Как работает бетон под нагрузкой

Обновлено: 15.05.2024

Основные физико-механические свойства бетона и арматуры

Физико-механические свойства бетона зависят от его состава, технологии изготовления конструкций и вида их напряженного со­стояния. Следует учитывать и тот факт, что с увеличением загрязне­ний и крупного заполнителя прочность бетона ухудшается. При постоянном водоцементном соотношении механические свойства цементного бетона практически не зависят от соотношения между количеством вяжущего и заполнителя.

Характерной особенностью для всех видов бетона является не­однородность структуры. Повышение структурной однородности бетона существенно влияет на улучшение его физико-механичес­ких свойств, что способствует значительному росту прочности бе­тона. Так как неоднородность и дефектность структуры бетона но­сят случайный характер, то механические свойства бетона целесо­образно оценивать с точки зрения статистической механики твердого тела, т. е. с учетом вероятностного описания его напряженно-дефор­мированного состояния.

Вследствие усадки цементного камня, в его соприкосновении с заполнителем возникают микротрещины сцепления ненагруженного бетона. Размеры этих трещин и их количество зависят от микро- и макроструктуры бетона. С увеличением сжимающей нагрузки силы сцепления ослабляются и происходит развитие микротрещин, не­смотря на процесс уплотнения бетонной массы. Наряду с этим про­исходит увеличение растягивающих напряжений в направлении, перпендикулярном плоскости приложения внешней силы. При крат­ковременном однократном сжатии или растяжении уровень напря­жений Rb1 при котором образуются трещины в цементном камне, называют нижней границей микроразрушения или пределом упру­гости бетона (рис. ниже). Эта величина характеризуется максимальным уплотнением сжатого бетона образца, что подтверждается из­менением относительной скорости ультразвука.

Диаграммы деформаций бетона при кратковременном однократном действии нагрузки

1 - 0211

Rb1 — нижняя граница микроразрушения; Rb2 — верхняя граница микроразрушения; Rbm — среднее значение прочности бетона на сжатие; Rbt,m — то же, на растяжение; εb,el— упругая деформация бетона при сжатии; εb,pl — то же, пластическая; v— относительная скорость ультразвука

В тех местах, где цементный камень ослаблен порами и дефек­тами, возникают концентрации напряжений. Это обстоятельство способствует (при увеличении нагрузки) началу разрушения цемент­ного камня и снижению его сцепления с заполнителем. В результа­те происходит разуплотнение бетона. Уровень напряжений Rb2, при котором прекращается прирост объема образца, принимают за верх­нюю границу микроразрушения. При дальнейшем увеличении на­грузки происходит интенсивное трещинообразование в бетоне и его отрыв от образца в поперечном направлении.

Уровни Rb1 и Rb2 при осевом сжатии бетона могут быть опреде­лены по зависимостям О.Я. Берга:

1 - 0212

Физические процессы уплотнения, разуплотнения, микро- и макроразрушения бетона обусловливают характер его деформиро­вания как при сжатии, так и при растяжении. Если статическая на­грузка возрастает мгновенно, то в бетоне развиваются упругие де­формации, которые прямо пропорциональны напряжениям, т. е. подчиняются закону Гука. При напряжениях σb относительные ве­личины деформаций составляют εb,el (рис. выше). При медленном увеличении нагрузки на образцы возникают пластические дефор­мации бетона εb,pl, которые в теории железобетона называют дефор­мациями быстронатекающей ползучести. При замедленном (дли­тельном) увеличении нагрузки показатель прочности бетона может снизиться на 10% в сравнении с кратковременным (мгновенным) возрастанием нагрузки.

К основным физико-механическим свойствам бетона относят­ся прочность и деформативность, определяемые его структурой.

Прочность бетона. Бетон имеет капиллярно-пористую неодно­родную структуру, образованную зернами заполнителя (песок, ще­бень или гравий), скрепленными цементным камнем в монолитный твердый материал. По данным исследований, поры и капилляры занимают около трети объема цементного камня. В таком неоднородном материале внешняя нагрузка создает сложное напряженное состояние.

В сжатом бетонном образце напряжения концентрируются на более твердых частицах и около пор и пустот. При этом растягива­ющие напряжения действуют по площадкам, параллельным направ­лению силы (рис. ниже). Так как в бетоне много хаотически распо­ложенных пор и пустот, то растягивающие напряжения накладыва­ются друг на друга.

Поскольку сопротивление бетона растяжению значительно мень­ше, чем сжатию, то разрушение сжимаемого образца происходит в результате разрыва бетона в поперечном направлении (рис. ниже). Отсутствие закономерности в расположении твердых частиц и пор приводит к существенному разбросу показателей прочности при испытании образцов из одного и того же бетона.

К бетону неприменимы классические теории прочности, так как они справедливы для материалов с идеальными свойствами. Поэтому данные о его прочности и деформативности основываются на большом числе экспериментов.

Схема напряженного состояния и разрушения сжатого бетонного образца

1 - 0213

Прочность бетона зависит от многих факторов, основными из которых являются: время и условия твердения, вид напряженного состояния, форма и размеры образцов, длительность нагружения.

Опытами установлено, что прочность бетона нарастает в тече­ние длительного времени, но наиболее интенсивный ее рост проис­ходит в начальный период твердения (28 суток при применении портландцемента, 90 суток при пуццолановом и шлаковом портланд­цементе). В дальнейшем нарастание прочности значительно замед­ляется, но при положительной температуре и влажной среде про­должается еще годами (рис. ниже).

Нарастание прочности бетона во времени при хранении во влажной (а) и сухой (б) средах

1 - 0214

Из рисунка видно, что в бетоне, хранившемся во влажной сре­де, увеличение прочности продолжается и по истечении 10 лет. В бе­тоне же, хранившемся только 7 дней во влажной среде, а затем в сухой, нарастание прочности почти прекратилось примерно через год. Опыты над образцами, хранившимися во влажной среде в те­чение 20 лет, показали, что прочность их непрерывно растет.

На прочность бетона большое влияние оказывает скорость на­гружения образцов. При замедленном нагружении прочность бето­на оказывается меньше на 10-15%, чем при кратковременном. При быстром нагружении (0,2 с и менее) прочность бетона, наоборот, возрастает до 20%. Бетон имеет различную прочность при разных силовых воздействиях: сжатии, растяжении, изгибе, срезе. В связи с этим различают несколько характеристик прочности бетона.

Кубиковая прочность бетона при сжатии является основной механической характеристикой (эталон прочности) материала. При осевом сжатии кубы разрушаются вследствие разрыва бетона в по­перечном направлении. Однако силы трения, возникающие на опорных гранях, препятствуют поперечным деформациям куба вблизи торцов и создают эффект обоймы (рис. ниже). Если устра­нить влияние сил трения смазкой контактных поверхностей, то поперечные деформации проявляются свободно и куб раскалыва­ется по трещинам, параллельным направлению действия сжима­ющей силы (рис. ниже), а его прочность уменьшается примерно вдвое. По ГОСТу кубы испытывают без смазки контактных повер­хностей. Силы трения влияют на прочность кубов в зависимости от их размеров: чем меньше размер куба, тем больше его проч­ность. Так, если прочность куба с ребром 15 см равна R, то для куба с ребром 10 см она равна 1,12R, а с ребром 20 см

Кубиковая прочность бетона при сжатии необходима для произ­водственного контроля и при проектировании не применяется, так как реальные конструкции по форме отличаются от куба и при­ближаются к форме призм. Поэтому за основную характеристику прочности батона сжатых элементов принята призменная проч­ность — временное сопротивление осевому сжатию бетонных призм с квадратным основанием а и высотой h.

Характер разрушения бетонных кубов при сжатии

1 - 0215

1 — силы трения; 2 — смазка

Опыты показали, что с увеличением h/a влияние сил трения на торцах уменьшается и прочность призм снижается. Разрушение наступает от поперечного растяжения и образования продольных трещин (см. рис. выше). При h/a > 4 прочность призм становится постоянной и равной Rb

(0,7-0,8)R. Призменную прочность ис­пользуют при расчете сжатых и изгибаемых элементов.

Прочность бетона при местном сжатии (смятии) учитыва­ют при передаче давления только на часть площади (опирание ба­лок, ферм, колонн и т. д.). Как показывают опыты, в этом случае загруженная часть площади обладает большей прочностью, чем Rb, так как в работе участвует также бетон, окружающий площад­ку смятия и создающий эффект обоймы. Прочность бетона на ме­стное сжатие

где Alog1 — площадь смятия; Alog2 — расчетная площадь, включаю­щая площадку смятия и дополнительный участок, как правило, сим­метричный по отношению к площади смятия.

Прочность бетона при растяжении зависит от прочности це­ментного камня, силы его сцепления с заполнителем и значительно меньше прочности при сжатии. При осевом растяжении прочность бетона R bt = (0,1-0,05)R.

Причем с увеличением кубиковой прочности относительная прочность бетона при растяжении уменьшается. Опытным путем Rbt определяют испытаниями на разрыв восьмерок или на раскалы­вание образцов в виде цилиндров и кубов.

Прочность бетона при срезе и скалывании в железобетон­ных конструкциях встречается редко. Обычно срез сопровождается действием нормальных сил. Под чистым срезом понимается разде­ление элемента на две части по сечению, в плоскости которого дей­ствуют перерезывающие силы. Прочность бетона при срезе можно определять по эмпирической зависимости:

Значительно чаще бетон в железобетонных конструкциях рабо­тает на скалывание, например, в балках под действием поперечных сил. Скалывающие (касательные) напряжения при изгибе изменя­ются по высоте сечения по квадратной параболе. Сопротивление бетона скалыванию, по опытным данным, в 1,5-2 раза больше прочности при осевом растяжении.

Прочность бетона при длительных, быстрых и многократ­но повторяющихся нагружениях. При длительном действии ста­тической нагрузки бетон разрушается при меньших напряжениях, чем временное сопротивление кратковременной нагрузке. Это вы­звано развитием значительных неупругих деформаций и структур­ных изменений в бетоне. Предел длительного сопротивления бето­на при осевом сжатии, по опытным данным, составляет 0,9Rb. Если конструкция эксплуатируется в благоприятных для нарастания проч­ности бетона условиях (например, гидротехнические сооружения, эксплуатируемые во влажной среде), то уровень напряжений OtJRb постепенно уменьшается в связи с ростом Rh, и отрицательное вли­яние длительного загружения будет со временем проявляться мень­ше. При нагрузках малой продолжительности (порыв ветра, транс­портные средства, краны, удар и т. д.) бетон разрушается при боль­ших напряжениях (1,1-1,2)Rb.

Многократно повторяющиеся нагрузки снижают сопротивле­ние бетона сжатию под влиянием развития микротрещин. Предел выносливости бетона зависит от числа циклов нагрузки, характе­ристики цикла ρb = σminmax и принимается не менее 0,5Rb.

Его используют при расчете на выносливость железобетонных конструкций, испытывающих динамические нагрузки (подкрановые балки, пролетные строения мостов и т. д.).

Деформации бетона под нагрузкой. В бетоне различают де­формации двух основных видов: силовые, развивающиеся под дей­ствием внешних сил, и температурно-влажностные.

Бетон является материалом с ярко выраженными упругопластич­ными свойствами. Уже при небольших напряжениях в нем кроме упругих (восстанавливающихся) деформаций развиваются пластичес­кие (остаточные) деформации, которые в основном зависят от харак­тера приложения и длительности действия нагрузки. Поэтому сило­вые деформации различают при однократном кратковременном, дли­тельном и многократно повторяющихся нагружениях.

При однократном действии кратковременной нагрузки дефор­мации бетона оценивают путем испытания бетонных призм на сжа­тие. Если призму загружать ступенями и замерять деформации на каждой ступени дважды (после приложения нагрузки и через неко­торое время после выдержки под нагрузкой), то диаграмма σ-ε бу­дет ступенчатой (рис. ниже). Деформации εpl, замеренные сразу после приложения нагрузки, —упругие и прямо пропорциональны напря­жениям, а деформации εpl, развивающиеся за время выдержки под нагрузкой, — пластические. Упругие деформации соответствуют мгновенной скорости загружения образца.

Пластические деформации с уменьшением скорости загруже­ния или увеличением времени выдержки образца под нагрузкой возрастают, а зависимость σ-ε становится более пологой. Таким образом, полная деформация бетона εb = εel + εpl. При большом ко­личестве ступеней загружения график σ-ε становится криволиней­ным (пунктир на рис. ниже). В общем случае диаграмма «напряже­ния— деформации» для бетона изображена на рис. ниже. Если в какой-то момент загружения, соответствующий напряжению σb, нагрузку с бетонного образца быстро снять, то кривая σ-ε будет обращена выпуклостью в противоположную сторону. В процессе разгружения восстанавливается часть неупругих деформаций (рис. ниже). После полной разгрузки в образце сохраняются оста­точные деформации, которые с течением времени частично восста­навливаются (деформации упругого последействия εep).

Диаграмма σ-ε при испытании бетонных призм на сжатие

1 - 0218 - копия

1 — упругие деформации; 2 — полные деформации

Общая диаграмма «напряжения-деформации» бетона

1 - 0218

' 1 и 2 — соответственно области упругих и пластических деформаций

Связь между напряжениями и деформациями для бетона, как упругопластичного материала, характеризуется модулем деформа­ции и является переменной величиной, определяемой как тангенс угла наклона касательной к кривой σ-ε, т. е. Eb = tga = dσ/dε. Ис­пользование такого определения модуля деформаций сложно и затруднительно.

Поэтому для практических расчетов при небольших напряже­ниях σb < Rb, связь σ-ε принимается линейной (соответствует за­кону Гука) и называется начальным (или мгновенным) модулем уп­ругости Eb - tga = σbel. При σb > 0,3/Rb влияние пластических деформаций становится существенным и в расчетах используют средний модуль, или модуль упругопластичности, представляющий собой тангенс угла наклона секущей Eb,Pl = tga = σbel.

где v = εlb — коэффициент, характеризующий упругопластичное со­стояние бетона при сжатии; он изменяется от 1 (при упругой работе) до 0,1 и зависит от величины напряжений и длительности нагрузки.

При осевом растяжении диаграмма σ-ε имеет тот же характер, что и при сжатий. Начальные модули упругости бетона при растяже­нии и сжатии отличаются незначительно и могут быть приняты оди­наковыми. Тогда модуль упругопластичности бетона при растяжении

где vt —коэффициент, характеризующий упругопластическое состо­яние бетона при растяжении. При σbt - Rbt по опытным данным vt = 0,5.

При длительном действии нагрузки неупругие деформации бе­тона с течением времени увеличиваются. Эти деформации интен­сивно нарастают в первые 3—4 месяца, затем их рост постепенно замедляется и прекращается через несколько лет.

Нарастание неупругих деформаций во времени при длитель­ном действии нагрузки или напряжений (температурных, влажно­стных и т. п.) называют ползучестью бетона. Деформации ползу­чести могут в 3-4 раза превышать упругие деформации. Дефор­мации ползучести бетона и скорость их нарастания во времени зависят от очень многих факторов. Так, с ростом напряжений пол­зучесть бетона увеличивается; загруженный в раннем возрасте бетон характеризуется большей ползучестью, чем старый бетон. Ползучесть бетона в сухой среде значительно больше, чем во влаж­ной. На ползучесть бетона также влияют технологические факто­ры: увеличение количества цемента и В/Ц, применение цементов низких марок повышают ползучесть; хорошо фракционированный заполнитель, тщательное уплотнение бетонной смеси уменьшают деформации ползучести.

Различают ползучесть линейную и нелинейную. Линейная пол­зучесть возможна при σb < 0,5Rb, когда увеличение деформаций примерно пропорционально увеличению напряжений (рис. ниже, кривая 1). При напряжениях σb > 0,5Rb в бетоне появляются микро­трещины, начинаются ускоренное нарастание неупругих деформа­ций и нелинейная ползучесть (рис. ниже, кривая 2). Так как граница между этими двумя видами ползучести (граница развития микро­трещин) выше напряжений при эксплуатационных нагрузках, наи­большее практическое значение имеет линейная ползучесть.

Деформации ползучести бетона

1 - 0220

Для количественной оценки деформаций ползучести пользуются величинами: характеристика ползучести φt и мера ползучести С(t);

где εpl(t) —деформация ползучести к моменту времени t; εel —упру­гая деформация в момент загружения (рис. ниже, t = 0); σb— дли­тельно действующие напряжения.

При многократно повторяющейся нагрузке происходит посте­пенное накопление неупругих деформаций. После определенного числа циклов загружения и разгрузки неупругие деформации вы­бираются, и бетон начинает работать упруго. Такой характер де­формирования наблюдается при напряжениях, не превышающих предела выносливости. При большем значении напряжений пос­ле некоторого числа циклов неупругие деформации начинают нео­граниченно расти и происходит разрушение образца, т. е. насту­пает усталость бетона.

Предельные деформации бетона. Предельными называют деформации бетона перед его разрушением. Различают предельную сжимаемость εbu и растяжимость εbtu, которые зависят от прочнос­ти бетона, его состава и длительности приложения нагрузки.

С увеличением прочности бетона они уменьшаются, а с ростом длительности нагрузки увеличиваются. По данным опытов, предель­ная сжимаемость бетона εbu = (0,8—З)10 -3 . В расчетах принимают εbu = 2 · 10 -3 , а при длительном действии нагрузки εbul = 2,5 · 10 -3 .

Предельная растяжимость бетона в 10-20 раз меньше предель­ной сжимаемости и в среднем принимают εbtu = 1,5 · 10 -3 . Величину εbtu можно определять в зависимости от прочности бетона при растяжении с учетом модуля упругопластичности бетона (см. фор­мулу выше):

Предельная растяжимость бетона существенно влияет на сопро­тивление образованию трещин в растянутых зонах железобетонных конструкций.

Температурные и влажностные деформации бетона. Темпе­ратурные деформации бетона неизбежны в массивных гидротехни­ческих сооружениях при их бетонировании. Твердение бетона со­провождается выделением теплоты (экзотермический разогрев) и при последующем неравномерном остывании конструкции появля­ются значительные температурные деформации. Они возникают также в сооружениях, подверженных атмосферным воздействиям или изменениям технологических температур. Температурные де­формации при ограничении перемещений конструкций (статичес­ки неопределимые) или при неравномерном их распределении по объему (в массивных сооружениях) вызывают растягивающие на­пряжения, которые могут привести к появлению трещин. Для рас­чета температурных деформаций и напряжений пользуются коэф­фициентом линейного расширения бетона, величина которого, по опытным данным, при температуре от -50 до +50 °С в среднем со­ставляет 1-10 -5 1/град.

Влажностные деформации бетона вызваны его свойством: уменьшаться в объеме при твердении в воздушной среде (усадка) и увеличиваться в объеме при увлажнении (набухание). Усадку бето­на можно представить как сумму деформаций двух видов: собствен­но усадки и влажностной усадки.

Собственно усадка происходит в результате уменьшения истин­ного объема системы цемент — вода в процессе гидратации цемен­та и необратима. Влажностная усадка связана с испарением сво­бодной влаги в бетоне; она частично обратима: при твердении на воздухе происходит усадка бетона, а при достаточном притоке вла­ги — набухание. Деформации влажностной усадки бетона в 10-20 раз больше деформаций собственно усадки.

Усадка бетона происходит наиболее интенсивно в начальный период твердения и в течение первого года. В дальнейшем она по­степенно затухает. Величина и скорость усадки зависят от влажно­сти окружающей среды (чем меньше влажность, тем больше уса­дочные деформации и выше скорость их роста), вида цемента, со­става бетона, способов его укладки и т. д. Неравномерное высыхание бетона по объему в массивных гидротехнических сооружениях при­водит к неравномерной усадке. Открытые поверхностные слои бетона теряют влагу быстрее и усадка их больше, чем внутренних, более влажных зон. В результате такой неравномерности во внут­ренних слоях бетонного тела возникают сжимающие, а в наруж­ных — растягивающие напряжения, приводящие к образованию поверхностных трещин.

Величина усадки (набухания) зависит от многих факторов и колеблется в широких пределах. По опытным данным средние де­формации могут быть приняты равными: усадки — 2 · 10 -4 , набу­хания — 1 · 10 -4 . Уменьшение усадочных деформаций и напряже­ний в бетоне достигается как технологическими (уменьшение рас­хода цемента и отношения В/Ц, повышение плотности бетона, увлажнение открытых поверхностей и т. д.), так и конструктивными мерами, например, устройством усадочных швов, постановкой противоусадочной арматуры. Наиболее радикальным средством ус­транения усадки является применение безусадочных цементов.

В строительстве наибольшее применение получили обычные тяжелые бетоны плотностью 22-25 кН/м. Прочность бетона нарас­тает с течением времени. Наиболее быстрый ее рост происходит в начальный период твердения (28 суток для портландцемента, 90 су­ток для пуццоланового и шлакового портландцемента).

В зависимости от вида действующих нагрузок (сжатие, растя­жение, изгиб, срез) бетон имеет различную прочность.

Кубиковая прочность R — это временное сопротивление сжа­тию бетонных кубов размером 150x150x150 мм.

Так как реальные конструкции но форме отличаются от куба, то при расчетах используется призменная прочность Rb, представляю­щая собой временное сопротивление осевому сжатию бетонных призм с квадратным основанием а и высотой h.

При соотношении h/a > 4 призменная и кубиковая прочности связаны зависимостью

Прочность бетона при растяжении, связь призменной и кубико- вой прочности определяются эмпирической формулой

Прочность бетона на растяжение при изгибе Rbtc вычисляется по обычной формуле изгиба, не учитывающей пластические деформации,

Среднее значение коэффициента изгиба

В действительности, для различных бетонов значение Кс колеб­лется в широких пределах. Прочность бетона при растяжении оп­ределяется по формуле

Прочностные свойства бетона.

Под прочностью бетона понимают его способность сопротивляться воздействию внешних сил, не разрушаясь.

Прочность бетона зависит от многочисленных факторов: структуры, марки и вида цемента, водоцементного отношения, вида и прочности крупных и мелких заполнителей, вида напряженного состояния, формы и размеров образца, длительности загружения.

На прочность бетона большое влияние оказывает скорость загружения образцов. При замедленном их нагружении, прочность бетона оказывается на 10…15% меньше, чем при кратковременном статическом. При быстром загружении прочность бетона возрастает до 20 %.

Бетон имеет различную прочность при разных силовых воздействиях: сжатии, растяжении, изгибе, срезе. В связи с этим различают несколько характеристик прочности бетона: кубиковую и призменную прочность, прочность при растяжении, срезе и скалывании; прочность при многократных повторных нагрузках, прочность при кратковременном, длительном и динамическом действии нагрузок.

В железобетонных конструкциях бетон преимущественно используется для восприятия сжимающих напряжений. Поэтому за основную характеристику прочностных свойств бетона принята его прочность на осевое сжатие, устанавливаемая, как правило, путем испытания стандартных кубов размером 150×150×150 мм, испытанных при температуре (20 ± 2) °С через 28 дней твердения в нормальных условиях (температуре воздуха 15. 20 °С и относительной влажности 90. 100%). Реже испытания проводят па цилиндрах диаметром (d) 100, 150, 200 и 300 мм с высотой h = 2d.

За кубиковую прочность бетона принимают временное сопротивление R эталонных кубов, определяемое по выражению:

где F – разрушающая нагрузка, Н;

А – средняя рабочая площадь образца, мм2;

α – переводный коэффициент, зависящий от размеров образца. С уменьшением размеров поперечного сечения коэффициент а уменьшается. Это объясняется изменением эффекта обоймы с изменением размеров образца и расстояния между его торцами.

Различное сопротивление сжатию образцов разной величины (и формы) объясняется влиянием сил трения, возникающих между гранями образца и опорными плитами пресса.

Вблизи опорных плит пресса силы трения, направленные внутрь, создают как бы обойму и тем самым увеличивают прочность образцов при сжатии. По мере удаления от торцов влияние сил трения уменьшается. Поэтому бетонный куб получает форму двух усеченных пирамид (рис.2, а). При отсутствии (или существенном уменьшении) сил трения характер разрушения меняется, происходит раскалывание куба по плоскостям, параллельным направлению действующей внешней нагрузки (рис.2, б).

Рис. 2. Характер разрушения бетонных кубов; а - при наличии трения по опорным плоскостям; б - при отсутствии трения по опорным плоскостям

Реальные железобетонные конструкции по своей форме значительно отличаются от кубов. Поэтому кубиковая прочность не может непосредственно характеризовать прочность сжатых участков железобетонных конструкций. Для этой цели используют другую характеристику - призменную прочность бетона.

Железобетонные конструкции по форме отличаются от кубов, поэтому кубиковая прочность бетона не может быть непосредственно использована в расчетах прочности элементов конструкции. Основной характеристикой прочности бетона сжатых элементов является призменная прочность. Под призменной прочностью σbu понимают временное сопротивление осевому сжатию призмы с отношением высоты призмы h к размеру а квадратного основания, равным 4.

В реальных конструкциях напряженное состояние бетона сжатой зоны приближается к напряженному состоянию призм. Образцы призматической формы, для которых влияние сил трения меньше, чем для кубов, при одинаковом поперечном сечении показывают меньшую прочность на сжатие. При отношении высоты призмы к стороне основания h /a > 4 влияние сил трения практически исчезает, и прочность становится постоянной и равной ≈ 0,75 R.

Прочность на осевое растяжение

Прочность бетона на осевое растяжение зависит от прочности при растяжении цементного камня и его сцепления с зернами крупного заполнителя.

Рис.3. Схемы испытаний образцов для определения прочности бетона на растяжение

Опытным путем она определяется испытаниями на разрыв образцов в виде восьмерок, на раскалывание образцов в виде цилиндров, кубов или на изгиб бетонных балочек.

Прочность бетона на осевое растяжение имеет сравнительно небольшое значение.

σbtu =0,1σbu . 0,05 σbu

Ориентировочное значение σbt можно определить по эмпирической формуле Фере: Ориентировочное значение σbt можно определить по эмпирической формуле Фере:

где γ = 0,8 – коэффициент для бетонов класса В25 и ниже, γ = 0,7 – для бетонов класса В30 и ниже

Прочность бетона при срезе и скалывании

Под чистым срезом понимают разделение элемента на части по сечению, к которому приложены перерезывающие силы.

Под чистым скалыванием понимают взаимное смещение (сдвиг) частей элемента между собой под действием скалывающих (сдвигающих) усилий.

Железобетонные конструкции редко работают на чистый срез и скалывание. Обычно срез сопровождается действием продольных сил, а скалывание - действием поперечных сил.

Сопротивление срезу может возникать в шпоночных соединениях и у опор балок, а сопротивление скалыванию – при изгибе преднапряженных балок до появления в них наклонных трещин, если не обеспечена надежная связь между верхней и нижней частями бетона на опорах.

В нормах временное сопротивление срезу и скалыванию не приводится, и его принимают приблизительно равным 2 σbtu

Прочность бетона при длительном действии нагрузки

Пределом длительного сопротивления бетона называют наибольшие статические неизменные во времени напряжения, которые он может выдерживать неограниченно долгое время без разрушения.

При длительном действии нагрузки бетонный образец разрушается при напряжениях, меньших, чем при кратковременной нагрузке. Это обусловлено влиянием развивающихся неупругих деформаций изменением структуры бетона.

При расчете прочности элементов в расчетное сопротивление бетона сжатию Rb и растяжению Rbt вводят коэффициент условия работы γb2 , учитывающий влияние на прочность бетона вероятной длительности действии я расчетных усилий и условий возрастания прочности бетона во времени.

Прочность бетона при многократном действии нагрузки

Под прочностью бетона при многократно повторных (подвижных или пульсирующих) нагрузках σf (предел выносливости бетона) понимают напряжение, при котором количество циклов нагрузки и разгрузки, необходимых для разрушения образца, составляет не менее 1 000 000.

Предел выносливости бетона связан с нижней границей образования микротрещин. Если многократно повторная нагрузка вызывает в бетоне напряжения, превышающие границы трещинообразования, то при большом количестве циклов наступает его разрушение.

Предел выносливости бетона σf определяют посредством умножения временных сопротивлений σbu и σbtu бетона на коэффициент условий работы бетона γb1 .

Удаление и снос бетона

- Как удалить старый бетон

Следующее предназначено только для общего информационного использования. Это очень общий обзор процесса выдачи разрешений для проектов по сносу. Фактический процесс может широко варьироваться между регионами страны, округами и муниципалитетами.

Вы также найдете обзор распространенных методов и инструментов сноса. Сравните ваши варианты того, как снести существующий бетон, а также какое оборудование использовать. Кроме того, вы сможете найти информацию о безопасности и предупреждения о возможных опасностях во время сноса.

Бетон Информация о сносе

УСЛОВИЯ ВЫЗОВА БЕТОНА ДЛЯ СНЯТИЯ И ЗАМЕНЫ

Существуют определенные условия, при которых использование исправляющего состава и продукта для шлифовки приведет к кратковременному исправлению. В этих условиях исправление бетона перед повторной шлифовкой или нанесение декоративного покрытия будет пустой тратой времени и денег, поскольку поверхность или покрытие вскоре будут иметь те же характеристики, что и бетон, который вы пытались починить.

Эти условия включают в себя:

  • Глубокие, широко распространенные трещины , где произошло заселение. Это может быть связано с весом больших грузовиков, неправильной подготовкой подкласса, эрозией подкласса или по другим причинам.
  • Бетонные плиты, которые утонули , что может произойти, если подкласс не был подготовлен должным образом. Свободная грязь, возможно, использовалась для подкласса. Когда эта грязь оседает - иногда из-за разбрызгивателя или дождевой воды, идущей под бетоном - бетон не поддерживается и будет более подвержен погружению.Также возможно, что подкласс был уплотнен, а бетон подвергся чрезмерному весу, что привело к падению бетона.
  • Бетонные плиты с явными признаками морозного пучения . Морозные пучки очень распространены в холодном климате. Влага в земле замерзает и бетон поднимается вверх.
  • Бетонные плиты, которые имеют так много отколов или точечной коррозии на поверхности, что выгоднее заменить бетон, чем подготовить всю поверхность к повторной шлифовке и шлифовке бетона.

При любом из вышеперечисленных условий лучше снять и заменить бетон.

Найдите местных подрядчиков по бетону, которые могут вырвать ваш старый бетон и заменить его новым красивым декоративным бетоном.

Существует множество других причин, по которым необходимо удалять бетон в проекте:

  • Пристройка к коммерческому или жилому зданию требует удаления бетона, который мешает пристройке.
  • Удаляется вся конструкция, из которой бетон является частью конструкции.
  • Существует неисправная бетонная конструкция, которую владелец хочет вырвать и заменить.
  • Старый бордюр должен быть удален для улучшения улиц, расширения дорог и т. Д.

БЕТОННЫЕ МЕТОДЫ РАЗРУШЕНИЯ

Разрывное давление

Разрыв под давлением может использоваться в тех случаях, когда предпочтительным является относительно тихий, беспыльный контролируемый снос.

Как механическое, так и химическое разрушение под давлением расщепляют бетон либо с помощью расщепляющей машины, работающей на гидравлическом давлении, обеспечиваемом двигателем в случае механического разрушения, либо путем введения расширяющейся суспензии в заранее определенный рисунок скважин в случае химического взрыва.

Затем расщепленный бетон легко удаляется вручную или краном.

Гидравлическое и химическое разрывное давление разрушает бетонные конструкции с минимальным уровнем шума и летящих обломков. Оба метода работают путем приложения боковых сил к внутренним отверстиям, просверленным в бетоне, и могут выполнять практически любую работу, на которую способны другие методы разрушения. Однако, вместо того, чтобы разрушить мошенник

14.08.2013 Бетон под нагрузкой: особенности поведения

Качество бетона и то, как он будет работать в сооружениях и конструкциях, определяются свойствами материала. Самым важным и определяющим свойством бетона является прочность. Эта характеристика означает способность бетонного камня сопротивляться разрушению под воздействием внутренних напряжений. Такие напряжения возникают в результате нагрузки, а также некоторых других факторов. По направлению воздействия на конструкцию внутренние напряжения делятся на растяжение, сжатие,изгиб, кручение и срез.

Конечно же, можно создать конструкцию, где нагрузка на бетон будет минимальной. Например, металлопрофильный лист для забора достаточно легок, что позволяем минимизировать нагрузки на бетонное основание строения вцелом. На такие условия не каждый раз выполнимы.

Исследования с использованием микроскопа и ультразвука, развившиеся в последнее время, показали, что разрушению бетона предшествует появление в нём микротрещин. Они возникают при разрывах по причине неоднородности структуры материала, причём задолго до того, как бетон начинает разрушаться заметно для традиционных методов наблюдения. В зависимости от взаимного расположения крупного заполнителя и раствора, прочность материала в целом определяется либо прочностью элемента более слабого, либо прочностью элемента с меньшей предельной деформацией.

Как работает бетон под нагрузкой



СТРОЙТЕ КАЧЕСТВЕННО!

Как ведет себя бетон под нагрузкой

При использовании бетона в строительстве обязательно оценивать его прочность, то есть способность сопротивляться разрушению, устойчивость к внутренним напряжениям, возникающая в результате нагрузок. Считается, что бетонная смесь хорошо сопротивляется сжатию - эта величина и является базовой конструктивной характеристикой материала. В ряде случаев учитывается и величина изгибающих напряжений, особенно, когда из бетона формируются дорожные или напольные покрытия.

Поведение бетона под нагрузкой - особенности

Важно определить, каким будет поведение бетона под нагрузкой. Это позволит спрогнозировать основные характеристики материала в процессе эксплуатации:

  • долговечность;
  • трещиностойкость;
  • надежность.

Оценивая разрушение бетона под нагрузкой, определяют прочность конструкции.

Виды разрушений бетона

Нагрузка на бетон может спровоцировать 2 типа разрушений:

  1. Разрушение только по раствору, зерна при этом не повреждаются. Происходит в случае, когда устойчивость заполнителя к растяжению выше, чем прочность раствора или сформированного цементного камня.
  2. Разрушение и по раствору, и по заполнителю, с разрывами зерен.
  3. Смешанные повреждения, когда на определенных участках слабее оказываются или заполнитель, или раствор.
Особенности разрушений в бетоне

То, как ведет себя бетон под нагрузкой, зависит от его исходной прочности, а на нее, в свою очередь, влияют:

  • минералогический состав в смеси;
  • тонкость помола использованных компонентов;
  • возраст поверхности;
  • условия, при которых смесь была приготовлена затвердела;
  • количество и тип введенных добавок.

Бетон под нагрузкой

Также следует понимать, что разрушения всегда постепенны и начинаются с микроскопических разрывов, но на последней стадии приобретают лавинообразный характер. Также при развитии микротрещин из-за нарушения внутренней сплошности материала увеличивается объем образца. Влияет на процесс разрушения бетонной конструкции и жидкая фаза в растворе - то есть, вода всегда снижает прочность, поскольку ослабляет формирование структурных связей в бетоне и делает развитие пластических деформаций более легким. Также в бетоне, где много воды, быстрее развиваются микротрещины, что нужно учитывать при выборе пропорций для приготовления. Степень влияния жидкой фазы зависит от того, с какой скоростью будут прилагаться нагрузки к конструкции.

§ 5.1. ОСОБЕННОСТИ ПОВЕДЕНИЯ БЕТОНА ПОД НАГРУЗКОЙ

Качество бетона и его работа в конструкциях и сооружениях определяются его свойствами. Важнейшее свойство материала — прочность.

Под прочностью понимают способность сопротивляться разрушению от действия внутренних напряжений, возникающих в результате нагрузки или других факторов. Материалы в сооружениях могут испытывать различные внутренние напряжения: сжатие, растяжение, изгиб, срез и кручение. Бетон относится к материалам, которые хорошо сопротивляются сжатию, значительно хуже— срезу и еще хуже — растяжению (в 5 . 50 рая хуже, чем сжатию). Поэтому строительные конструкции обычно проектируют таким образом, чтобы бетон в них воспринимал сжимающие нагрузки. При необходимости восприятия растягивающик усилий конструкции армируют. В железобетонных конструкциях напряжения растяжения и среза воспринимаются стальной арматурой, обладающей высоким сопротивлением этим видам нагрузки. Поэтому одной из важнейших характеристик бетона является его прочность при сжатии. Однако имеются отдельные типы конструкций (дорожные покрытия, полы и др ), в которых бетон должен воспринимать напряжения растяжения при изгибе. В этом случае при проектировании состава бетона исходят из необходимости получения заданной прочности бетона при изгибе или растяжении

Разрушение в физическом понимании состоит в отделении частей тела друг от друга. Дефекты в материале приводят к облегчению процесса разрушения, т. е. поних. пот прочность материала.

Особенностью поведения под нагрузкой хрупких материалов, а следовательно, и бетона является то что при сжатии они разрушаются от растягивающих напряжений, возникающие в направлениях, перпендикулярных действию сжимающей нагрузки, или от наппяя ец!ну среза, действующих по определенным плоскостям.

Прочность бетона является интегральной характеристикой, которая зависит от свойств компонентов бетона, его состава, условий приготовления, твердения, эксплуатации и испытания. В свою очередь, с прочностью бетона связан и ряд други его свойств

Для правильного проектирования бетонпы\ и железобетонных онструкнин, организации н> производства, назначения требований к бетону и контроля его качества необходимо представлять особенности поведения бетона под нагрузкой, роль методики испытаний структуры бетона при определении его прочности.

Поведение бетона под нагрузкой не тольки определяет его прочность— итоговый результат испытания, но существенно ва:« по для определения надежности работы материала в условия эксплуатации для оценки его долговечности, трешипостоГп.ости и других свойств бетона.

На основе многочисленные опытов было установлено, что при разрешении бетона наблюдаются два вида разрушения поверхности. В первом случае, когда прочность заполнителя при растяжении выше прочности раствора или цементного камня, разрушение происходит по раствору и в об\пд зерен заполнителя. Во итором случае, когда прочность заполнителя ниже прочности раствора, разрушение происходит по раствору и по зернам заполнителя. Может быть и смешанный характер разрушения, когда прочность зерен заполнителя и прочность раствора близки между собой и в разных участках структуры более прочным оказывается либо заполнитель, либо раствор.

Микроскопические и ультразвуковые методы исследований, получившие развитие в последнее время, показали, что задолго до разрушения бетона в нем образуются микротрещины разрыва, возникающие из-за неоднородности структуры бетона.

По взаимному расположению раствора и крупного заполнителя можно представить две различные схемы макрострутуры бетона последовательно и параллельно составленные. Соответственно можно различить два простейших неоднородных напряженных состояния в бетоне напряжения в составляющих структуры равны, а деформации обратно пропорциональны их модулям деформации; 2) деформации в составляющих струн туры равны, а напряжения прямо пропорциональны их модулям деформации Прочность материала в первом случае определяется прочностью более слабого элемента или сцепления между составляющими, во втором — прочностью элемента, у которого меньше предельная деформация.

Читайте также: