Двухходовой и трехходовой котел отличия

Обновлено: 16.05.2024

Что такое трехходовой клапан на системе отопления

В отопительной системе есть запорная арматура, в ней существует один механизм, он используется нечасто, по форме напоминает тройник, но не имеет к нему отношения. Это трехходовой клапан на системе отопления.
В трубопроводе клапан монтируется в местах, где нужно разделить циркуляцию потока на два контура с гидравлическим режимом: постоянным и переменным. Постоянный гидравлический поток используется потребителями, для них поступает качественный теплоноситель в определенном объеме. Именно качественные показатели его регулируют. Переменный поток нужен для тех, кому не важны качественные показатели, их интересует количество.

То есть для них регулируется подача по количеству теплоносителя.

Чем отличается трехходовой клапан от двухходового клапана

Запорная арматура представлена и двухходовыми клапанами. Трехходовой клапан на системе отопления имеет совершенно другой механизм действия. По его конструкции шток не перекроет поток постоянного гидравлического режима. Он настроен на определенный объем и постоянно открыт. Таким образом, потребители получают определенный объем в эквиваленте качественном и количественном.

В смысле, клапан не в состоянии перекрыть поток на контур постоянного гидравлического потока. А переменное направление он может перекрыть, этим он позволяет контролировать напор и расход.

Трехходовой клапан на системе отопления получается при совмещении двух двухходовых. Только обязательно оба должны работать по очереди, то есть, когда закрывается один, начинает свою работу другой.

Что такое трехходовой клапан на системе отопления 2

Смесительный и разделительный тип

Трехходовые клапаны имеют два подвида. Они несут каждый свою функцию: смесительную и разделительную. В сущности, можно догадаться по названию, в чем их смысл работы. Смесительный тип состоит из двух входов и одного выхода. Его функции основаны на смешивании двух потоков, это нужно для понижения температуры теплоносителя.

Это достигается за счет горячей и холодной воды, изменением их соотношения.

Этот тип трехходового клапана незаменим в системе теплых полов и является идеальным устройством, так как может создать необходимую вам температуру.

Температуру выходящего потока регулировать достаточно легко. Чтобы на выходе получить нужную температуру, нужно знать какой температуры оба входящих потока и постараться точно рассчитать пропорции каждого. Этот тип клапана при правильной установке и настройке может служить разделителем потоков.

Что такое трехходовой клапан на системе отопления 3

Трехходовой клапан на системе отопления разделительного принципа действия служит для разделения основного потока на две части. Для этого у него предназначен один вход, а выходов два. Он нужен для того, чтобы распределить поток теплоносителя на два течения. Если включить в систему бойлеры, конвекторы и другие, то без него не обойтись. Это устройство работает в системе горячего водоснабжения для разделения горячей воды. Нередко его используют в обвязках воздухонагревателей.

С первого взгляда оба клапана ничем не отличаются друг от друга. Но если посмотреть на них в разрезе на чертеже, то разница очевидна. Смесительный прибор имеет один шаровой клапан в штоке. Он находится в середине и перекрывает главный проход.

Разделительный состоит их двух клапанов на одном штоке, и они монтируются в выходных патрубках. Функция их действия такова: если один закрывает проход, в это время другой проход открывает.

Ручное и электрическое управление

По способу управления современный трехходовой кран на системе отопления подразделяется на: управление ручное и электрическое. Обычно ручной вариант популярнее и приходится сталкиваться чаще с ним. Он имеет сходство с обычным шаровым краном, но у него есть три патрубка, то есть выхода. Автоматические системы электрического управления по распределению тепла чаще всего находят применение в частных домовладениях.

Например, можно настроить температуру для комнат и распределить теплоноситель в зависимости от расстояния комнаты от нагревательного агрегата. Можно совместить с системой теплого пола. Приборы повышенной проходимости устанавливают между зданиями на теплопроводах.

Трехходовой кран, как и любое устройство, определяется диаметром подводящей трубы и давлением теплоносителя. Поэтому применяется ГОСТ, он позволяет выполнить сертификацию. Если не соблюдают ГОСТ - это является грубым нарушением.

Это нарушение особо тяжко, если дело касается внутреннего давления трубопровода.

Двухходовой и трехходовой паровой котел

Принято несколько классификаций парового котельного оборудования, в том числе непосредственно котлов. Одна из них базируется на количестве прохождений раскаленного дыма, нагревающего воду до состояния пара, по жаровой трубе. Их может быть два или три, поэтому они называются двухходовой паровой котел и трехходовой паровой котел.

Также существуют так называемые прямоточные котлы, имеющие наиболее простое строение, в нем вода проходит через нагретую трубу. В один конец трубы осуществляется подача воды, с другого конца выходит готовый продукт – пар. Причем, агрегат вырабатывает пара не более 10 т/ч. Если увеличить мощность, что, в принципе, возможно, то повысится вес питающего насоса. Одновитковые модели именно так и работают, имея небольшой КПД, но их мощности хватает на покрытие расходов потребления горячей воды и отопления небольших помещений.

В многовитковых моделях вода подается в малый по диаметру коллектор, откуда выходит по нескольким разным, одновременно обогреваемым газом виткам. Такое строение позволяет нагреть рабочую среду до парообразного состояния. После того как пар выпарится и перегреется до нужной температуры, он поступит в собирающий коллектор, который при помощи стопорного клана распределяет его в нужном направлении, например, в радиаторы отопления.

Сравнение двух- и трехходовых типов

Вначале стоит подробнее рассмотреть принцип движения раскаленного газа внутри агрегата в той или иной разновидности. Итак, как уже было сказано, двухходовой котел – устройство, где производится двукратный поворот дыма перед выходом из дымохода. Данный вид устройств делится на два типа:

1) Обычный. В топочной камере факел как обычно развивается, в конце камеры газ проходит в жаровую трубу, после чего переходит в коллектор и выводится из установки по дымоходу.

2) С реверсивной топкой. В топочной камере факел развивается, переходит к дальней стене и выполняет разворот. После пристыковывается к стенам топочной камеры и гаснет, не доходя до начала котла. Вторичные продукты переработки – газы бьются в дверцу котла, и через специальные отверстия попадает в жаровую трубу. Последующее выведение полностью аналогично поведению газа в обычном котле.

Трехходовой агрегат – установка, где производится троекратный поворот дыма перед выходом в дымоход. Качество устройства, а также возможная длительность его эксплуатации оценивается по тепло напряженности топочного отделения. Данный критерий гораздо выше у трехходовых агрегатов. По этой причине они обладают большим КПД и характерны более высокой стоимостью.

Такой котел предназначен для крупных предприятий, небольшие организации предпочитают двухходовые модели, из-за их малых габаритов и дешевизны. Эксперты рекомендуют приобретать жаротрубные пароводяные котлы трехходового типа, если объемы производства достаточно велики. Кроме длительного эксплуатационного срока трехходовые котлы преимущественны тем, что вырабатываемую мощность можно регулировать в широком диапазоне:

· для двухходовых котлов 60-100% от первоначальной мощности (имеется возможность уменьшить до 30%, но это может сказаться на эксплуатационном сроке);

· для трехходовых котлов – 30-100% от первоначальной мощности.

При выборе того или иного типа очень часто возникают сложности. Есть категория потребителей, которые по умолчанию приобретают только самое лучшее, вне зависимости от цены, но зачастую такие траты не обоснованы.

Трехходовые устройства рекомендуются специалистами в таких ситуациях:

· Планируется приобретение особо долговечного оборудования;

· Для монтирования на крышных котельных нужен агрегат с максимальным КПД, поскольку второй котел установить нельзя по требованиям безопасности;

· Если меняются потребности производства и нужно осуществлять регулировку мощности в максимально широком спектре.

В других ситуациях можно выбрать двухходовой котел, который вполне справится с возложенной на него задачей.

Примеры котлов различных типов

И в тех, и в других типах оборудования есть отличные модели, которые будут идеально выполнять стоящие перед ними задачи. Вот некоторые из них.

Котел LMQ-2 – двухходовой агрегат водогрейного типа, его корпус выполнен из нержавеющей стали. Имеется горелка одно топливная (с возможностью замены на комбинированную горелку) с реверсивным развитием в топочной камере. Используется такой котел, как правило, для нагрева воды в целях отопления и горячего водоснабжения, наиболее совместим с блочно-модульными и стационарными котельными.

Вариативность моделей подобной линейки поражает, можно выбрать агрегат с любой мощностью от 60 до 5800 кВт. Камера сгорания со смотровым окном спереди, она достаточная большая, поверхности камеры отлично проводят тепло, тем самым максимально эффективно нагревая воду. КПД агрегата варьируется от 89 до 93%. Устройства производятся с передними крышками, которые устойчивы к огню и открываются в обе стороны. Облицовка выполнена из двухслойного металла. Котел компактен, удобен и эстетичен, рассчитан на длительную службу.

Жаротрубный 3-хходовой горизонтальный агрегат выгоден в случаях, когда необходимо получать пар с высокой температурой (от 120 градусов). Может использоваться в различных отраслях: строительной, пищевой, нефтегазовой, сельскохозяйственной, деревообрабатывающей и т.д. Котел многоцелевой, предназначается не только для отопления помещений, но и выполнения промышленных процессов, связанных с наличием технического пара.

Агрегат выполнен из стали, оснащен троекратным поворотом дыма перед выходом в дымоход. Используется для нагрева воды и получения пара, одинаково совместим с блочно-модульными и стационарными котельными, однако подходит и для крышных вариантов установки, поскольку при большой мощности имеет сравнительно небольшой вес.

Серийный ряд имеет множество моделей с различной номинальной мощностью: от 90 до 3500 кВт. Камера сгорания достаточная большая, поверхности наилучшим образом проводят тепло, тем самым максимально эффективно нагревая воду для получения пара. Агрегат обладает весьма высоким КПД, от 92 до 95%. Устройства производятся так же с огнеупорными передними крышками, открывающимися в обе стороны, обшивка двойная, металлическая.

Агрегат сконструирован из следующих компонентов:

· некоторых дополнительных элементов.

Принцип действия того и другого типа агрегата одинаковый. Дымовые газы, протекающие в газовом тракте, прогревают металлические плоскости. Вода, которая проходит через блок водоподготовки оказывается в котле, где в процессе нагрева плоскостями начинается процесс испарения. Проходящий через пароперегреватель пар нагревается потоковыми газами, и в результате уходит к потребителю. Все вторичные продукты, образовавшиеся в процессе трансформации жидкости в пар, выдуваются из агрегата и уходят в дымовую трубу. Управление автоматическое.

Правила использования котлов

Конструкция жаротрубного котла подразумевает производство пара из предварительно очищенной воды. Исходя из этого, к устройству нужно относиться подобающе, готовить воду и тщательно наблюдать за протекающими процессами. От производителя можно получить подробные требования безопасности. В их число входит контроль наличия накипи, то есть отложений солей жесткости. Именно они провоцируют сбои в работе оборудования, зачастую приводящие к серьезным неисправностям. Трубопровод сконструирован так, что накипь и отложения будут распределяться неравномерно, что может привести к сбоям в работе.

Двухходовые агрегаты можно использовать в бытовом плане, в паровой или двухконтурной отопительной системе. Система отопления требовательная к герметизации, но в зимний период можно отключить или включить отдельные отопительные ветви, без вреда для остальных пользователей. Это дает возможность прогревать подсобные помещения, что в краях с суровыми климатическими условиями снижает расходы на использование отопления. Трехходовые жаротрубные котлы большой мощности применяют как для промышленного использования, так и для оснащения котельных многоквартирных домов.

Для функционирования жаротрубного котла необходимы большие объемы жидкости что, в результате, оборачивается возрастающим риском взрыва. При наличии накипи и отложения будут сформированы застойные зоны, что приведет к снижению циркуляции жидкости и пара. Обязательно нужно менять теплообменник хотя бы раз в несколько месяцев (оценивать по исправности оборудования), а также вычищать трубы от шлаков и прочих вторичных продуктов. При выполнении всех требований эксплуатационный срок любого паро производящего агрегата существенно увеличится.

По техническим вопросам, а также вопросом приобретения данной продукции, присылайте Ваши заявки на электронную почту.

Паровые котлы: устройство и классификации

Паровые котлы: устройство и классификации

Несмотря на стремительное развитие технологий, в производственных процессах целого ряда отраслей водяной пар не может быть эффективно заменен никаким другим теплоносителем. Поэтому каждый раз при проектировании и закладке новых производств инженерам придется решать задачу подбора подходящего котельного оборудования. В этом обзоре мы хотели бы разобрать основные классификации паровых котлов и соотнести их с моделями, представленными в продуктовом портфеле ICI Caldaie, чтобы обеспечить информацией специалистов, занятых выбором.

Устройство парового котла: как менялась конструкция

Принцип работы парового котла остается неизменным с момента его изобретения: тот или иной источник тепла нагревает воду, заключенную в большом или малом металлическом сосуде до температуры кипения и испарения. Скапливаясь в верхней части сосуда продукты испарения достигают необходимых величин давления и температуры, после чего направляются через паропровод потребителям или в пароперегреватель для достижения более высоких рабочих параметров. Эффективность процесса выработки пара определяется наиболее полным использованием теплоты, выделяемой источником. Развитие инженерной мысли в этом направлении можно отследить по тому, как менялась конструкция парового котла.

Схема первого парового котла с внешней топкой

цилиндрический котел с внешней топкой

Первые парогенераторы напоминали котлы для варки пищи. Дровяная или угольная топка располагалась снаружи, нагревая бак с водой снизу. При такой схеме значительная часть тепла расходовалась на обогрев окружающей среды, что и обуславливало крайне низкий КПД первых паровых котлов.

Схема первого парового котла с внутренней топкой

паровой котел с жаровыми трубами

Разумным решением стало размещение топки внутри водяного объема котла. Вкупе с теплоизоляцией внешней обшивки бака это значимо повысило КПД, позволив расходовать тепло преимущественно на нагрев воды.

Схема первого жаротрубно-дымогарного котла

Поскольку высокой температурой обладало не только открытое пламя в топке, но и выделяющиеся при сгорании дымовые газы, следующей задачей усовершенствования конструкции парового котла стало удержание тепла уходящих газов внутри водяного объема. Задача была решена размещением в нем дымогарных труб малого диаметра. Перед удалением через дымоход газы проходили по этим трубам, ускоряя нагрев и испарение воды.

В принципиально ином направлении развивалась конструкция паровых водотрубных котлов, чаще всего используемых в качестве силовых установок в электроэнергетике, на железнодорожном и водном транспорте. В случае водотрубного котла не источники тепла – топка и газоходы – размещались внутри водяного объема, а наоборот: водяной объем, распределенный по трубам малого диаметра, размещался в газоходах, по которым движутся продукты сгорания.

Такая конструкция с высокой эффективностью позволяет вырабатывать пар критического давления, избыточного для технологических процессов большинства отраслей. Принципиальные различия в конструкции водотрубных и жаротрубных котлов легли в основу большинства классификаций котельного оборудования.

Классификации паровых котлов

Классификация по назначению

Данная классификация соотносит те или иные типы паровых котлов не с конкретными отраслями, а скорее с укрупненными сферами применения. В соответствии с ней, паровые котлы делятся на энергетические, промышленные (технологические) и отопительные (энерготехнологические).

Энергетические котлы используются на электростанциях для передачи вращения турбинам, генерирующим электричество. Вырабатываемый данным оборудованием пар характеризуется высоким и сверхвысоким давлением.

Промышленные или технологические паровые котлы вы­ра­ба­ты­ва­ют на­сы­щен­ный пар для технологических нужд. Давление получаемого пара редко превышает 3 МПа (30 бар). В общей классификации котлов по давлению данный класс оборудования относится к котлам низкого и сверхнизкого давления. Если же рассматривать технологические паровые котлы как отдельный сегмент, то разделение оборудования на котлы низкого и высокого давления привязано к нормативам Ростехнадзора, устанавливающим поднадзорность сосудов, работающих под давлением. Подробнее об этом – в статье «Производственные котлы высокого и низкого давления».

Отопительные или энерготехнологические котлы находятся на стыке промышленных и энергетических. В России их широкое применение было обусловлено повсеместным строительством моногородов и жилых районов при промышленных предприятиях. Энерготехнологические паровые котлы вырабатывали пар одновременно для производственных нужд и для отопления коммунального сектора. В настоящее время в соответствии с программами повышения энергоэффективности и реконструкции производств крупнотоннажные паровые котлы заменяются котлами меньшей паропроизводительности, а для теплоснабжения жилых районов строятся более экономичные водогрейные котельные.

Компетенция ICI Caldaie – производство экономичных производственных паровых котлов жаротрубного типа с проходной и реверсивной топкой, отвечающих высоким стандартам эксплуатационной и экологической безопасности.

Классификация паровых котлов по давлению

Сквозная классификация по давлению, объединяющая все виды паровых котлов выглядит следующим образом. Область высокого давления (энергетики) включает котлы высокого, критического и сверхкритического давления. Диапазон: от 3,9 МПа до 22,5 МПа (39-225 бар). Область низкого давления (промышленность) включает котлы серхнизкого (до 0,1 МПа), низкого (0,1-1 МПа) и среднего (1-39 МПа) давления. Котлы сверхнизкого давления не подлежат регистрации в территориальных органах Ростехнадзора.

В модельном ряду ICI Caldaie область сверхнизкого давления представлена сериями:

Устройство и принцип работы жаротрубного котла

Одним из наиболее распространённых видов промышленного теплового оборудования является жаротрубный котёл. Они отличаются несложной конструкцией, высокой надёжностью и возможностью переоснащения.

Имея небольшие габариты они отличаются высокой теплопроизводительностью при этом будучи безопасными. Существует несколько моделей, отличающихся конструкцией, мощностью, потребляемым топливом.

Содержание Показать

Устройство жаротрубного котла

Простой принцип работы определяет конструктив. Форма корпуса может быть разнообразной, но наиболее часто встречается форма цилиндра. С одной стороны располагается камера сгорания, а с обратной система дымоудаления. Горение поддерживается принудительным дутьевым устройством.



Над топкой находятся теплообменники, которые контактируют с дымоотводящим каналом. Для повышенной эффективности нагрева теплообменник изготавливают из труб небольшого сечения.
Наиболее распространенный трёхходовые жаротрубные котлы. Его главное отличие от обычной конструкции это наличие трёх дымоотводящих каналов.

Первым каналом считается топка, а два других находятся выше один над другим. Вентилятор обеспечивает необходимую тягу, а также существует естественная тяга через колосники и вентиляционные отверстия.

Особенностью трёхходовых котлов является снижение температуры нагретых дымовых газов с 1000˚С до 250˚С, обеспечив максимальную теплоотдачу. Но это чревато тем, что водяной уровень нестабильный и не поддаётся контролю. Это решается применением сепаратора, разделяющий пар и воду, и капли не поступают в коллектор.

Помимо указанных частей установки оснащаются следующими узлами для улучшения их характеристик:

  • каналы воздухоотвода;
  • манометр для пара;
  • термометр для теплоносителя;
  • управляющий блок;
  • контроллеры давления;
  • аварийная защита.

Принцип работы

Принцип работы жаротрубного котла заключается в передаче тепловой энергии от горящего топлива теплоносителю. Процесс парообразования происходит при температуре 115˚С и давлении 0,7 кгс/кв.см.
Топливо сжигается в топочной камере, которая охлаждается водой, кроме фронтальной стороны. При нагреве воды происходит парообразование, пар аккумулируется в приспособленном резевруаре, подключённой к системе отопления. Отработанные газы удаляются через пучок труб.


Топливо для котлов может быть разнообразным: жидкое, твёрдое и газообразное.
Оборудование представляет собой газотрубные установки с жаровыми трубами, в которых циркулирует горящее топливо.
На жаровых трубах имеется газовая горелка низкого давления и принудительный наддув. Жаровая труба это своеобразная камера сгорания, внутри которой происходит сжигание подаваемого топлива.

Виды жаротрубных котлов

Жаротрубные котлы разделяются на две большие категории:

  • паровые. Образуют пар в специальной ёмкости, который используется как рабочее тело в системе отопления;
  • водогрейные. В таких происходит нагрев воды, которая используется как теплоноситель. Использование пара в этих котлах исключается во избежания перегрева и разрушения труб.

Отличие жаротрубного котла от водотрубного

Теплогенерирующие котлы большой производительности по своей конструкции разделяются на жаротрубные и водотрубные.
Особенность жаротрубных в том, что поверхность нагрева состоит из трубок, по которым движется сгораемое топливо. А нагрев теплоносителя, находящегося за пределами трубок, происходит путём теплообмена.
Жаротрубные котлы делятся также на пролётные – газы проходят без поворотов и оборотные – газы поворачивают в камере при движении.
Чаще всего это оборудование изготавливается в виде горизонтального цилиндра. Водогрейные котлы, такие как КВР или КВА, содержат нагретую воду внутри. Поверхность нагрева располагается в центре котла или ниже.


Трехходовой жаротрубный котел

С одного торца устанавливается горелка для сжигания газа или дизельного топлива. Выше нагревательных элементов располагаются дымогарный трубопровод, по которому продукты горения направляются в дымоход.
По количеству контуров установки разделяются на двухходовые и трёхходовые. В первых действует реверсивная камера сгорания, где газы упираются в заднюю поверхность агрегата, затем разворачиваются и идут к фронтальной, после отражения от которой газы меняют направление в сторону удаления из котла.
В трёхходовой схеме газы при возвращении в передней поверхности проходят ещё одну жаровую трубу или же через ряд дымогарных труб. После чего, отразившись, газы идут на удаление из агрегата.

Главные преимущества жаротрубных котлов:

  • простая конструкция;
  • изготавливаются из недорогого метала;
  • компактность;
  • простое обслуживание;
  • легкий тепловой расчет

Недостатки при эксплуатации жаротрубных котлов:

  • требования по качеству подпиточной воды. Это связано с небольшими скоростями циркуляции. Поэтому это оборудование запрещается подключать к системам отопления из-за высокого шламообразования в радиаторах;
  • высокая взрывоопасность. Если в котле имеется большое количество горячей воды и внезапно падает давление из конструктивных поломок, то мгновенно происходит выделение пара, сопровождающееся взрывом;
  • высокое аэродинамическое сопротивление;
  • необходимость поддержания температуры большого объёма воды даже в случае отсутствия потребности, иначе при остывании приходится затрачивать много времени на нагрев.

Противоположным принципом работы обладает водотрубный котёл, его элемент нагрева представляет собой ряд труб, по которым движется нагретая вода, а теплообмен происходит путём нагрева труб путём сжигания топлива.
Наиболее распространённым и простым видом теплообменника является узел, состоящий из двух труб, сваренных между собой несколькими поперечными трубами.


Преимущества водотрубных котлов следующие:

  • нет опасности взрыва;
  • быстрый теплообмен;
  • небольшой вес оборудования;
  • надёжная конструкция;
  • нет особенных требований к качеству воды.

Минусы такого оборудования:

  • качество швов и соединений должно быть высоким;
  • более сложное устройство;
  • сложное техобслуживание.

На российском рынке больше всего представлено жаротрубное оборудование. Это следствие более простой технологии и несложного обслуживания. Однако благодаря своим преимуществам, часть рынка всё же принадлежит водотрубным котлам, несмотря на низкую популярность.

Двухходовой и трехходовой котел отличия

Сейчас на Российском рынке представлен большой спектр котлов разных отечественных и зарубежных производителей. Среди западных производителей котлов свыше 500 кВт выделяются Viessmann, Buderus, LOOS. Отечественные производители котлов - ЗИОСАБ, РЕМЕКС, ЗТО "Стройтрансгаз"(Газдевайс).

котельная

Котлы в котельной представляют собой основное теплогенерирующее оборудование. От характеристик котла во многом зависит и надежность котельной в целом. Основные отличия котлов могут быть в самой конструкции котла и рабочем давлении.
По конструкции водогрейные котлы, обычно, делятся на два типа:

Число ходов котла характеризуется движением дымовых газов от устья горелки. На рисунке с разрезом котла Viessmann Vitomax 200 HW выделены три независимых газохода для движения уходящих газов. Первый-цилиндрическая камера сгорания (поз.1), расположенная в нижней часте котла и окруженная щирокой водяной рубашкой. Продукты сгорания, образующиеся в процессе сгорания топлива, перемещаются по жаровой трубе к задней части камеры сгорания и далее к жаровым трубам (поз.2) второго газохода котла. После возврата уходящих газов в переднюю часть вновь меняется направление их потока. По жаровым трубам (поз.3) третьего хода они движутся к камере сбора продуктов сгорания котла (поз.4).

Для котлов такой базовой конструкции характерны высокий КПД и низкое содержание токсичных веществ в дымовых газах. Такие котлы можно применять всюду, где предъявляются жесткие требования к охране окружающей среды.

Надо отметить, что при выборе котла должны оцениваться не только его тепловые, прочностные характеристики. Важную роль играет то, какое дополнительное оборудование требуется для установки котлов. К примеру, многие котлы с малым водонаполнением требуют обеспечения при работе минимального допустимого протока теплоносителя через котел. Т.е. возникает необходимость в установки котловых насосов. А у котлов Viessmann Vitoplex за счет большого водонаполнения такой необходимости нет.

Поэтому при оценке стоимости котлов, лучше оценивать стоимость всей котельной в целом.

Водогрейные котлоагрегаты малой мощности.
Теплотехнические особенности применения

Значительные объемы нового строительства в России, привлечение к строительству малых предприятий и частных инвесторов и соответствующее формирование инвестиционной политики обусловили на большинстве строящихся объектов применение автономных отопительных котельных – от квартирных и коттеджных до РТС, а также источников теплоты на реконструируемых объектах, преимущественно с водогрейными котельными агрегатами малой мощности (до 20 МВт). В статье рассмотрены особенности основных типов котлов, представленных на российском рынке, – водотрубных и жаротрубных.


Важнейшей особенностью котлов малой мощности являются тепловые режимы топок и связанные с ними физико-химические процессы горения, обус-ловленные масштабным переходом к малым геометрическим размерам топок с уменьшением мощности котла. Это изменяет соотношение площади поверхности топки к ее объему обратно пропорционально ее характерному размеру. Следствием этого является тот факт, что в малых котлах видимые тепловые напряжения топочного объема в несколько раз превышают характерные для мощных котельных агрегатов, достигая значений qv = 2 МВт/м 3 и выше (на газе и жидком топливе), при этом тепловые напряжения поверхностей нагрева в топке (qн =

200 кВт/м 2 ) примерно соответствуют видимым тепловым напряжениям поверхностей нагрева мощных котлов.

Водогрейная котельная техника представлена на российском рынке двумя основными типами котлов: водотрубными и жаротрубными.

Водотрубные котлы определенное время были основным типом отечественной водогрейной техники. В области малых мощностей такое положение дел себя не оправдало: с производства были сняты устаревшие котлы ТВГ, ТГ, НР 18, ЗиО 60 и др. Однако ряд конструкций котлов малой мощности серии КВ ГМ продолжает выпускаться. Отечественные разработки водогрейных котлов преимущественно представлены водотрубными котлами, выпуск которых осваивают как крупные заводы («Дорогобужкотломаш», Бийский котельный завод, «Вольф Энерджи Солюшен» и др.), так и небольшие котлостроительные фирмы.

Независимо от типа котла необходимо отметить, что тепловой режим металла стенки котла определяется состоянием внутренней поверхности (со стороны охлаждающего теплоносителя), наличием отложений, их толщиной и свойствами. Внешние шлаковые, сажевые и битумиозные отложения (как и внутренние) преимущественно влияют на эффективность теплопередачи от газового потока к теплоносителю и, следовательно, повышают температуру уходящих газов, снижают мощность и КПД котла.

Однако наибольшие неприятности часто связаны с увеличением аэродинамического сопротивления газового тракта котла, изменением и искажением характеристик горения, ухудшением экологических показателей работы.

Водотрубные водогрейные котлы

Основные преимущества водотрубных водогрейных котлов обусловлены организованным гидравлическим режимом в трубных водяных контурах, что позволяет, используя насосные схемы принудительной высокоскоростной циркуляции (в том числе с рециркуляцией), обеспечить допустимые тепловые (температурные) режимы, уменьшить негативные процессы загрязнения теплопередающих поверхностей со стороны теплоносителя, снизить требования по общей жесткости циркуляционной воды. В то же время в водотрубных котлах необходимо строгое соблюдение гидравлического режима движения теплоносителя, исключающего его вскипание на поверхностях нагрева, что, как отмечалось, для котлов малой мощности особенно важно на теплонапряженных участках топочных поверхностей нагрева. При обосновании скоростного режима необходимо ориентироваться на трубы с отпускным движением теплоносителя, в которых при указанных условиях теплообмена (qн =

200 кВт/м 2 ) скорость движения теплоносителя должна быть по известным зависимостям (рис. 1) не менее 1,25–1,35 м/с.

Схема водотрубного водогрейного котла и номограмма минимально допустимых скоростей воды в обогреваемых трубах водогрейных котлов

Такой гидравлический режим обуславливает достаточно высокое гидравлическое сопротивление водотрубного водогрейного котла (обычно в пределах 0,5–1,5 бар). Причем не только в расчетном режиме, но и при всех промежуточных режимах работы с частичной или даже минимальной мощностью. Постоянный гидравлический режим, пожалуй, наиболее важный фактор, обеспечивающий надежную работу всей трубной системы водогрейного водотрубного котла.

Ряд конструкций водогрейных водотрубных котлов поставляются производителем в виде нескольких укрупненных блоков, что требует дополнительных затрат при доставке котла, его сборке и монтаже на строительной площадке.

Последнего недостатка лишены жаротрубные водогрейные котлы, полностью изготавливаемые в заводских условиях и поставляемые в виде компактной моноблочной конструкции, часто с уже смонтированной тепловой изоляцией, внешней оболочкой, опорной рамой и пр. Это делает конструкцию привлекательной для потребителя, существенно упрощает монтаж оборудования в котельной.

Жаротрубные водогрейные котлы

Использование жаротрубных котлов с наддувной газоплотной топкой, принцип действия которой основан на применении автоматизированных горелочных устройств, оснащенных встроенными (или комплектными) дутьевыми вентиляторами, позволяет работать без дымососов с регулированием параметров горения при переменных нагрузках, сохраняя высокую эффективность с КПД 92–95 %.

Заводы-изготовители переходят на большие объемы выпуска жаротрубных котлов, активно осваивают зарубежные технологии, покупают и перерабатывают под российские нормативы техническую документацию известных фирм, продукция которых пользуется спросом и хорошо себя зарекомендовала на рынке. Например, трехходовые котлы ФР–10, ФР–16, выпускаемые по технологии компании «Финрейла» (Финляндия), котлы GKS Dynaterm, Eurotwin производства «Волф Энерджи Солюшен» по технологии компании WOLF (Германия).

Конструктивные схемы практически всех водогрейных жаротрубных котлов предполагают размещение в водяном объеме внутри внешней прочной оболочки котла цилиндрической топки и дымогарных труб конвективных поверхностей. Компоновку котлов принято классифицировать как двухходовую и трехходовую. В обоих случаях развитие факела и движение продуктов сгорания по топочному объему считается первым ходом как для топок с осевым пролетным (без разворота факела) движением газов, так и для тупиковых реверсивных топок (с разворотом факела на 180° в задней части внутри топки к фронту котла) (рис. 2). Таким образом, 2 ходовые схемы предполагают один ход продуктов сгорания по конвективным жаровым трубам, а 3 ходовые – два хода с разворотом продуктов сгорания между пучками дымогарных труб на 180° (рис. 3).

Схема газоходного тракта 2-ходового котла с реверсивной топкой

Важнейшие недостатки жаротрубных конструкций обусловлены малой скоростью движения теплоносителя во внутреннем водяном объеме котла, имеющем значительный объем (удельный объем воды от

1,5 м 3 /МВт) и большое расчетное живое сечение для движения котловой воды. Это приводит к неорганизованным гидравлическим режимам внутренней циркуляции со скоростями, соответствующими естественной конвекции порядка 0,01–0,02 м/с, а в ряде зон водяного объема и ниже. По этой причине значение тепловых напряжений поверхностей нагрева котла по условиям недопущения пристенного вскипания воды гораздо ниже, чем у водотрубных котлов, и является основным фактором, определяющим надежную и безаварийную работу котла (наряду с загрязнением поверхностей со стороны воды накипью и шламовыми отложениями и др.).

Схема газоходного тракта 3-ходового жаротрубного котла

Конструктивные особенности жаротрубных котлов

Конструкция трехходового котла по сравнению с двухходовым у большинства производителей имеет большую конвективную поверхность нагрева (дымогарных труб) и за счет этого позволяет увеличить глубину охлаждения дымовых газов и повысить на 1–3 % КПД котла. Большего значения КПД удается достичь установкой за водогрейным котлом агрегатного или блочного экономайзера (в том числе и конденсационного типа).

Оценивая качество жаротрубного котла необходимо учитывать как конструктивные решения, так и совершенство технологии изготовления.

Так, наличие жесткого корпуса и безкомпенсационных по термическому удлинению торцевых поверхностей (трубные доски) с жесткой сваркой прямых жаровых труб и жестким креплением топки, близкое расположение жаровых труб к внешней необогреваемой оболочке котла приводят к повышенным напряжениям из-за некомпенсированной тепловой деформации как при холодных пусках, так и при переменных режимах эксплуатации. В этой связи весьма важно иметь информацию о расчетном значении на малоцикловую усталость металла, которая определяет количество циклов запуска из холодного состояния, измеряемое от нескольких сотен до десятков тысяч циклов. Помимо конструкции котла на эту величину влияет качество металла жаровых труб и трубных досок, технология и качество сварки, применение термоотпуска для снятия внутренних напряжений в сварной конструкции при изготовлении котла.

Менее надежными оказываются и котлы с низким расположением жаровых труб, которые наиболее интенсивно заносятся шламом, из-за чего теплообмен ухудшается, температура стенки трубы увеличивается, что приводит к дополнительному локальному перегреву, увеличению нагрузок на сварочные швы и трубную доску. Для выравнивания и интенсификации теплообмена в конвективных поверхностях часто используют различного рода турбулизаторы потока, вставляемые в жаровые трубы третьего хода или в концевые участки второго хода 2 ходового котла.

Здесь важно отметить, что жаровые котлы с реверсивной топкой, в силу отмеченных особенностей тепловых процессов, при развороте факела обеспечивают интенсификацию конвективного теплообмена в топке (этим достигается выравнивание тепловых потоков на поверхностях нагрева в топке). Также они позволяют за счет активной рециркуляции части продуктов сгорания в корне факела горелки снизить эмиссию оксидов азота. Однако при этом в значительной мере происходит интенсификация теплообмена на трубной доске и начальных участках дымогарных труб в зоне разворота факела у переднего шамотного блока с учетом его вторичного излучения. Из-за этих факторов трубная доска оказывается в чрезвычайно форсированном тепловом режиме, зачастую приводящем к ее перегреву.

Учитывая указанные особенности тепловых режимов фронтовой трубной доски, подавляющее большинство зарубежных производителей водогрейных жаротрубных котлов ограничивают область применения реверсивных топок котлами мощностью до 2,5 МВт.

Для любых топок жаротрубных котлов, особенно для реверсивных, необходим правильный подбор горелки не только по мощности, но и по соответствию конфигурации и размеров факела горелки топке котла. Должен быть исключен даже локальный «наброс» факела на холодную стенку топки во всех режимах ее работы, с учетом необходимого напора для преодоления аэродинамического сопротивления газового тракта котла и метода регулирования нагрузки.

Низкие скорости движения теплоносителя, большие объемы воды приводят к интенсивному выпадению взвешенных частиц шлама как в нижней части котла (формируя зоны интенсивной подшламовой коррозии), так и на верхней образующей жаровых труб. Даже на «чистой» трубе при работе котла на расчетные параметры воды с температурой +95 °C максимальные значения локальной температуры воды могут составлять

130 °C, а при +105 °C –

145 °C. Под пористыми шламовыми отложениями (и накипью) температуры металла стенки трубы и воды еще выше, что ведет к локальному вскипанию, интенсификации процесса накипеобразования, перегреву стенки трубы. Дополнительно необходимо отметить, что вскипание воды не только не смывает шламовые отложения на верхней образующей жаровых труб, но и интенсифицирует формирование локальных отложений накипи и фактически увеличивает размер и уплотняет эти отложения. По этой причине желательно не снижать гидростатическое давление в котле ниже 4,5–5 бар, что, однако, не может в полной мере подавить эти процессы. «Вялая» гидродинамика жаротрубных котлов объясняет необходимость глубокого умягчения воды до остаточной общей жесткости не более 0,01–0,02 (мг-экв)/л.

Максимальное уменьшение шламоотложения обеспечивается при использовании независимого подключения котлового контура в схеме теплоснабжения, исключающего попадание шлама из тепловых сетей и систем отопления потребителей. Следует ограничить использование магнитной и комплексонной обработки даже при наличии шламоотделителей в схеме и использовать периодическую продувку, периодичность и время осуществления которой из нижних точек котла определяется водно-химическим режимом работы котла.

Необходимо обязательно поддерживать гидравлический режим работы котла с расчетным расходом теплоносителя, определяемым при расчетной нагрузке по допустимому перепаду температур на входе и выходе из котла. Обеспечить требуемую рециркуляцию теплоносителя с проверкой во всех режимах работы для исключения низкотемпературной коррозии в хвостовых поверхностях нагрева котла, которая рассчитывается по условию превышения температуры воды на входе в котел температуры точки росы дымовых газов на 5 °C.

Рассматриваемые вопросы не только касаются проектирования и организации работы жаротрубных котлов, но напрямую связаны с режимами эксплуатации с позиции обеспечения технологических процессов. Так, позиционное регулирование отпускаемой потребителям мощности при режиме эксплуатации горелки «включено-выключено» объективно существенно сокращает ресурс работы котла, учитывая цикловую усталость металла. Однако иногда и использование модулируемых горелок, особенно в реверсивных топках, может на пониженных нагрузках вызывать преждевременный разворот факела вблизи горелки, а следовательно, перегрев отдельных участков топки и фронтовой трубной доски. Аналогичный процесс развивается при значительных разрежениях в газоотводящем борове за котлом. В некоторых случаях, при малом аэродинамическом сопротивлении котла, этот эффект проявляется при разрежении

Читайте также: