Как определить цемент в буровом растворе

Обновлено: 19.05.2024

Загрязненные растворы на водной основе

При увеличение содержания твердой фазы в растворах определенной плотности на 1% сверх обычной нормы, стоимость поддержания свойств бурового раствора в определенных пределах возрастает более чем на 10%.

  • Возрастает вязкость по воронке марша PV. VP. СНС за 10мин. фильтрация.
  • Повышение содержания твердой фазы.
  • Повышение МВT (эквивалента содержания бентонита).
  • Снижение щелочности.
  • Повысить рН до нормального.
  • Добавить воды.
  • Разбавить понизителями вязкости (дефлокулянтами).
  • Максимально использовать оборудование очистки бурового раствора.
  • Добавить раствор лигнит/полимер для регулирования фильтрации (НР-НТ)
  • Добавить утяжелитель для получения нужной плотности.
  • Отсутствие кальция. Снижение рН. и Рm.
  • Низкое значение Рf. Высокое значение Mf.
  • Повышенная водоотдача.
  • Увеличение вязкость по воронке марша PV. VP. СНС бурового раствора.
  • Повысить рН известью [Ca(OH) 2 ] рН с 9,5 до 10,0. Возможно, понадобится добавить к извести каустическую соду (NaOH).
  • Поддерживать общую жесткость фильтрата на уровне от 150 до 200мг/л, чтобы защититься от повторного возникновения этой проблемы. Обычно это легко достигается обработкой известью [Ca(OH) 2 ]. Но не надо сбивать до 0.
  • Добавить понизителя вязкости для химического диспергирования глин и контроля реологических свойств.
  • При обезвоживании добавить воду.
  • Высокая вязкость по воронке марша PV. VP. СНС.
  • Высокая водоотдача.
  • Высокое значение Рf ; Mf; и рН.
  • Низкое Рm.
  • Отсутствие кальция ( большое время).
  • Данная проблема может появиться при добавление слишком большого количества кальцинированной соды (Na 2 CO 3 ) для смягчения морской воды.

Контроль за расходами.

  • Старайтесь избегать обработки, регулируя общую жесткость фильтрата в пределах от 150 до 200мг/л.
  • Не следует проводить предварительную обработку большим количеством кальцинированной соды (Na 2 CO 3 ).
  • Добавить гипс (СаSO 4 ), чтобы удалить карбонат, путем осаждения его в виде СаСО 3 , и понизить рН до 9,5 – 10,5 (только ионы группы ОН-)
  • Следить за количеством добавляемого гипса (СаSO 4 кг/м 3 ). При наличие в растворе слишком большого количества кальцинированной соды (Na 2 SO 4 ) возникают проблемы с вязкостью.
  • Для химического диспергирования добавить необходимое количество понизителя вязкости .
  • При обезвоживании добавить воду.
  • Если кислый газ продолжает загрязнять раствор, то нормальной реакцией будет добавление каустической соды (NaOH), при этом образуется СО 3 2- и НСО 3 в зависимости от рН.
  • Для достижения необходимого рН и для осаждения СаСО 3 можно добавить вместе известь Са(ОН) 2 и гипс (СаSO 4 ).
  • Увеличение фильтрации API и НТ – НР вязкости по воронке марша PV. VP. СНС.
  • Снижение рН и Pf /Mf.
  • Увеличение содержания ионов Cl мг/л. Увеличение кальциевой жесткости мг/л.
  • В случае высококонцентрированных солевых растворов можно заметить явное увеличение Mg 2+ .

Контроль за расходами.

  • Особое внимание должно уделяться типу встреченного соляного пласта. Для предотвращения образования крупных пустот растворения, возможно потребуется насыщение раствора.
  • При встрече с проявлением соленой воды, решение данной проблемы может потребовать расходов в размере 15% и более от среднесуточной стоимости бурового раствора.
  • Обработка понизителями вязкости, для снижения вязкости, статического и предельного напряжения сдвига.
  • Отрегулировать значение рН, используя каустическую соду (NaOH).
  • При потере фильтрата добавить полимеры.
  • При сохранение концентрации соли или в случае перехода системы бурового раствора в систему насыщенного солевого раствора для поддержании вязкости нужно использовать предварительно затворенный бентонит или полимеры.
  • При слишком высоком содержании твердой глинистой фазы, возможно, потребуется разбавление водой.
  • Увеличение фильтрации API и НТ – НР .
  • Высокое значение рН; Pm; Pf / Mf.
  • Высокое содержание кальция.

Контроль за расходами.

  • Предварительная обработка раствора, уменьшающая вредное влияние цемента, может вызвать проблемы.
  • При предварительной обработке бикарбонатом (NaHCO 3 ), перед разбуриванием цемента, не вводить бикарбонат более 1,2 – 2 кг на 1м 3 бурового раствора. Для последующей обработки необходимый объем бикарбоната может быть рассчитан как 1,68 * Рm кг/м 3
  • Очень малое количество затвердевшего цемента вступает в реакцию с бикарбонатом натрия. Это может привести к проблемам с загущением из за избыточной обработки бикарбонатом натрия (NaHCO 3 ).
  • Стоимость обработки раствора загрязненного цементом может составлять 100% среднесуточной стоимости бурового раствора.
  • При высокой степени загрязнения следует рассматривать вариант с известью Ca(OH) 2 .

1. Цемент является одним из наиболее часто встречающихся загрязнителей.

2. Сильно загрязненный раствор необходимо сбрасывать.

3 . Нельзя обрабатывать загрязненный цементом раствор кальцинированной содой (Na 2 CO 3 ).

4. Старайтесь снизить рН загрязненного раствора. Если уровень рН низкий, то высокие концентрации растворимого кальция не будут иметь вредных последствий. Лучше всего проводить обработку бикарбонатом (NaHCO 3 ). Обработка бикарбонатом до разбуривания цемента может быть использована только при pH раствора выше 8.3. Помните, что загрязнение цементом дает наихудшие последствия в случае, если цементный раствор не схватится. Полностью затвердевший цемент вызывает меньше проблем при загрязнении.

Цементирование обсадной колонны скважины и тампонаж

Цементирование обсадной колонны - одна из самых ответственных операций, от успешности которой зависит долговечность и дальнейшая нормальная эксплуатация скважины.
Цементирование - закрепление обсадной колонны на стенке ствола скважины и отсечение избыточных флюидов от попадания в ствол скважины посредством нагнетания цементного раствора по обсадной трубе и вверх по кольцевому зазору.
Это процесс закачивания тампонажного раствора в пространство между обсадной колонной и стенкой скважины.
Способ цементирования выбирают в зависимости от вида колонны, спущенной в пробуренный ствол (сплошной или хвостовика).

Рис 1. Схема этапов выполнения 1- циклового цементирования обсадной колонны:I - начало подачи цементного раствора в скважину, II - подача закачанной порции цементного раствора по обсадной колонне, III - начало продавки в затрубное пространство, IV - окончание продавки;
1 - манометр, 2 - цементировочная головка, 3 - верхняя пробка, 4 - нижняя пробка, 5 - цементируемая обсадная колонна, 6 - стенки скважины, 7 - стоп-кольцо, 8 - продавочная жидкость, 9 - буровой раствор, 10 - цементный раствор.

  • колонну обсадных труб периодически расхаживают,
  • непрерывно промывают скважину для предотвращения прихвата колонны, ее устанавливают на 1-2 м выше забоя, оборудуют цементировочной головкой,
  • закачивают расчетный объем цементного раствора.


Многоступенчатое цементирование
Многоступенчатое цементирование - цементирование нескольких горизонтов (интервалов) пласта за обсадной колонной скважины с использованием соединений с отверстиями.
При этом, обсадная колонна на разных уровнях оснащена дополнительными приспособлениями (заливочными муфтами), позволяющими подавать тампонажный раствор в затрубное пространство поинтервально на разной глубине.

Распространено 2-ступенчатое цементирование - раздельное последовательное цементирование 2 х интервалов в стволе скважины (нижнего и верхнего).

  • позволяет снизить гидростатическое давление на пласт при высоких уровнях подъема цемента,
  • существенно увеличить высоту подъема цементного раствора в затрубном пространстве без значительного роста давления нагнетания;
  • уменьшить загрязнение цементного раствора от смешения его с промывочной жидкостью в затрубном пространстве;
  • избежать воздействия высоких температур на свойства цементного раствора, используемого в верхнем интервале, что позволяет эффективнее подбирать цементный раствор по условиям цементируемого интервала.

Рис. 2 Заливочная муфта для ступенчатого цементирования:
а - при цементировании первой ступени, б - при цементировании второй ступени;
1 - корпус, 2 - верхнее седло, 3 - верхняя втулка, 4 - заливочные отверстия, 5 - нижнее седло, 6 - нижняя втулка

Для проведения 2-ступенчатого цементирования в обсадной, колонне на уровне, соответствующем низу верхнего интервала, устанавливают специальную заливочную муфту (рис. 2).

Подготовку скважины аналогична 1- ступенчатому цементированию.
После промывки скважины и установки на колонну цементировочной головки приступают к закачке 1 й порции цементного раствора, соответствующей цементируемому объему 1 й ступени. Закачав нужный объем цементного раствора, в колонну вводят верхнюю пробку 1 й ступени, которая проходит через заливочную муфту (рис. 2, а).
Продавочной жидкостью вытесняют раствор в затрубное пространство.

После закачки объема продавочной жидкости, равного внутреннему объему обсадной колонны в интервале между заливочной муфтой и упорным кольцом, освобождают находящуюся в цементировочной головке нижнюю пробку 2 й ступени.
По достижении заливочной муфты, пробка садится во втулку, резко понижая давление нагнетания, но под давлением смещает ее вниз, открывая сквозные отверстия в муфте (рис. 2, б). .

При использовании способа непрерывного цементирования, тампонажный раствор для цементирования второй ступени закачивают тотчас за нижней пробкой второй ступени.
2-ступенчатое цементирование с разрывом - после открытия отверстий в заливочной муфте возобновляют циркуляцию бурового раствора, а тампонажный раствор 2 й ступени подают в скважину спустя некоторое время, к примеру, после схватывания раствора 1 й порции.

Цементирование хвостовика.
После промывки ствола скважины на устье ее устанавливают цементировочную головку, в которую вставляют верхнюю секцию разделительной заливочной пробки.
Закачивают расчетное количество цементного раствора, который продавливают буровым раствором или водой.
Когда раствор будет продавлен в объеме, равном внутреннему объему бурильных труб, верхняя секция пробки войдет в нижнюю и перекроет отверстия кольца.
При этом давление в бурильных трубах резко возрастет.
Шпильки, удерживающие нижнюю секцию в переводнике, срезаются, и обе секции, как одно целое, перемещаются вниз по хвостовику до резкого подъема давления.
После этого колонну необходимо посадить на забой, и путем вращения инструмента по часовой стрелке освободить бурильные трубы с переводником от хвостовика и вымыть излишек цементного раствора.
Через 16-20 часов следует определить высоту подъема цемента за колонной, оборудовать устье скважины, испытать колонну на герметичность и перфорировать в интервале продуктивного пласта.
Заключительный этап процесса восстановления скважины методом зарезки и бурения 2 го ствола - испытание эксплуатационной колонны на герметичность, перфорирование отверстий против продуктивного горизонта и освоение скважины (вызов притока нефти или газа из пласта).

Тампонаж
Тампонирование (цементирование) скважин - технологический процесс упрочнения затрубного пространства и обсадной колонны от разрушающего действия горных пород и грунтовых вод.
В процессе цементирования заданный интервал заполняется раствором вяжущих материалов (цемента), который в состоянии покоя превращается в прочный непроницаемый камень.
Используется специальный тампонажный цемент - модификацию портландце­мента с повышенными требованиями к минералогическому составу клинкера.
В состав цемента введены добавки, замедляющие его застывание.

Буровые растворы для бурения, заканчивания и капитального ремонта скважин

Качество строительства скважин, в т. ч. и качество вскрытия продуктивного пласта, во многом зависит от применяемого бурового раствора, поскольку буровой раствор - 1 я технологическая жидкость, вступающая во взаимодействие с вновь вскрываемой породой.

  • 10 % для скважин глубиной до 1200 м (интервалов 0 - 1200 м);
  • 5 % для интервалов от 1200 м до проектной глубины.

В процессе бурения необходимо производить контроль реолологических параметров бурового раствора с целью предупреждения обвалов стенок и размыва устья скважины.
После утяжеления раствора за счет выбуренной породы до необходимой плотности необходимо обеспечить качественную очистку бурового раствора.
В случаи поглощения бурового раствора применять вязкие пачки с наполнителем (кордовое волокно, резиновая крошка, древесные опилки, ореховая скорлупа).
Перед спуском обсадной колонны рекомендуется обработать буровой раствор смазывающей добавкой FK-Lube или иными смазывающими добавками.

  • Бентонит - структурообразователь, регулятор реологии и понизитель водоотдачи бурового раствора, коркообразующий компонент.
  • Ca(CO3)2 - кольматант мелкого и среднего помола, применяемый для образования тонкой фильтрационной корки и утяжеления раствора.
  • Сода каустическая - регулятор рН.
  • Desco CF - разжижитель применяемый для всех типов глинистых растворов.
  • Гаммаксан - биополимер.
  • FK-Lube - смазывающая добавка для снижения сил трения и крутящего момента при бурении наклоннонаправленых горизонтальных скважин, для профилактики дифференциального прихвата.
  • ПЭС-1 - универсальный жидкий пеногаситель.
  • ПАЦ НВ - применяется для снижения показателей фильтрации буровых растворов.
  • ПАЦ НВ- подходит для снижения водоотдачи безглинистых и малоглинистых растворов. Эффективно регулирует реологические вязкостные характеристики буровых растворов.
  • REATROL - модифицированных крахмал.
  • Сода кальцинированная - предназначена для снижения жесткости воды затворения путем осаждения катионов кальция.
  • Сода бикарбонат - предназначен для снижения рН раствора и осаждения кальция при загрязнении цементом.
  • Известь гашенная - ингибитор набухания и диспиргирования глинистых пород (катионнообменные процессы с участием ионов кальция Ca++); регулятор уровня pH высококальциевых растворов, нейтрализатор CO2 .
  • Atren-Bio - бактерицид.
  • IKD - смесь неионогеновых ПАВ; препятствует налипанию частиц породы на элементы КНБК и сетки вибросит.
  • КМЦ 600- применяется для снижения фильтрации бурового раствора с увеличением вязкостных характеристик.
  • NaCl - применяется для искусственной минерализации раствора, стабилизирует стенки скважины, путем фиксации ионов натрия на местах катионного обмена в глинистых минералах и таким образом переводит их в более стабильную ненабухающую форму.
  • персонал должен работать в спецодежде, перчатках, респираторах, фартуках,
  • помещение должно быть хорошо проветриваемым и освещенным.

В процессе бурения на репрессии с промывкой любым типом бурового раствора в околоскважинной зоне формируется зона кольматации и зона проникновения фильтрата, физико-химический состав и глубина которых определяют как устойчивость приствольной зоны, так и снижение гидропроводности и фазовой проницаемости продуктивного пласта.

На основе анализа фундаментальных исследований в области химии и биохимии углеводов, обобщения практики бурения скважин в качестве полимерных реагентов для регулирования фильтрационных и реологических свойств безглинистых и малоглинистых буровых растворов используются полисахариды.

Основной причиной выбора полисахаридов является их способность к химической и биологической деструкции, за счет чего обеспечивается возможность разрушения и удаления кольматационного слоя, образующегося в процессе бурения, и практически полное восстановление коллекторских свойств пласта.

Разработана технология получения комплексных полисахаридных реагентов с использованием ингибиторов термоокислительной деструкции, в качестве которых использованы водорастворимые силикаты, бораты щелочных металлов, формиаты натрия и калия.

Комплексные реагенты содержат также гидрофобизирующие добавки на основе калиевых солей жирных кислот и неионогенного ПАВ.

Применение этих реагентов обеспечивает сохранение регламентированных реологических и фильтрационных свойств полисахаридных систем при t =90-1800 о C в течение длительного времени (исследования проводились в течение 45 суток).

На основе этих реагентов предлагается ряд рецептур безглинистых и малоглинистых буровых растворов для различных условий бурения, особенности состава и свойств которых приведены ниже.

Полимер-эмульсионный буровой раствор (ПМГ) для бурения надпродуктивного интервала

В качестве основного средства промывки скважины при бурении надпродуктивного интервала наиболее эффективно применение бурового раствора со свойствами, обеспечивающими устойчивость глинистых отложений, снижение проницаемости водоносных пластов, качественную очистку ствола скважины.

Высокопроницаемые водоносные пласты, неизолированные к моменту первичного вскрытия продуктивного пласта, требуют больших затрат обрабатывающих реагентов, завышения сверх необходимого его структурных показателей, добавления в раствор кольматантов, оказывающих отрицательное влияние на качество вскрытия пласта.

Реагент-гидрофобизатор Синтал выполняет роль стабилизатора неустойчивых отложений, кольматирующей, гидрофобизирующей и смазывающей добавки.

Дополнительная кольматация водоносных пластов и упрочнение стенок скважины достигается водорастворимыми силикатами (силикаты натрия, калия или их смеси).

Применение полианионной целлюлозы в сочетании с Синтал и силикатами обеспечивает буровому раствору необходимые реологические характеристики.

С использованием гидравлических программ (программа Landmark) рассчитываются оптимальные показатели реологических свойств раствора для бурения наклонных, пологих и горизонтальных участков стволов скважин.

Компонентный состав для конкретного месторождения уточняется по результатам анализа геолого-технической документации и проведения дополнительных исследований кернового материала или шлама.

Выбор комплекса ингибиторов проводится по стандартам АНИ и отечественным методикам.

Буровой раствор характеризуется низкими значениями показателя фильтрации (Ф = 2,0-8,0 см 3 по АРI), регулируемыми в широком диапазоне реологическими показателями (η=10-40 мПа*с; τ0=25-180,0 дПа ), низким коэффициентом трения (Ктр = 0,07-0,1 по API).

Положительно то, что этот раствор легко модифицируется в буровой раствор для вскрытия продуктивного пласта путем дополнительного ввода крахмала, карбоната кальция и биополимера.

Раствор БР-ПМГ успешно применяли при проводке скважин в неустойчивых глинизированных отложениях значительной протяженности с зенитным углом 50-70º с сохранением номинального диаметра скважин при бурении пологих и горизонтальных участков ствола скважины, в тч при бурении дополнительных стволов на месторождениях Пермской области, при этом исключается необходимость установки цементных мостов в верейском горизонте, которые при бурении по традиционной технологии были обязательны.

В настоящее время этот раствор применяется на месторождениях республики Коми, Казахстана.

Буровые растворы на основе полисахаридов для вскрытия продуктивного пласта

Выбор оптимальной рецептуры бурового раствора для вскрытия продуктивного пласта рассматривается как ключевой момент сохранения коллекторских свойств пласта.

В лаборатории разработано несколько типов безглинистых систем на основе полисахаридов (ББР), которые предназначены для вскрытия продуктивных пластов.

Методически выбор компонентного состава бурового раствора для вскрытия продуктивного пласта обосновывается по результатам оценки его влияния на изменение проницаемости пористой среды и по коэффициенту восстановления проницаемости образцов керна после фильтрации бурового раствора при реальных перепадах давлений, возникающих при первичном вскрытии.

Для предотвращения глубокого проникновения дисперсной фазы и дисперсионной среды бурового раствора в пласт предусматривается ввод кислоторастворимого кольматанта, фракционный состав которого выбирается по результатам исследования кернового материала конкретного месторождения.

Применение полимерных реагентов из класса полисахаридов и правильный подбор фракционного состава кольматанта обеспечивает быстрое формирование в призабойной зоне пласта незначительной по глубине и низкопроницаемой зоны кольматации, которая предупреждает глубокое проникновение бурового раствора и его фильтрата в пласт в период первичного вскрытия, но легко разрушается в период освоения.

Зона кольматации, сформированная ББР на основе полисахаридов, может быть легко разрушена в процессе освоения при использовании специальных деструктурирующих реагентов, например, комплексного реагента КДС, который предлагается в качестве основы перфорационной среды.

В зависимости от геолого-технических условий, конструкции скважины разработано несколько вариантов ББР.

БЕЗГЛИНИСТЫЙ БУРОВОЙ РАСТВОР ББР-СКП

Безглинистый буровой раствор на основе полисахаридов (крахмал, ПАЦ, биополимер), ПАВ и ингибирующих добавок имеет низкие значения показателя фильтрации (при DР= 0,7 МПа Ф=2,0-6,0 см 3 ), технологически необходимые для проводки горизонтальных скважин и скважин с большим углом наклона структурно-реологические характеристики (h=12-25 мПа*с; t0=5-150 дПа, Gel10c/10мин = 3,5-12/5-24 lb/100 ft 2 ; СНС1/10= 0,5-1,5/ 0,5-2,5 Па); оптимальные псевдопластичные свойства (коэффициент «n» =0,36-0,48) и низкие гидравлические сопротивления (коэффициент консистенции «К»=0,31-1,15); при этом буровые растворы имеют низкие значения коэффициента трения (Ктр = 0,05 - 0,15), фильтрат бурового раствора имеет низкое поверхностное натяжение на границе с углеводородной жидкостью ( 0,75-0,95 мН/м).

Присутствие ингибиторов набухания и диспергирования глин (КС1, силикаты и др.) обеспечивает устойчивость глинистых отложений и предупреждает набухание глины в коллекторе пласта. ББР-СКП стабилен при любой минерализации, фильтрационная корка устойчива к воздействию тампонажного раствора.

Дополнительное физико-химическое модифицирование фильтрационной корки ББР в процессе подготовки ствола скважины к цементированию обеспечивает плотный контакт цементного камня с породой.

БЕЗГЛИНИСТЫЙ БУРОВОЙ РАСТВОР РЕОГЕЛЬ

Для бурения пологих и горизонтальных участков ствола скважины разработана оригинальная рецептура безглинистого бурового раствора на основе отечественных полисахаридных реагентов и комплексообразователя - система РЕОГЕЛЬ, проявляющая при определенном сочетании реагентов вязко-упругие свойства, что обеспечивает раствору необходимую выносную и удерживающую способность.

Уникальные структурно-реологические и низкие фильтрационные свойства раствора обеспечивают минимальное проникновение его в пласт, одновременно раствор характеризуется высокими капсулирующими свойствами, обеспечивая незначительную смачиваемость выбуренной породы, тем самым препятствуя диспергированию шлама, но обеспечивая полное осаждение шлама при низкой скорости течения (в отстойниках, желобах и приемных емкостях буровых насосов).

Буровой раствор не создает в проницаемых пластах на стенке скважины толстой фильтрационной корки и способствует высокой степени замещения бурового раствора тампонажным.

Эффективность этого раствора с точки зрения сохранения коллекторских свойств пласта не ниже, чем у известных систем буровых растворов с биополимером и мраморной крошкой, но стоимость раствора значительно ниже за счет использования только отечественных реагентов.

ПОЛИМЕР-ЭМУЛЬСИОННЫЙ БУРОВОЙ РАСТВОР ЭМУЛГЕЛЬ

Для строительства скважин в сложных гидрогеологических и технико-технологических условиях (например, при бурении через кыновские аргиллиты, глауконитовые глины) при необходимости решения основной проблемы сохранения устойчивости ствола скважины в интервалах залегания неустойчивых глинистых отложений при больших зенитных углах и обеспечения выноса шлама из сильно искривленного участка ствола скважины разработан полимер-эмульсионный буровой раствор ЭМУЛГЕЛЬ.

Исследования показали, что наибольший эффект по сохранению стабильности сланцев достигается в углеводородсодержащих средах в присутствии ингибирующих добавок (KCl, силикаты, CaCl2).

Разработан комплексный реагент на основе ОЭЦ и продукта модификации жировых гудронов на основе минерального сырья, позволяющий обеспечить необходимые фильтрационные и реологические показатели высокоминерализованного бурового раствора плотностью кг/м 3 .

За счет повышенного содержания углеводородсодержащей составляющей раствор обладает усиленными ингибирующими свойствами и оптимальными структурно-реологическими показателями, необходимыми для качественной очистки забоя при больших зенитных углах.

Полученная прямая эмульсия типа «масло в воде» обладает положительными свойствами растворов на нефтяной основе, но при этом исключаются такие негативные свойства РНО, как экологическая и пожарная опасность.

В состав раствора входят полисахаридные реагенты - регуляторы реологических и фильтрационных свойств, ингибиторы набухания и диспергирования глин, эмульгатор, углеводородная среда, при необходимости - кислоторастворимый кольматант.

Этот раствор может быть использован и для бурения горизонтального участка при вскрытии продуктивного пласта, т. к. по своим физико-химическим и технологическим показателям отвечает требованиям для качественного вскрытия продуктивного пласта.

УТЯЖЕЛЕННЫЕ БУРОВЫЕ РАСТВОРЫ ДЛЯ ВСКРЫТИЯ ПРОДУКТИВНЫХ ПЛАСТОВ

Для ведения работ в условиях АВПД традиционно используют глинистые буровые растворы, содержащие в качестве добавок баритовый, железистый и другие утяжелители. Эти системы отличают относительно невысокая стоимость, широкий спектр обрабатывающих реагентов и большой опыт применения.

Однако использование таких растворов приводит к необратимой кольматации продуктивных пластов (особенно низкопроницаемых, трещиноватых и трещино-поровых коллекторов) и требует дополнительных дорогостоящих операций по восстановлению проницаемости пласта.

Снижение проницаемости призабойной зоны коллектора после первичного вскрытия изменяется в интервале 30 - 70%.

Безглинистые буровые растворы, плотность которых регулируется концентрацией водорастворимых солей и кислоторастворимых утяжелителей, имеют принципиальное преимущество перед глинистыми при заканчивании скважин за счет исключения из состава кольматанта, трудноудаляемого из ПЗП при освоении.

Дополнительным преимуществом таких буровых растворов является более высокое качество крепления скважин.

Разработаны утяжеленные безглинистые буровые растворы плотностью до 1600 кг/м 3 на основе пластовой воды, растворов неорганических солей (хлориды натрия, калия, кальция, магния) и карбоната кальция для доутяжеления.

Оптимизация реологических и фильтрационных свойств этих растворов проводится комплексом полисахаридных реагентов.

Буровые растворы плотностью 1600 - 2200 кг/м 3 на основе бромидов кальция, цинка или их смесей обеспечивают относительно высокое качество вскрытия продуктивного пласта и возможность почти полного восстановления проницаемости ПЗП (до 70 - 90%), но область их применения ограничивается низкой термобарической устойчивостью и экологической опасностью.

Высокую плотность растворов могут обеспечивать не только неорганические соли, но и органические, в частности, формиаты щелочных металлов.

Формиаты обладают рядом преимуществ по сравнению с тяжелыми неорганическими солями, и в частности, экологической безопасностью, высокой ингибирующей способностью по отношению к глинистым сланцам, повышением термостабильности полисахаридных реагентов, низкой коррозионной активностью, совместимостью с пластовыми флюидами, снижением коэффициента трения буровых растворов.

Разработаны технологические жидкости на основе формиатов, которые содержат комплекс полисахаридных реагентов для регулирования фильтрационных, реологических, псевдопластичных и капсулирующих свойств и мраморную крошку для временной кольматации ПЗП.

Предлагается несколько рецептур:

- Системы без твердой фазы на основе формиата натрия (r = 1300 кг/м 3 ), формиата калия (r = 1670 кг/м 3 ), формиатов калия и цезия (r = 2200 кг/м 3 );

- Системы с частичной заменой формиатов на кислоторастворимый карбонатный утяжелитель (r = 1800 кг/м3). В качестве утяжелителя использовали мраморную крошку;

- Системы с пониженным содержанием кислотонерастворимой твердой фазы (r = 2200 кг/м 3 ). Для доутяжеления используется барит, Магбар, сидерит (карбонат железа), гематит.

не ужесточаются требования со стороны природоохранных организаций, так как при их использовании и при использовании совместно с другими компонентами бурового раствора не образуется экологически опасных отходов;

появляется возможность многократного и многоцелевого использования бурового раствора ввиду его высокой ферментативной устойчивости и устойчивости к термоокислительной деструкции;

для приготовления и очистки бурового раствора в процессе бурения не требуется дополнительного оборудования буровых установок;

буровой раствор на основе формиатов может быть использован в качестве жидкости глушения или жидкости перфорации, т. к. он не оказывает отрицательного влияния на коллектор.

РЕЗУЛЬТАТЫ ПРОМЫШЛЕННОГО ПРИМЕНЕНИЯ БУРОВЫХ РАСТВОРОВ НА ОСНОВЕ ПОЛИСАХАРИДОВ

С использованием безглинистых и малоглинистых буровых растворов на основе полисахаридных реагентов в гг в Пермском Прикамье пробурено более 300 скважин, в тч пологие и горизонтальные скважины.

Растворы применялись также в ЛУКОЙЛ-Западная Сибирь, и КРС (п. Самарский), Удмуртии, республиках Коми и Казахстан.

Анализ результатов применения буровых растворов на основе полисахаридов при бурении вертикальных, наклонно-направленных и горизонтальных скважин позволил отметить следующие преимущества предлагаемых систем буровых растворов:

- Высокие ингибирующие и низкие фильтрационные характеристики растворов позволили сохранить устойчивость стенок ствола скважины на весь период бурения. Каротажный материал (каверномер) показал, что средний диаметр скважин в интервале залегания терригенных отложений близок к номинальному.

- Поддержание реологических характеристик на уровне проектных значений обеспечило высокую выносную и удерживающую способности безглинистых буровых растворов, что позволило избежать осложнений в процессе бурения, связанных с зашламлением ствола скважины при зенитных углах 30-700.

- Вскрытие продуктивного пласта проходит без остановок в бурении, так как раствор ББР-ПМГ, используемый для бурения надпродуктивного интервала, совместим с безглинистыми буровыми растворами, используемыми для вскрытия продуктивного пласта, в тч для горизонтальных участков стволов скважины.

Поэтому для проводки горизонтального участка и первичного вскрытия продуктивного пласта не требуется сброс циркулирующей в скважине промывочной жидкости и, соответственно, сократились временные затраты по приготовлению раствора.

- Использование растворов позволило повысить технико-экономические показатели работы долот за счет высокой смазывающей способности и низкого значения коэффициента трения.

- Проведенные гидродинамические исследования коллекторских свойств продуктивного пласта показали отсутствие загрязнения ПЗП (фильтрационно-емкостные характеристики призабойной и удаленной зон продуктивного пласта практически одинаковы); после освоения скважин полученные дебиты соответствовали или превышали проектные, время освоения сократилось в 1,5-2 раза, при этом освоение скважины проходит, как правило, без дополнительных воздействий на пласт.

Для чего нужен буровой цемент?

Буровой цемент – народное наименование специального вида «связующего» – «Портландцемент тампонажный» со специальными добавками или без таковых. Основными потребителями бурового цемента, являются нефтедобывающие и газодобывающие предприятия.

Содержание Свернуть

буровой цемент что это

Что такое буровой цемент?

В соответствии со своим «народным» и Гостовским названием тампонажные цементы используются для герметизации пространства между пробуренным стволом скважины и обсадными трубами от грунтовых вод или разделения нефтегазоносных горизонтов.

Иногда, тампонажный цемент используют в качестве классического портландцемента в строительстве объектов промышленного и гражданского назначения.

ПЦТ II-СС-50. Портландцемент Тампонажный сульфатостойкий с минеральными добавками, для низких или нормальных температур:

  • ПТЦ и – портландцемент тампонажный;
  • II – с минеральными добавками;
  • СС – сульфатостойкий;
  • 50 – для низких и нормальных температур (от 15 до 50 градусов Цельсия).

Особенности и характеристики бурового цемента

Тампонажный цемент производится по технологии тонкого помола клинкера с добавкой гипса (от 2 до 3,5% от массы клинкера) и ряда других минеральных веществ, придающих ему специальные свойства: быстрое твердение по отношению к общестроительным цементам, повышенную прочность, высокую жидкотекучесть и пр.

Так как линейные размеры пространства между стволом и обсадными трубами скважин составляют всего 15-50 миллиметров, при глубине бурения сто и тысячи метров, к тампонажному раствору предъявляются весьма жесткие требования. Жидкотекучесть раствора должна обеспечивать скорость закачки в зазор 1,5 м/с, а после того как закачка прекратится раствор должен набрать расчетную прочность в минимальные сроки.

Также стоит учитывать, что по мере увеличения глубины ствола в нем увеличиваются давление и температура. В связи с этим тампонирование шахты осуществляется жидким цементным тестом (пульпой) без песка, с содержанием воды порядка 50% от веса цемента.

Так как наибольшее влияние на сроки схватывания и твердения бурового цемента оказывает температура внутри ствола скважины, цементная промышленность выпускает два класса тампонажного цемента – цемент для «горячих» и «холодных» скважин.

Кроме того имеются специальные виды бурового цемента для особых условий эксплуатации, присутствующих в особоглубоких шахтах: белитокремнеземистый, песчанистый, солестойкий, гигроскопический, сульфатостойкий, утяжеленный, облегченный, волокнистый и другие специальные виды тампонажного цемента. При этом специальные свойства бурового «вяжущего» регулируются добавкой: шлаков, известняков, песка и других минеральных веществ.

При высокой температуре пульпа полностью отвердевает в промежутке времени от 1 часа 40 минут до 10 часов, в зависимости от конкретных условий. При низкой и нормальной температуре процесс твердения занимает промежуток времени от 2 до 12 часов. Для регулировки времени твердения используются добавки калия хлористого и натрий хлора. Самый длительный период твердения имеет тампонажный солестойкий цемент.

тампонажный цемент

Специальные свойства бурового цемента определяют его высокую стоимость по сравнению с классическим портландцементом. Стандартный пятидесятикилограммовый мешок тампонажного цемента стоит в среднем 300 рублей, а стоимость цемента реализуемого россыпью или в мягких контейнерах (биг-бегах) колеблется от 4 400 рублей до 6 950 рублей в зависимости от вида и компании производителя.

Поэтому применение бурового цемента в гражданском строительстве экономически нецелесообразно, и возможно только в тех случаях, когда бетонная конструкция эксплуатируется в особых условиях.

Отечественные производители тампонажного цемента

Спасскцемент, ОАО Сухоложскцемент, ООО «Топкинский цемент», ООО «Красноярский цемент», Группа компаний «БЕСТО», ОАО «Вольскцемент», ПАО «Подольск-Цемент» и ряд других старейших и новых предприятий.

Читайте также: