Пластиковый кирпич для строительства

Обновлено: 21.05.2024

Пластик в кирпичи

Можно ли построить дом из пластиковых отходов? Ученые уже уверены, что да. Строители пока присматриваются. А дизайнеры уже вовсю используют новый материал. Причем кирпичи из переработанного пластика удалось сделать не только экологичными, но и красивыми.

Большинство видов пластика не подлежат переработке и повторному использованию. Но это лишь пока — уверены ученые. Сейчас специалисты во многих странах мира заняты разработкой новых технологий. Причем многие ученые пошли дальше и доказывают, что новый строительный материал может быть не только экологичным, но и красивым.

Ежегодно в мире производится

359 миллионов тонн пластмассы. Перерабатывается из них лишь малая доля. Например, в Великобритании из 5 миллионов тонн используемого пластика вторсырьем становится только 370 тысяч тонн, что составляет 7%.

Специалисты считают, что основная проблема заключается не в пластике как материале, а в экономической модели. Товары производятся, потребляются, а затем утилизируются без дальнейшего использования. Эта модель не учитывает исчерпаемые ресурсы планеты и проблему загрязнения окружающей среды.


Некоторые виды пластика, как например ПЭТ, можно использовать повторно, вновь производя из него ПЭТ-бутылки. Другие виды можно измельчить и применять в качестве наполнителя, например, для асфальта.

Но большинство полимеров, такие как каучуки, эластомеры, термореактивные пластмассы и смешанные пластиковые отходы в большинстве случаев воспринимаются как не подлежащие вторичной переработке.

Однако, есть возможность включить пластмассу в другой жизненный цикл и превратить вышедший из употребления пластик в новый продукт. В частности, прочный и надежный строительный материал.

Например, Сибеле Сестари, специалист по полимерным материалам из Бразилии, научный сотрудник Королевского университета в Белфасте придумала способ, при котором бывшие в употреблении пластики смешивают с другими отходами. Это может быть жмых сахарного тростника или кофе. В результате получается материал для производства черепицы, кирпича и других элементов для строительства.


Сейчас её команда работает над созданием строительных блоков из смеси первичного и использованного пластика — цветных ПЭТ-бутылок, полипропилена, полиэтилена — а также конопли, опилок, бетонных отходов и красного шлама.

Включение в производство последнего компонента немаловажно, так решается проблема утилизации этих твердых отходов, образующихся при промышленной обработке боксита при получении алюминия.

Сейчас ученые поставили перед собой задачу максимально использовать переработанный пластик. Блоки, изготовленные из него на 25%, уже успешно прошли механические испытания.


Теперь на очереди стройматериал, содержащий 50, 75 и даже 100% вторичного пластика.

Ученые также думают и об эстетической стороне. Большинство производимых из переработанного пластика материалов до сих пор имели серый цвет. Команда Сибеле Сестари придумала смеси с различными цветными вкраплениями, чтобы покрывать ими основную часть блока.


4 августа в трех школах Бенина открыли классные комнаты, построенные из переработанного пластикового кирпича. Они были подарены детским фондом ЮНИСЕФ.


Стройматериал импортировали из Колумбии. Завод Conceptos Plásticos в Боготе закупает сырьё у 15 тысяч сборщиков, работающих индивидуально или в компаниях. Представители ЮНИСЕФ обратились к властям Бенина с призывом построить аналогичный завод у себя в стране.


Клодес Каменга, постоянный представитель ЮНИСЕФ в Бенине: «Если бы Бенин смог получить возможность производить эти кирпичи на месте, это позволило бы сократить дефицит школьной инфраструктуры, особенно в наиболее неблагополучных районах. Одновременно это поможет сокращению бедности за счет увеличения доходов женщин и молодежи, занятых в переработке отходов. А также будет сокращено загрязнение пластиком окружающей среды.»

Опыт строительства помещений для обучения из переработанного пластикового кирпича впервые был использован в Кот-д’Ивуаре. Этот проект, запущенный при поддержке ЮНИСЕФ год назад, позволил нескольким тысячам детей впервые получить место в школе.


На фото: классная комната, построенная из пластиковых кирпичей в Кот-д’Ивуаре

По мнению представителей фонда, подобный стройматериал является находкой для Бенина. В стране существует острая нехватка помещений для обучения детей. При этом кирпичи из переработанного пластика недороги и долговечны. Строительство из них классных комнат занимает всего неделю и не требует специальной квалификации рабочих. Обходится оно на 40% дешевле традиционного, при этом не используются вода и цемент. Пластиковые стены не токсичны, так как в смеси не допускается присутствие ПВХ. Их можно оставить голыми или покрыть штукатуркой или деревом.


На фото: Кирпич из переработанного пластика

Однако, широкого применения в строительной индустрии материалы из переработанного пластика пока не нашли. Но с большим успехом используются в демонстрационных инсталляциях, в том числе на различных выставках, форумах и фестивалях.


На фото: Павильон желаний на Фестивале середины осени в Гонконге

Например, для ежегодного Гонконгского Фестиваля середины осени компания Daydreamers Design создала Павильон желаний цвета пламени из переработанного пластикового кирпича. Создателей вдохновили «Горящие башни», которые жители южнокитайских провинций по древнему обычаю возводят из кирпича и черепицы, внутренности заполняют дровами и соломой, а ночью, когда восходит полная луна, поджигают.


Спиральный павильон в Гонконге построили вокруг геометрической скульптуры пламени. 5 000 цветных блоков были сделаны из переработанного полиэтилена высокой плотности (HDPE). Чтобы придать материалу яркие оттенки, к пластиковым гранулам добавляли цветной порошок. В каждый пластиковый кирпич был установлен светодиодный светильник с запрограммированным световым эффектом, что создавало ощущение пламени.


По данным дизайн-студии, Павильон желаний стал первым в Гонконге масштабным архитектурным проектом с использованием кирпича из переработанного пластика.

Компания «РТ-Инвест» также предпринимает шаги в этом направлении. В ближайшее время на комплексах по переработке отходов начнется строительство предприятий по переработке пластика. Таким образом, КПО станут предприятиями полного цикла — там будет вестись и сортировка, и переработка. К 2023 году на базе ведущего оператора отрасли будет перерабатываться 4 млн тонн полимеров в год. Сейчас в России существуют технологии, а главное, предприятия, которые их используют для производства упаковки, тары для воды, емкостей для бытовой химии. Возможно, к моменту запуска предприятий «РТ-Инвест», появятся и технологии использования переработанного пластика в материалах для строительства.

Изготовление кирпичей из пластика (вторичка)





В этой статье мастер поделится с нами своим опытом по переработке пластика и формовки из него кирпичей. По его словам, этот аппарат был специально разработан для сельской местности (развивающихся районов) и поэтому не требует электричества для работы (мастер использует электропечь, по-видимому в демонстрационных целях). Производство пластиковых кирпичей может помочь не только очистить окружающую среду и обеспечить строительными материалами, а также содействовать развитию предпринимательству в этой области.


Инструменты и материалы:
-4 болта M5;
-4 шайбы M5;
-4 гайки M5;
-Саморезы M5;
-Бумага для выпечки;
-Металлическая форма;
-Старый сверлильный станок;
-Пластиковая труба;
-Фанера;
-Линейка;
-Маркер;
-Циркулярная пила;
-Метчик;
-Электрическая духовка (опция);


Шаг первый: сверлильный станок
В принципе нужен не станок, а пресс. На данном сверлильном станке установлена зубчатая рейка и он вполне подойдет в качестве пресса. Все лишние элементы включая мотор были демонтированы.





Шаг второй: проектирование
Дальше основываясь на размеры сверлильного станка проектирует пресс с формой.





Файл с чертежами можно скачать ниже.
HL DT Cutting List - MP Final.pdf

Шаг третий: модель
Прежде чем делать сборку из металла мастер изготавливает модель из фанеры. Это нужно чтобы проверить правильность проектирования.









Шаг четвертый: сборка
Все металлические детали были заказаны в специализированной мастерской. Сама форма сделана из металлической пластины толщиной 6 мм и собирается без крепежа.









Основание сделано из 12 мм металлической пластины. В основании сверлятся три отверстия и нарезается резьба. Затем прикручивается стойка станка.





К прижимной пластине по центру, приварена труба диаметром с посадочное отверстие шпинделя. К трубе приварена еще одна крепежная пластина. В крепежной пластине мастер просверлил отверстия и нарезал резьбу. Затем прикрутил к каретке.







Шаг пятый: изготовление кирпича
Теперь, когда пресс готов, пришло время проверить его работу.
В качестве материала он использует измельченный ударопрочный полистирол. Саму форму выложил бумагой для выпечки. Поместил пластик в форму. Сверху положил лист бумаги. Затем поместил пресс-форму в духовку на 15 минут при температуре 270°C. После размягчения пластика вынул форму и поместил ее под пресс на 20-30 секунд.









После формирования кирпича поместил форму под струю холодной воды. Остудив форму просто разобрал ее сняв боковые стенки.





Очистил кирпич от бумаги и взвесил его. Вес готового кирпича чуть больше 1кг.





Все готово, но мастер будет еще дорабатывать устройство и технологию переработки пластика.

Стройматериалы будущего: зачем нужны живые кирпичи и светящийся бетон

Фото: Sergey Nivens/shutterstock

Кирпичи из переработанного пластика и углекислого газа, прозрачная древесина, способная пропускать свет и сохранять тепло, светящийся цемент — далеко не полный список строительных материалов, которые разработали ученые и исследователи со всего мира.

Главное, что их объединяет, — экологичность, экономичность и умные технологии. Рассказываем о некоторых из них.

Что такое инновационные стройматериалы

К инновационным можно отнести материалы, которые имеют уникальную технологию производства, состав и чья новизна подтверждена патентами. Сюда можно отнести материалы с переработанной составляющей либо подтвержденные экологическим сертификатом, то есть произведенные в таких условиях, которые не наносят вред окружающей среде.

Бетон, пропускающий электричество

Инженеры Дальневосточного федерального университета (ДВФУ) совместно с коллегами из Восточно-Сибирского государственного университета технологий и управления (ВСГУТУ) недавно разработали сверхпрочный карбоновый бетон, способный проводить электричество. Об этом рассказали в пресс-службе ДВФУ.

Часть цемента в новом бетоне заменили на зольные и шлаковые отходы энергетических производств и отходы обработки гранита. За счет этого производство нового бетона экономичнее и экологичнее. Для электропроводимости вместо дорогих карбоновых нанотрубок в смесь добавили обычные карбоновые наночастицы. Они стали побочным продуктом переработки угля электрическими разрядами в плазменном реакторе по специальной технологии, разработанной профессором Сергеем Буянтуевым из ВСГУТУ.

Фото:ДВФУ

Благодаря низкой пористости он пропускает меньше воды, пара и более долговечен. Использовать «электрический» бетон можно для производства специальных поверхностей-обогревателей, которыми могут выступать стены гаражей, парковок, бетонный пол, тротуарная плитка. Можно даже возводить самовосстанавливающиеся конструкции, где поверхность будет выступать одновременно сенсором влаги, огня и деформаций, а повреждения способны устраняться за счет воздействия электромагнитного поля.

Фото:ДВФУ

В перспективе из нового бетона можно делать дорожное полотно, от которого автомобили и электромобили будут получать энергию бесконтактным образом. Чтобы осуществить эти планы, ученым еще предстоит решить задачу стабильности карбоновых частиц в бетонной смеси.

Фото:Maksim Safaniuk/shutterstock

Фото: Maksim Safaniuk/shutterstock

Кирпичи из переработанного пластика

Австралийские ученые из Университета Флиндерса этой весной заявили о создании кирпичей, которые получены из пластиковых отходов, растительного волокна и песка.

Ученые переработали пластиковые отходы и растительное сырье. Из полученной субстанции они изготовили порошкоподобный каучук, который стал основой для создания кирпичей и цемента. Полученное вещество можно нагревать, сжимать и растягивать. Данные свойства позволяют использовать новый кирпич не только в строительстве, но и при ремонте автомобилей. Полученный каучук можно смешивать с наполнителями, создавая новые композитные материалы, а также многократно измельчать и перерабатывать.

В настоящее время строительная отрасль приносит около 20% выбросов углекислого газа. Большинство из этих выбросов связаны с созданием и использованием строительных материалов. Новая технология позволяет сократить вредное воздействие на окружающую среду.

В прошлом году сотрудники Королевского технологического института в Стокгольме разработали прозрачную древесину, которая позволяет заменить привычное стекло.

Исследования заняли несколько лет, ученым пришлось доказать, что прозрачная древесина по своим теплоизоляционным характеристикам превосходит стекло. Исследователи удалили из древесины лигнин — компонент клеточных стенок, поглощающий свет. После чего материал пропитали акрилом. В результате ученые получили прозрачную древесину, способную пропускать солнечный свет. Затем дерево пропитали специальным полимером, который аккумулирует тепло.

В итоге они получили материал, который пропускает свет и помогает сохранять тепло. Днем прозрачная древесина будет поглощать тепло и охлаждать помещение. Ночью полимер, входящий в состав дерева, начнет затвердевать и отдавать накопленную за день энергию.

Фото:newscientist.com

Материал также может выдерживать высокие нагрузки и является биоразлагаемым, что облегчает его утилизацию. Проблема может возникнуть с акрилом, но его ученые планируют заменить другим материалом. Сейчас разработчики занимаются масштабированием технологии, чтобы запустить массовое производство прозрачной древесины. Применять новый материал в строительстве планируется в ближайшие пять лет.

Строительные блоки из морской соли

Впервые использовать полученные после опреснения запасы соли в качестве строительного материала предложил Нидерландский архитектор Эрик Джоберс.

Его изобретение основано на процессе извлечения соли из морской воды с использованием энергии солнца. Из смеси соли с крахмалом получают блоки, которые похожи на кирпичи. Для большей надежности поверхность соляных блоков покрывают материалом на основе эпоксидной смолы.

Фото:via inhabitat.com

Разработанная технология делает процесс опреснения морской воды безотходным и может использоваться в районах с засушливым климатом. Сейчас соляные кирпичи применяют в облицовке саун и бань, они способны выдерживать высокие температуры.

Архитектор разработал проект строительства небольшого города в Катаре с применением соляных блоков. В регионе существует дефицит строительных материалов — в пустыне нет ни дерева, ни глины, кроме того, существуют проблемы с водой. Материал для соляных кирпичей планируется добывать из вод Персидского залива.

Фото:via inhabitat.com

Фото:via inhabitat.com

Ученые из Колорадского университета в США разработали экологически чистый бетон, который способен размножаться. Новый строительный материал представляет собой биоминерализованную гидрогелево-песчаную субстанцию, которая благодаря работе бактерий превращает песок в кирпичи.

При создании бетона ученые поместили специальные бактерии в питательную среду гидрогеля и смешали с песком. Бактерии получают питание из этой среды, растут и производят карбонат кальция. Таким образом, идут процессы минерализации и вырастает небольшой кирпич. Если его разбить, то через некоторое время он превратится в два полноценных кирпича. Для этого к каждой половине надо добавить песок, гидрогель и питательные веществ. Ученым уже удалось вырастить восемь кирпичей из одного «родительского».

Фото:CU Boulder College of Engineering and Applied Science

Фото: CU Boulder College of Engineering and Applied Science

Материал так же прочен, как и обычный бетон, утверждают ученые. Исследователи уверены, что у нового бетона большие возможности применения от привычного строительства до использования его в космосе.

Кроме того, «живой» бетон является экологичным, при его производстве почти не выделяется углекислый газ. Сейчас ученые занимаются разработкой технологии, позволяющей применять такой бетон в условиях засухи, которая ставит под угрозу выживание бактерий в материале.

Мексиканский ученый Хосе Карлос Рубио несколько лет назад разработал светоизлучающий цемент. Он изменил микроструктуру цемента, добавив в материал флуоресцентные компоненты, способные поглощать солнечную энергию и возвращать ее в окружающую среду в виде излучающего света. В результате получился строительный материал, который в течение дня может поглощать солнечную энергию, а затем излучать ночью.

Новый флуоресцирующий цемент обладает высокой устойчивостью к ультрафиолетовым лучам и имеет расчетную срок службы около 100 лет. Кроме того, он является экологически более чистым, так как изготавливается с использованием природных материалов, мела и глины. Единственным побочным продуктом производства цемента является водяной пар.

Светящийся цемент можно использовать при строительстве дорог и тротуаров — он сможет освещать их в темное время суток, что позволит снизить потребность в электроэнергии. Ученый уже разработал цемент с излучением синего и зеленого цветов, при этом интенсивность света можно регулировать во избежание ослепления водителей или велосипедистов.

Фото:via archspeech.com

Вера Бурцева, руководитель рабочей группы по разработке экологического стандарта GREEN ZOOM:

— Российские застройщики с осторожностью используют инновационные материалы, это объясняется тем, что строительная отрасль всегда была консервативной. При этом в девелоперской среде есть интерес к экологичным материалам — они влияют на качество будущей среды, а следовательно, на здоровье. Но, по нашим данным, только каждый десятый объект, который проходит сертификацию по системе устойчивого развития GREEN ZOOM, использует ощутимый процент инновационных материалов.

Ксения Лукьященко, руководитель отдела экологической сертификации EcoStandard group:

— Долю использования инновационных материалов в строительстве сложно оценить, все-таки массовое строительство пользуется стандартными решениями, изредка пробуя какие-то инновации.

Тут важен масштаб инновации и экономическая эффективность. В значительной части случаев инновационные материалы или решения дороже, поэтому их распространение по понятным причинам ограничено. Кроме того, зачастую проблемой на пути их использования является отсутствие нормативной базы, допускающей или косвенно ограничивающей их применение.

Крупные производители ежегодно вкладывают часть средств в разработки материалов, инновационных продуктов. Часто это продукт для узких случаев использования.

Читайте также: