Теплоизоляционные свойства кирпичной кладки выше если применяются

Обновлено: 01.05.2024

Поризованный кирпич: почему его называют теплым камнем и в чем особенности кладки из него?

Чем больше в кирпиче воздушных камер, тем теплее сложенные из него стены. Традиционный кирпич и сам по себе не монолит, а если сделать его еще более пористым, то теплопроводность материала снизится, а теплоэффективность возрастет настолько, что он по праву получит наименование теплого камня

Преимущества поризованного кирпича

Показатели сопротивления теплопередаче разных по длине камней Показатели сопротивления теплопередаче разных по длине камней

А теперь подтвердим вышесказанное цифрами. Коэффициент теплопроводности поризованного кирпича 0,13–0,20 Вт/м·°С, полнотелого ≈ 0,6 Вт/м·°С, пустотелого ≈ 0,4 Вт/м·°С. Таким образом, дом из поризованной керамики будет примерно на 20% теплее, нежели сложенный из обычного кирпича, а расходы на его отопление могут сократиться на 35%.

Кроме того, за счет особенностей своей структуры, поризованная керамика улучшает влаго- и воздухообмен через ограждающие конструкции, а также повышает их звукоизолирующие свойства. Что касается денежного выражения всех этих преимуществ, то хотя поризованный кирпич и стоит дороже обычного, но затраты на возведение дома из того и другого материала практически равнозначны. Во-первых, теплый кирпич, по сравнению со своим классическим аналогом, имеет меньшую плотность (790–1200 кг/м³) и гораздо легче него, а значит, дешевле обойдется фундамент (экономия может составить до 40%). Во-вторых, ускоряется процесс кладки, поскольку модули самого ходового размера 510 × 250 × 219 мм, по сути, представляют собой блоки, равные полутора десятку стандартных кирпичей. При этом уходит и меньше строительного раствора: по торцам блоки стыкуются по принципу «паз-гребень» с зазором всего 1–2 мм (при обычной кладке – 12 мм), то есть вертикальные швы, которые, помимо прочего, являются мостиками холода, – практически отсутствуют.

Силикатный поризованный кирпич, изготовляемый из песка, извести и цемента, уступает по прочности и другим параметрам керамическому, стоит намного дешевле него и в основном применяется для возведения технических и хозяйственных построек

Ну и, наконец, в-третьих, при использовании крупноформатных поризованных блоков отпадает необходимость в многорядной кладке и дополнительном утеплении стен. Требования СНиП к теплофизическим показателям конструкций будут и без того соблюдены.

Обратная сторона медали

К минусам поризованного кирпича стоит отнести то, что он не предназначен для кладки фундаментов, цокольных и подвальных этажей, а также несущих стен высотных зданий. Допустимая этажность построек из него – 4 этажа, а максимальная высота потолков 4 м.

Поскольку пористая структура материала оборачивается повышенным водопоглощением (до 14% по массе), фасады дома приходится защищать штукатурным слоем, отделывать сайдингом, камнем или лицевым кирпичом. Если предполагается кирпичная облицовка, то еще при сооружении стен в каждом втором-третьем горизонтальном шве необходимо предусмотреть закладные детали для связи несущей и отделочной кладки. Обязательное условие – наличие между двумя стенками зазора для движения воздуха и продухов в облицовочном слое, иначе влага будет разрушать базовую стену.

Теплоизоляционные свойства кирпича

Теплоизоляционные свойства строений, выполненных из кирпича, зависят от технологии производства материала, состава, качества изготовления, а также от раствора, на основе которого осуществлена кирпичная кладка. Какие основополагающие факторы влияют на сохранение большего количества тепла и какие нюансы приготовления раствора нужно знать, чтобы не ухудшить свойства качественного кирпича?

Теплоизоляционные свойства кирпича

Важность пустотелости и поризованности
Если в кирпичах есть пустоты, его называют пустотелым. Чем больше пустот (а их может быть более 50%), тем больше тепла будет сохранять кирпич. Преимуществом такого строительного материала является меньшая масса, которая, во-первых, уменьшает нагрузку на фундамент, а во-вторых, облегчает кладку. Однако часто отверстия забиваются раствором, и в таком случае кирпич удерживает тепло хуже. Для избегания этого нужно выбирать камни с небольшими пустотами, а раствор делать более вязким.

Сохраняют тепло и внутренние поры, которые появляются в материале во время обжига. Такой кирпич называют поризованным. Кроме того что он «теплый», он обладает лучшей шумоизоляцией.

Теплоизоляционные свойства гарантируют не только поддержание тепла зимой, но и сохранение оптимальной температуры в жаркий период. Достигается это благодаря наличию воздушной внутренней прослойки, которая ухудшает теплообмен между внешней и внутренней средой.

«Правильный» раствор сохраняет тепло
Поскольку в кирпичном строительстве раствор занимает более 20% кладки, к его приготовлению должен быть особый подход. Он точно так же, как и основной материал, должен обладать хорошими теплоизоляционными свойствами, иначе высокие качества кирпича будут потеряны.

Для этого важно получить два основных свойства – пластичность и однородность. Оптимальная консистенция достигается при участии электродрели с насадкой, а еще лучше – бетономешалки. Важно дополнительно просеять песок перед добавлением его в раствор. Это поможет избежать попадания крупных комков в смесь и негативного влияния на качество. Способность раствора к расслоению можно определить по чистым местам на кирпиче при нанесении на него раствора, наличие которых покажет, насколько хорошо происходит сцепление по всей поверхности. Кроме того, «правильная» смесь будет ложиться тонким слоем, что также свидетельствует о будущем сохранении теплоизоляционных свойств.

Погружение так называемого эталонного конуса дает возможность определить подвижность раствора. Подвижность 8 см осадки конуса подходит для укладки пустотелого и поризованного кирпича. Если использовать более жидкий раствор, пустоты заполнятся и теплоизоляционные свойства ухудшатся. Для силикатного или полнотелого керамического кирпича раствор нужно доводить до 10-14 см осадки конуса. Если он будет более густым, со временем скорей всего растрескается.

С пластичностью можно экспериментировать, добавляя различные компоненты. Для ее увеличения используют глину, известь или специальные пластифицирующие добавки, которые незаменимы при кладке зимой.

Какая теплопроводность кирпича?


Физические характеристики строительного материала определяют сферу его применения. Теплопроводность кирпича является важным параметром, который принимается в расчет при сооружении фундамента, перекрытий, внешних стен.

Коэффициент теплопроводности кирпичей

В экономике страны строительная отрасль выделяется как наиболее энергоемкая:

  • 10% энергии потребляют гражданские объекты;
  • 35-45% расходуют сооружения промышленного назначения;
  • 50-55% энергопотребления относится к жилым зданиям.

При проектировании зданий важное значение для строительных конструкций имеют теплоизоляция и тепловая защита. От этого во многом зависят человеческие условия труда и жизни, энергоэффективность строящихся объектов.

Возведение сооружений различного назначения нуждается в правильной оценке влажностного, воздушного и теплового режимов.

Это позволяют разработать специальные методики определения теплофизических параметров стройматериалов и готовых конструкций. Эти методики будут разными для отличающихся материалов изделий.

Теплотехнические показатели по техническим и нормативным документам характеризуются коэффициентом теплопроводности (λ). Для кирпича параметр является показателем того, как изделие передает тепло.

Чем выше значение, тем меньше теплоизолирующая способность. При выборе утеплителя для дома значение λ должно быть как можно меньше.

Коэффициент определяют экспериментальным путем. Это физический показатель, который зависит от давления воздуха, температуры, влажности среды и вещества изделия, плотности и структуры последнего.

Существует формула для определения теплопроводности. В соответствии с ней коэффициент λ прямо пропорционален толщине слоя (в метрах) и обратно пропорционален сопротивлению теплопередаче слоя.

Величина, которую получают при расчетах, используются в проектировании, чтобы сопоставить значение проводимости тепла разных материалов.

Для ограждающих конструкций сопротивление теплопередаче (R0) определяется для зданий и сооружений в соответствии с ГОСТ 26254-84. Для термически однородной зоны оно зависит от:

  1. Сопротивлений передачи тепла наружной и внутренней поверхностей.
  2. Температуры воздуха снаружи и внутри помещения, взятой как среднее значение измерений за расчетный период.
  3. От средней фактической плотности потока тепла за период измерений.

Теплопроводность кладки

По ГОСТ 26254 определяют λ для кирпичных и блочных кладок. Для этого действуют следующим образом:

  1. За время наблюдений определяют показания (средние арифметические) для всех термопар и типломеров.
  2. Для поверхностей кладок, которые находятся внутри и снаружи зданий и сооружений, вычисляется средневзвешенная температура по результатам испытаний. Принимается в расчет площадь растворных швов горизонтального и вертикального участков, а также площадь тычкового и ложкового участков.
  3. Определяют для кладки термическое сопротивление.
  4. Коэффициент теплопроводности кладки вычисляется по значению термического сопротивления.

Теплопроводность

Расчет

Теплопроводность кладки прямо пропорциональна ее толщине и обратно пропорциональна термическому сопротивлению.

После проведения испытаний и установления точных значений сопротивления теплопередачи нетрудно рассчитать величину теплопроводности стены, состоящий из несколько слоев.

Для этого нужно определить λ для каждого слоя отдельно и суммировать полученные значения.

Уменьшение коэффициента теплоотдачи стены

Существует несколько способов, которые позволяют снизить тепловые потери.

Технологии укладки

Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.

Прослойку воздуха в стенах правильно обеспечивают следующим образом:

Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.

Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.

Технологии

Утепление здания

Дополнительная теплоизоляция строительных объектов способствует повышению их энергоэффективности. Утеплитель может располагаться изнутри и снаружи зданий.

Материал теплоизолятора крепится к стенам дюбелями и клеем, скобами и шурупами с использованием обрешетки и без. Полимерные штукатурные и пеновые смеси могут наноситься с применением армирующей сетки.

Для наружного утепления производятся сборные изделия: термоблоки, вентилируемые фасады, закрепляющиеся к стенам с помощью специальных конструкций.

Недостатки теплоизоляции штукатуркой снаружи:

  1. При частой смене температуры воздуха на границе сред, образуемых элементами утеплителя и стеной, создается зона повышенной влажности. Это важно учитывать для недостаточно толстых слоев штукатурки, сделанной по металлической, стеклотканевой или полимерной сетке.
  2. На 3-4 году эксплуатации отделка фасада начинает разрушаться. Раствор выдерживает в среднем около 50 циклов смены тепло-холод.
  3. На здоровье проживающих в доме может плохо влиять поражение конструкций грибком и плесенью.

Разные системы теплоизоляции способны нарушить паропроницаемость конструкции. Это часто вызывает образование между слоями фасада, штукатуркой и утеплителями конденсата. Он снижает срок службы изоляции и отделки, приводит к разложению пенополистиролов с выделением ядовитых веществ.

Что обозначает показатель

Холодная область материала постоянно получает тепло из более теплых частей. Их этот процесс движения тепла осуществляется через электромагнитные взаимодействие на уровне квазичастиц, электронов и атомов.

В зависимости от коэффициента теплопроводности ГОСТ 530-2012 разделяет эффективность складки на следующее виды:

Исходя из состава для кладочных смесей величину теплопроводности в инженерных расчетах выбирает от 0,47 и выше.

Нужный температурный режим лучше поддерживается при использовании стройматериалов с высокой теплоемкостью. Этот параметр характеризует, сколько нужно количества тепла, чтобы за единицу времени нагреть объект до заданной температуры. Единицами измерения показателя являются Дж/0С, Дж/К.

Что обозначает

Свойства различных типов

Разные строительные материалы отличаются способностью проводить тепло, которая зависит от следующих параметров:

Красный керамический

Мелкозернистая глина является при производстве керамического кирпича основным компонентом. В готовую продукцию также входят вода, песок и улучшающие начальное качество сырья присадки.

Изделия меньше растрескиваются, когда в их состав входит более эластичный раствор, качество которого модифицируют с помощью пластификаторов.

Для керамического кирпича хорошая морозостойкость является основным достоинством. Он способен выдерживать 250-300 циклов замораживания и оттаивания.

У пустотелых и полнотелых изделий будет разная величина объемного веса. Построенная из кирпича конструкции будут характеризоваться теплопроводностью тем ниже, чем более пористый материал был использован при строительстве. Для полнотелого кирпича показатель пустотности не может составлять более 30%.

Несущие стены не делают из пустотелых материалов, поэтому чаще всего они нуждаются в дополнительном утеплении.

Красный

Клинкерный

Этот тип кирпича получают из смеси силикатов и минералов, воды, тугоплавкой измельченной глины, которую обрабатывают после формовки при высокой температуре (до 13000). Для этого используют тоннельные печи.

При соблюдении технологии производства получается продукт без мелкодисперсионных пор с высокой прочностью, натуральных оттенков. Параметры готовых изделий определяются ГОСТ 530-2012.

Клинкерный кирпич чаще всего получается с точной геометрией. Для повышения теплоизоляционных качеств и облегчения веса конечной конструкции он выполняется пустотелым.

Характеристика шамотного

Оксид алюминия является главным веществом, которое входит в огнеупорную смесь. Он обеспечивает кирпичу устойчивость к агрессивным средам и высокую прочность при механических воздействиях.

Изготовленный в соответствии с государственными стандартами стройматериал обладают следующими показателями:

Силикатный

Материал получают под давлением 12 атм. и температуре 200°С автоклавным методом. В его состав входят, кроме модифицирующих добавок, извести, кварцевый песок в соотношении 1 к 9.

Стойкие к щелочи пигменты, которые добавляют в сырье на этапе прессования, помогают сделать цветные варианты изделий.

Какая теплопроводность изделий

Для анализа теплопроводности изделий из кирпича принимается во внимание закон Фурье. Разница температур оказывает влияние на показатели, которые определяет тепловой поток.

Применяемые для отделки фасадов силикатные кирпичи имеют тепловые параметры ниже керамических. Поэтому изделия из силикатных материалов более теплые при одинаковых размерах конструкций.

Изделия из красного пустотелого керамического кирпича имеют коэффициент теплопроводности 0,56.

На показатели готовых зданий сооружений и влияет качество кладки. Важно, чтобы применяемые кладочные растворы были нежирными. Плотность слоя должна быть не больше 1800кг/м3 и минимальной толщины.

Теплотехнические расчеты и требуемая несущая способность определяют то, какая толщина несущей стены будет в здании. Чтобы удовлетворять современным требованиям при реконструкции домов, построенных в советское время, толщину их стен нужно сделать около 1 м. Это не может быть рентабельным, поэтому используют различные системы утепления.

Если утепляющая часть стены и сочетается с каменной, конструкция получается слоистой, то такую укладку называют эффективной. Ее часто применяют в малоэтажном строительстве, для увеличения полезной площади помещений и снижения затрат на материалы.

Что влияет на показатели

На показатель λ оказывает влияние:

  • влажность;
  • температура;
  • пористость;
  • формы и структура пор;
  • фазовый состав влаги; .

Сильно снижает теплопроводность наличие замкнутых и мелких пор. Снижают эффективную теплоизоляцию конвективные потоки воздуха, которые возникают в сообщающихся между собой крупных порах. Ориентация, размер и форма пор важны для теплопередачи.

Коэффициенты морозостойкости, теплоемкости и теплопроводности кирпича

Сфера применения материала определяется его эксплуатационными характеристиками. Комплекс рассматриваемых свойств должны соответствовать требованиям, предъявляемых строительному кирпичу при сооружении внешних стен, перекрытий, фундамента. Возведение конструкций подразумевает выбор изделий различного назначения:

  • Силикатный – рядовой, лицевой, пустотелый, полнотелый.
  • Керамический – жаростойкий и все разновидности предыдущего вида.
  • Клинкерный – для облицовки фасадов.

Технические параметры кирпича

Показатели определяют энергопотребление дома, затраты на обогрев помещений. Проектирование сооружений, расчеты ограждающих конструкций учитывают эти параметры.

Коэффициент теплопроводности

Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.

Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:

Чем больше плотность, тем выше теплопроводность – не совсем верное утверждение. Структура содержит закрытые поры и полости (пустотелый), наполненные воздухом с коэффициентом ≈ 0,026. Благодаря этому, изделия со щелевыми отверстиями лучше поддерживают тепловой режим внутри сооружений. В инженерных расчетах необходимо учитывать величину теплопроводности кладочной смеси, значение показателя выбирают от 0.47 и выше, в зависимости от состава.

Сравнение кирпича разного типа

Теплопроводность красного изделия ниже, чем у силикатного.

Физические процессы нагрева и удержания тепла можно охарактеризовать величинами:

  • Коэффициент теплоотдачи – теплообмен на границе поверхности твердого тела и воздушной среды. Это мощность теплового потока, приходящаяся на плоскость 1 м², обратно пропорциональная разнице температур тела и теплоносителя (воздух). Чем выше теплопроводность, тем больше теплоотдача.
  • Полное тепловое сопротивление – способность противостоять передаче тепла. Значение обратно пропорционально коэффициенту теплопередачи. Исходя из расчетной формулы R = L/λ, легко рассчитать оптимальную толщину кладки. λ – постоянный параметр, R – тепловое сопротивление указано в таблице 4 СП 131.13330.2012 для климатических зон России.

Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:

  • Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
  • Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.

Силикатные кирпичи

Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:

  • Применение теплоизоляции.
  • Нанесение штукатурки.
  • Использование пустотного кирпича или камня (исключено для фундамента здания).
  • Кладочный раствор с оптимальными теплотехническими параметрами.

Теплопроводность блоков

Таблица с характеристиками различных видов кладок. Использованы данные СП 50.13330.2012:

Обыкновенный г линяный кирпич на различном кладочном растворе

Пустотный красный различной плотности (кг/м³) на ЦПС

Морозостойкость кирпичной кладки

Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.

Морозостойкость блоков

Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.

Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.

Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:

  • Применение паро- и гидроизоляции.
  • Обработка кладки гидрофобными составами.
  • Контроль, своевременное исправление дефектов.
  • Надежная гидроизоляция фундамента.

От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.

Теплопроводность и теплоемкость кирпича

Теплопроводность и теплоемкость кирпича – важные параметры, позволяющие определиться с выбором материала для возведения жилых зданий, сохраняя в них необходимый уровень тепла. Удельные показатели рассчитываются и приводятся в специальных таблицах.

Что это такое и что на них влияет?

Теплопроводностью называется процесс, который происходит внутри материала при передаче тепловой энергии между частицами или молекулами. При этом более холодная часть получает тепло от более нагретой. Энергетические потери и выбросы теплоты происходят в материалах не только в результате процесса передачи тепла, но и при излучении. Это зависит от того, какова структура данного вещества.

Каждый строительный компонент имеет определенный показатель проводимости тепла, полученный опытным путем в лаборатории. Процесс распространения тепла неравномерен, поэтому выглядит на графике как кривая. Теплопроводность – физическая величина, которая традиционно характеризуется коэффициентом. Если посмотреть в таблицу, можно легко заметить зависимость показателя от условий эксплуатации данного материала. Расширенные справочники содержат до нескольких сотен видов коэффициентов, определяющих свойства различных по строению стройматериалов.




Для ориентира при выборе в таблице указывают три условия: обычные – для умеренного климата и средней влажности в помещении, «сухое» состояние материала, и «влажное» – то есть эксплуатацию в условиях повышенного количества влаги в атмосфере. Легко заметить, что у большинства материалов коэффициент возрастает с увеличением влажности окружающей среды. «Сухое» состояние определяется при температурах от 20 до 50 градусов выше нуля и нормальном атмосферном давлении.

Если вещество используется как теплоизолятор, показатели выбирают особенно тщательно. Пористые структуры сохраняют тепло лучше, а более плотные материалы отдают его сильнее в окружающую среду. Поэтому традиционные утеплители обладают самыми низкими коэффициентами теплопроводности.

Как правило, для строительства подходит оптимально стекловата, пено- и газобетон с особо пористой структурой. Чем плотнее материал, тем большей теплопроводностью он обладает, следовательно, передает энергию в окружающую среду.




Виды материалов и их характеристики

Кирпич, выпускаемый на сегодняшний день во множестве видов, применяется при строительстве повсеместно. Ни один объект – крупный промышленный корпус, жилой многоквартирный или небольшой частный дом, не возводится без кирпичного основания. Строительство коттеджей, популярное и сравнительно недорогое, базируется исключительно на кирпичной кладке. Кирпич давно стал основным строительным материалом.

Это произошло благодаря его универсальным свойствам:

  • надежности и долговечности;
  • прочности;
  • экологичности;
  • отличным звуко- и шумоизоляционным характеристикам.




Выделяют следующие разновидности кирпича.

  • Красный. Изготавливается из обожженной глины и добавок. Отличается надежностью, долговечностью и морозостойкостью. Подходит для возведения стен и строительства фундамента. Обычно кладется в один или два ряда. Теплопроводность зависит от наличия зазоров в изделии.


  • Клинкерный. Самый прочный и плотный облицовочный кирпич. Полнотелый, цельный и надежный печной материал по причине высокой плотности имеет и наиболее значительный по величине коэффициент теплопроводности. И поэтому для стен его бессмысленно использовать – в доме будет холодно, понадобится значительное утепление стен. Зато кирпич клинкерный незаменим в дорожном строительстве и при укладке пола в промышленных зданиях.


  • Силикатный. Недорогой материал из смеси извести с песком, часто изделия объединяют в блоки для улучшения эксплуатационных свойств. При возведении построек используется не только полнотелый, но и силикат с пустотами. Показатели долговечности у песчаного блока средние, а теплопроводность зависит от размеров соединения, но все же остается достаточно высокой, поэтому дом потребует дополнительного утеплителя.

Ниже показатель у щелевого брикета по сравнению с аналогом без внутренних зазоров. Следует также учесть, что изделие впитывает избыточную влагу.


  • Керамический. Современный и красивый материал, выпускаемый в значительном ассортименте. Если говорить о теплопроводности, то она существенно ниже, чем у обыкновенного красного кирпича.


Бывает полнотелый керамический брикет, огнеупорный и щелевой, с пустотами. Коэффициент проводимости тепла зависит от веса кирпича, вида и количества щелей в нем. Теплая керамика внешне красива, к тому же внутри имеет множество тонких зазоров, что делает ее очень теплой и потому идеальной для строительства. Если в керамическом изделии имеются также поры, снижающие вес, кирпич называется поризованным.

К недостаткам такого кирпича следует отнести то, что отдельные единицы малого размера и хрупкие. Поэтому теплая керамика подходит не для всех конструкций. К тому же это дорогостоящий материал.

Что касается огнеупорной керамики, то это так называемый шамотный кирпич – жженый брусок из глины с высоким показателем теплопроводности, почти таким же, как у обыкновенного полнотелого материала. Вместе с тем огнеупорность – ценное свойство, которое всегда учитывают при строительстве.

Из такого «печного» кирпича сооружают камины, он обладает эстетичным внешним видом, сохраняет тепло в доме благодаря высоким показателям теплопроводности, морозоустойчив, не поддается воздействию кислот и щелочей.

Теплоемкость удельная – это энергия, которая расходуется для нагревания одного килограмма материала на один градус. Этот показатель нужен для определения устойчивости к теплу стен здания, в особенности при низких температурах.

Для изделий из глины и керамики этот показатель колеблется в пределах 0,7-0,9 кДж/кг. Силикатный кирпич дает показатели в 0,75-0,8 кДж/кг. Шамотный способен при нагревании давать увеличение теплоемкости с 0,85 до 1,25.

Сравнение с другими материалами

Среди материалов, способных составить конкуренцию кирпичу, существуют как натуральные и традиционные – дерево и бетон, так и современные синтетические – пеноплекс и газобетон.

Деревянные строения издавна возводились в северных и других отличающихся низкими зимними температурами районах, и это неспроста. Удельная теплоемкость дерева значительно ниже, чем у кирпича. Дома в этой местности строят из цельного дуба, хвойных пород деревьев, а также применяют ДСП.

Если дерево режут поперек волокон, коэффициент теплопроводности материала не превышает 0,25 Вт/М*К. Низкий показатель и у ДСП – 0,15. А наиболее оптимальным для строительства коэффициентом отличается древесина, разрезанная вдоль волокон – не более 0,11. Очевидно, что в домах из такого дерева достигается отличная сохранность тепла.


Таблица наглядно демонстрирует разброс в величине коэффициента теплопроводности кирпича (выражается в Вт/М*К):

  • клинкерный – до 0,9;
  • силикатный – до 0,8 (с пустотами и щелями – 0,5-0,65);
  • керамический – от 0,45 до 0,75;
  • щелевая керамика – 0,3-0,4;
  • поризованный – 0,22;
  • теплая керамика и блоки – 0,12-0,2.

При этом поспорить с деревом по уровню сохранения теплоты в доме может только теплая керамика и поризованный кирпич, которые также дороги и хрупки. Тем не менее, кирпичная кладка при возведении стен используется чаще, и не только по причине дороговизны цельного дерева. Деревянные стены боятся атмосферных осадков, выгорают на солнце. Не любит дерево и химических воздействий, к тому же древесина способна гнить и пересыхать, на ней образуется плесень. Поэтому этот материал требует специальной обработки до начала строительства.

Кроме того, огонь способен очень быстро разрушить деревянное строение, так как древесина отлично горит. В отличие от нее, большинство видов кирпича довольно устойчиво к воздействию огня, в особенности шамотный кирпич.

Что касается других современных материалов, для сравнения с кирпичом обычно выбирают пеноблок и газобетон. Пеноблоки – это бетон с порами, в состав которого входят вода и цемент, пенообразующий состав и затвердители, а также пластификаторы и другие компоненты. Композит не впитывает влагу, отличается высокой морозостойкостью, сохраняет тепло. Используется при возведении невысоких (в два-три этажа) частных построек. Теплопроводность равна 0,2-0,3 Вт/М*К.

Газобетон – очень прочные соединения сходного строения. В них до 80% пор, обеспечивающих отличную тепло- и звукоизоляцию. Материал экологичный и удобный в использовании, а также недорогой. Теплоизоляционные свойства газобетона в 5 раз выше, чем у красного кирпича, и в 8 раз – чем у силикатного (коэффициент теплопроводности не превышает 0,15).



Однако газоблочные структуры боятся воды. К тому же по плотности и долговечности они уступают красному кирпичу. Одним из востребованных на рынке стройматериалов называют пенополистирол экструдированный, или пеноплекс. Это плиты, предназначенные для теплоизоляции. Материал пожаробезопасен, не впитывает влагу и не гниет.

По мнению специалистов, сравнение с кирпичом данный композит выдерживает лишь по теплопроводности. Утеплитель имеет показатель, равный 0,037-0,038. Пеноплекс недостаточно плотный, он не обладает нужной несущей способностью. Поэтому лучше всего сочетать его с кирпичом при возведении стен, при этом дополненная пеноплексом кладка в полтора полых кирпича позволит добиться соблюдения строительных норм по теплоизоляции жилого помещения. Применяется пеноплекс и для фундаментов домов и отмостков.

Морозостойкость

Морозостойкость определяется путем циклов заморозки и размораживания. Данный параметр важен при выборе вида кирпича для укладывания несущих стен. Марка зависит от количества циклов и указывается на изделиях. Наиболее высокой морозостойкостью обладает облицовочный и красный кирпич, который хорошо выдерживает температуру до -50 градусов Цельсия и ниже. Если у вас используется силикатный кирпич, его свойства хуже, поэтому кладку придется делать в два слоя. Не подойдет силикат и для строительства фундамента.

В условиях зимней непогоды тепло в доме сохраняется за счет обогревательного котла отопительной системы. Но для того чтобы не происходило рассеивания тепла, нужны стены, пол и потолок из соответствующего материала, хорошо сохраняющего заданную температуру. Тип кирпичной кладки играет в ходе строительства немаловажную роль. Выбирать материал следует, учитывая все параметры и погодные условия.




В следующем видео вас ждет обзор теплопроводности кирпича ШБ 8.

Теплоизоляционный кирпич

Подпишитесь на канал и стройте качественно дом!

Любой человек, желающий построить дом в курсе того, что из-за наружных стен теряется тепло в доме, вследствие этого возникает главный вопрос, каким образом возвести стены, чтоб они не теряли тепло. По логике нужно сделать стены толще, используя полнотелый кирпич, однако лучше применить стройматериал утеплитель. Ну а самый оптимальный вариант – это возведение стен из действенного материала – теплосберегающего кирпича.

Пенодиамтомитовые кирпичи Пенодиамтомитовые кирпичи

Требования к постройке незаметно меняются, из-за роста цен на высококачественные стройматериалы возникают сомнения на счет их эффективности. Теплоизоляционный кирпич помогает снизить потерю тепла. При разработке теплосбрегающего кирпича выяснилось, что в большинстве случаев использование простого полнотелого кирпича неразумно, так как нужно очень много силикатного и керамического кирпича по причине его невысокой продуктивности. А вот применение теплоизоляционного кирпича, который в свою очередь имеет разновидности – самое заманчивое и экономное решение.

Пустотелый кирпич

Воздух, которых находится в неоднородных пустотах, представляет собой натуральный теплоизолятор. Видимо немного меньший вес и плотность уменьшают нагрузку на фундамент. Но все же, не забывайте, что нельзя создавать облегченную кладку в подвальных помещениях, фундаментах, несущих стенах, в местах, где повышенная влажность. Во время изготовления кирпича уменьшается его плотность из-за сделанных вертикальных и горизонтальных пустот разной формы. Отверстия в изделии могут достигать до половины самого объёма кирпича и в соответствии с гос. стандартом кирпич является действенно теплопроводным при показателе до 0, 24 Вт/мС. Согласно ГОСТу, на каждой стадии производства теплоизоляционный кирпич испытывается в строжайших условиях. Благодаря высоким показателям прочности полнотелый кирпич уступает по стоимости из-за того, что при производстве требует больше сырья. По причине отверстий кирпич изнутри лучше пропекается.

Пустотелый облицовочный кирпич Пустотелый облицовочный кирпич

Сохранение тепла - не одно лишь преимущество пустотелого кирпича, из-за отверстий при одинаковых размерах с полнотелым он может быть легче его до 1,5 кг. Вследствие этого снижаются нагрузки на фундамент, помогает уменьшить площадь, при этом сэкономив на материалах.

Очень близок по свойствам пустотелому кирпичу поризованный кирпич, не уступающий своим качеством, его еще называют суперэффективным. Эффект поризованного кирпича аналогична пустотному — тепло не выходит из-за внутреннего воздуха, и не пропускаются сторонние звуки. Благодаря маленьким пустотам кирпич лучше «дышит». Пустоты в поризованном кирпиче или поры образуются при добавлении в глину сгорающих веществ, таких как уголь, солома, опилки и т.п. Во время обжигания материалы выгорают, создавая замкнутые пустоты, благодаря этому кирпич приобретает особенные продуктивные свойства. Выбирая такой кирпич, вы ещё и экономите, так как его требуется небольшое количество для возведения стен. Кроме того, используя такую технологию можно получить габаритные камни, ускоряющие ход кладки и тем самым уменьшая трату раствора и число «мостиков холода».

Усовершенствование технологии, заключающее в использовании пенополистирольных шариков в виде сгорающего наполнителя, преподнесло суперпоризированный кирпич. Размер пор увеличивается, снижая теплопроводимость без потери прочности.

При строительстве в большинстве случаев, пустотные кирпичи совмещают с полнотелым. Такое сочетание с декоративным футеровочным кирпичом повышает теплопроводимость стены, и фасад приобретает привлекательный вид.

Если неаккуратно класть утеплитель, то это поспособствует образованию мостиков холода в качестве растворных швов, это негативно скажется на будущем доме. Вследствие этого, чтобы защитить стену от холода применяется облицовочный кирпич.

Нужно ли утеплять стены из кирпича. Часть 1.

В этой статье для расчетов применим другой материал для стен, более популярный, чем газоблок, при этом более дорогой - кирпич.

В качестве вводных для расчета применим все тот же регион - город Москва и Московскую область. В качестве материала возьмем кирпич керамический полнотелый, на теплоизоляционном цементном перлитовом растворе.

Но сперва немного теории. Размер кирпича керамического обыкновенного составляет 250х120х65 мм, ширина вертикального шва и высота горизонтального шва кладочного раствора между кирпичами составляет 10 мм. Кирпичная кладка может быть следующей толщины: для внутренних межкомнатных перегородок - 120 мм (0,5 кирпича); для внутренних несущих стен - 250 мм (в 1 кирпич); наружные несущие стены могут быть 380 мм (в 1,5 кирпича), 510 мм (в 2 кирпича), 640 мм (в 2,5 кирпича) и раньше применялись кладки толщиной 770 мм (в 3 кирпича) для северных районов нашей страны.

Для начала попытаемся рассчитать кирпичную кладку без утепления, толщинами 380, 510 и 640 мм, и посмотрим, пройдут ли кладки такой толщиной по теплотехническому расчету. В отличие от газоблока кирпичную кладку можно не защищать от воздействия атмосферных осадков, так как сам кирпич не подвержен их воздействиям. Единственной проблемой через какое-то время могут стать швы между кирпичами, так как под воздействием влаги начинается выщелачивание солей из швов (т.н. "высолы"), которые расползаются по стене бледно-серыми пятнами. Итак, снаружи оставим "голый" кирпич, оставив вымышленному хозяину этого дома простор для фантазии в отделке, а изнутри "оштукатурим" стены цементно-песчаным раствором толщиной 20 мм.

Читайте также: