из опыта проектирования), но если речь идёт о рабочей документации, необходимо выполнить аэродинамический расчёт систем вентиляции, чтобы выяснить сопротивление вентиляционной сети и определить требуемый свободный напор, который должны обеспечить вентиляторы в вентиляционных установках. Специалисты нашей компании выполняют аэродинамический расчёт в САПР для инженерных сетей – MagiCAD. После определения свободного напора систем можно начать подбирать вентиляционное оборудование, это можно сделать по каталогам, программам подбора оборудования или отправив запрос на подбор производителю вентиляционного оборудования.

После подбора вентиляционного оборудования в ХОВС вписываются остальные недостающие характеристики систем: модели вентиляционных установок/вентиляторов, мощности двигателей вентиляторов, типы воздухонагревателей, расходы тепла/холода и так далее.

VI. Проектирование – 3 этап. Выполнение планов и схем систем вентиляции.

Для выполнения любых чертежей в строительной сфере основной платформой является САПР AutoCAD, если мы говорим о проектировании инженерных сетей (в частности систем вентиляции), то для выполнения более проработанных и качественных проектов необходимо использовать дополнительное программное обеспечение – САПР MagiCAD. Однако последние пару лет в России начала набирать популярность программа BIM-проектирования Revit, позволяющая создать полную информационную модель здания, включающую в себя архитектурные, конструкторские и инженерные решения. Программы MagiCAD и Revit имеют свои плюсы и минусы, поэтому формат выдачи документации Заказчику определяется на моменте составления задания на проектирование. О сравнении программных комлексах для проектирования читайте в этой статье.




Планы и схемы систем вентиляции необходимо выполнять в соответствии с ГОСТ 21.602-2016 и ГОСТ Р 21.1101-2013, которые уже упоминались в разделе III «Нормативные документы»

У всех проектировщиков имеется своя, несколько индивидуальная культура оформления документации (стили текста выносок, толщины линий, условные обозначения элементов сети и оборудования и так далее), но главным требованиям у любого Заказчика является читаемость чертежей (правильно подобранные масштабы чертежа и текста выносок) и информативность чертежей (грамотно расставлены все выноски, необходимые для монтажа и наладки систем).

VII. Проектирование – 4 этап. Составление пояснительной записки/Общих данные.

Данный раздел проекта является текстовой описательной частью применённых проектных решений. Как было описано выше, в разделе II «Состав проекта по системам вентиляции», на стадии П выполняется пояснительная записка по Постановлению №87, а в рабочей документации общие данные по ГОСТ 21.602-2016.


Пояснительная записка и общие данные могут выполняться как после того как будут готовы планы систем вентиляции (чтобы можно было описать трассировку систем, дать дополнительные указания по тонкостям сконструированной системы), так и параллельно с планами (в последствии, перед выпуском проекта текстовая часть ещё раз просматривает и редактируется при необходимости).

VIII. Проектирование – 5 этап. Составление спецификации изделий, оборудования и материалов.

Спецификация является одним из важнейших частей рабочей документации, так как именно по спецификации будут составляться сметы и закупаться оборудование и материалы, необходимые для выполнения монтажа систем вентиляции. Вот пример выполненной спецификации в программе Excel. Требования к выполнению спецификации регламентируются в ГОСТ 21.602-2016.


Интересно заменить, что для систем вентиляции по ГОСТ 21.602-2016 не требуется учитывать в спецификации фасонные элементы систем воздуховодов (отводы, переходы, тройники, врезки). Иногда для удобства закупки фасонных элементов сети Заказчики требуют выполнить подробную спецификацию, этот обычно оговаривается при составлении технического задания. С учётом использования специализированных САПР для проектирования инженерных сетей – спецификация фасонных элементов считается автоматически.

IX. Стоимость выполнения проектов по системам вентиляции.

При оценке стоимости проекта по системам вентиляции стоит учесть множество факторов, таких как: тип здания, планировка здания, сложность технологии (если мы говорим о производственных зданиях), наличие или отсутствия необходимости запроектировать системы противодымной вентиляции и так далее.

Тем не менее, предлагаем Вашему вниманию таблицу для приблизительной оценки стоимости проектирования систем вентиляции для стадий П и Р. Более точную информацию по стоимости проектирования Вы можете получить по запросу, обратившись к нам в компанию.

Стоимость проектирования систем вентиляции
Проектируемый объектСтадия П
руб/м2
Стадия Р
руб/м2
Жилые одноквартирные дома (коттедж, частный дом, квартира)-90
Жилые многоквартирные дома34
Подземные или закрытые автостоянки2025
Административные здания (офисные здания, магазины, торговые центры и т.д.)5060
Предприятия общественного питания (рестораны, бары, кафе, столовые)80100
Плавательные бассейны110130
Медицинские учреждения120120
Медицинские учреждения с наличием чистых помещений150150
Производственные здания80100

X. Заключение.

В данной статье мы рассмотрели структуру проектов по системам вентиляции и основные этапы проектирования. Конечно, нужно понимать, что для создания качественных проектов одной теории недостаточно, а требуется широкий опыт выполнения проектов, опыт прохождения проектами экспертиз и снятия замечаний, опыт сопровождения проекта при строительстве и опыт авторского надзора.

Специалисты ООО «Инком Проектирование» всегда готовы предложить свои услуги по проектированию любых инженерных сетей и выполнить качественный проект в соответствии с действующими нормативными документами и всеми требования Заказчика.


Последние записи

21 мая 2020

Проектирование систем отопления

Для здания, в котором требуется в холодный период поддерживать положительную температуру, отопление является неотъемлемой инженерной системой. Система отопления должна обеспечивать нормируемые температуры в помещениях, которые регламентируются, как нормативными документами, так и технологическими требованиями.

22 ноября 2019

Современные средства вычисления

Фантазия архитектора в современном мире не стоит на месте. В моду вошли легкие парящие конструкции бионических форм, трудно поддающиеся математическому описанию

Огнезащита строительных и ограждающих конструкций

При проектировании новых зданий и сооружений необходимо соблюдать требования по пределу огнестойкости* строительных конструкций.

24 сентября 2019

Проектирование вентиляции

Практически любое современное здания требуется оборудовать такими инженерными сетями как системы вентиляции. Данные системы должны обеспечивать оптимальные условия микроклимата в помещениях, как для пребывания людей, так и для осуществления различных технологических процессов.

Читайте также: