Ветровая нагрузка на фундамент

Обновлено: 16.05.2024

Расчетов нагрузки фундамент зданий

Расчет нагрузки на фундамент необходим для правильного выбора его геометрических размеров и площади подошвы фундамента. В конечном итоге, от правильного расчета фундамента зависит прочность и долговечность всего здания. Расчет сводится к определению нагрузки на квадратный метр грунта и сравнению его с допустимыми значениями.

Для расчета необходимо знать:

  • Регион, в котором строится здание;
  • Тип почвы и глубину залегания грунтовых вод;
  • Материал, из которого будут выполнены конструктивные элементы здания;
  • Планировку здания, этажность, тип кровли.

Исходя из требуемых данных, расчет фундамента или его окончательная проверка производится после проектирования строения.

Попробуем рассчитать нагрузку на фундамент для одноэтажного дома, выполненного из полнотелого кирпича сплошной кладки, с толщиной стен 40 см. Габариты дома – 10х8 метров. Перекрытие подвального помещения – железобетонные плиты, перекрытие 1 этажа – деревянное по стальным балкам. Крыша двускатная, покрытая металлочерепицей, с уклоном 25 градусов. Регион – Подмосковье, тип грунта – влажные суглинки с коэффициентом пористости 0,5. Фундамент выполняется из мелкозернистого бетона, толщина стенки фундамента для расчета равна толщине стены.

Определение глубины заложения фундамента

Глубина заложения зависит от глубины промерзания и типа грунта. В таблице приведены справочные величины глубины промерзания грунта в различных регионах.

Таблица 1 – Справочные данные о глубине промерзания грунта


Глубина заложения фундамента в общем случае должна быть больше глубины промерзания, но есть исключения, обусловленные типом грунта, они указаны в таблице 2.

Таблица 2 – Зависимость глубины заложения фундамента от типа грунта

Глубина заложения фундамента необходима для последующего расчета нагрузки на почву и определения его размеров.

Определяем глубину промерзания грунта по таблице 1. Для Москвы она составляет 140 см. По таблице 2 находим тип почвы – суглинки. Глубина заложения должна быть не менее расчетной глубины промерзания. Исходя из этого глубина заложения фундамента для дома выбирается 1,4 метра.

Расчет нагрузки кровли

Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.

Таблица 3 – Удельный вес разных видов кровли

  1. Определяем площадь проекции кровли. Габариты дома – 10х8 метров, площадь проекции двускатной крыши равна площади дома: 10·8=80 м 2 .
  2. Длина фундамента равна сумме двух длинных его сторон, так как двускатная крыша опирается на две длинные противоположные стороны. Поэтому длину нагруженного фундамента определяем как 10·2=20 м.
  3. Площадь нагруженного кровлей фундамента толщиной 0,4 м: 20·0,4=8 м 2 .
  4. Тип покрытия – металлочерепица, угол уклона – 25 градусов, значит расчетная нагрузка по таблице 3 равна 30 кг/м 2 .
  5. Нагрузка кровли на фундамент равна 80/8·30 = 300 кг/м 2 .

Расчет снеговой нагрузки

Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.


  1. Длина ската для крыши с уклоном в 25 градусов равна (8/2)/cos25° = 4,4 м.
  2. Площадь крыши равна длине конька умноженной на длину ската (4,4·10)·2=88 м 2 .
  3. Снеговая нагрузка для Подмосковья по карте равна 126 кг/м 2 . Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 88·126/8=1386 кг/м 2 .

Расчет нагрузки перекрытий

Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.

Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.

Таблица 4 – Удельный вес перекрытий

  1. Площадь перекрытий равна площади дома – 80 м 2 . В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
  2. Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
  3. Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
  4. Суммируем их и находим нагрузку на 1 м 2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м 2 .

Расчет нагрузки стен

Нагрузка стен определяется как объем стен, умноженный на удельный вес из таблицы 5, полученный результат делят на длину всех сторон фундамента, умноженную на его толщину.

Таблица 5 – Удельный вес материалов стен

  1. Площадь стен равна высоте здания, умноженной на периметр дома: 3·(10·2+8·2)=108 м 2 .
  2. Объем стен – это площадь, умноженная на толщину, он равен 108·0,4=43,2 м 3 .
  3. Находим вес стен, умножив объем на удельный вес материала из таблицы 5: 43,2·1800=77760 кг.
  4. Площадь всех сторон фундамента равна периметру, умноженному на толщину: (10·2+8·2)·0,4=14,4 м 2 .
  5. Удельная нагрузка стен на фундамент равна 77760/14,4=5400 кг.

Предварительный расчет нагрузки фундамента на грунт

Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м 2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.

Таблица 6 – Удельная плотность материалов фундамента

  1. Площадь фундамента – 14,4 м 2 , глубина заложения – 1,4 м. Объем фундамента равен 14,4·1,4=20,2 м 3 .
  2. Масса фундамента из мелкозернистого бетона равна: 20,2·1800=36360 кг.
  3. Нагрузка на грунт: 36360/14,4=2525 кг/м 2 .

Расчет общей нагрузки на 1 м 2 грунта

Результаты предыдущих расчетов суммируются, при этом вычисляется максимальная нагрузка на фундамент, которая будет больше для тех его сторон, на которые опирается крыша.

Условное расчетное сопротивление грунта R определяют по таблицам СНиП 2.02.01—83 «Основания зданий и сооружений».

Из расчета видно, что нагрузка на грунт находится в пределах допустимой.

Расчет нагрузки на фундамент — калькулятор веса дома.

Расчет нагрузки на фундамент от будущего дома наряду с определением свойств грунта на участке застройки — это две первоочередные задачи, которые нужно выполнить при проектировании любого фундамента.

О приблизительной оценке характеристик несущих грунтов своими силами говорилось в статье «Определяем свойства грунтов на участке застройки» . А здесь представлен калькулятор, с помощью которого можно определить общий вес строящегося дома. Полученный результат используется для расчёта параметров выбранного типа фундамента. Описание структуры и работы калькулятора приводится непосредственно под ним.

Работа с калькулятором

Шаг 1: Отмечаем имеющуюся у нас форму коробки дома. Есть два варианта: либо коробка дома имеет форму простого прямоугольника (квадрата), либо любую другую форму сложного многоугольника (в доме больше четырёх углов, имеются выступы, эркеры и т.п.).

При выборе первого варианта необходимо задать длину (А-В) и ширину (1-2) дома, при этом нужные для дальнейшего расчёта значения периметра наружных стен и площади дома в плане высчитываются автоматически.

При выборе же второго варианта периметр и площадь необходимо рассчитать самостоятельно (на бумажке), т.к варианты формы коробки дома очень разнообразны и у всех свои. Полученные цифры заносятся в калькулятор. Обращайте внимание на единицы измерения. Расчеты ведутся в метрах, в квадратных метрах и килограммах.

Шаг 2: Указываем параметры цоколя дома. Простыми словами, цоколь — это нижняя часть стен дома, возвышающаяся над уровнем грунта. Он может исполняться в нескольких вариантах:

  1. цоколь является верхней частью ленточного фундамента выступающей над уровнем грунта.
  2. цоколь является отдельной частью дома материал которой отличается и от материала фундамента и от материала стен, например, фундамент из монолитного бетона, стены из бруса, а цоколь из кирпича.
  3. цоколь выполняется из того же материала, что и наружные стены, но так как он часто облицовывается другими материалами нежели стены и не имеет внутренней отделки, поэтому мы считаем его отдельно.

В любом случае высоту цоколя отмеряйте от уровня грунта до уровня, на который ложится цокольное перекрытие.


Шаг 3: Указываем параметры наружных стен дома. Высота их отмеряется от верха цоколя до крыши либо до основания фронтона, так как отмечено на рисунке.

Суммарную площадь фронтонов также как и площадь оконных и дверных проёмов в наружных стенах необходимо рассчитать исходя из проекта самостоятельно и внести полученные значения в калькулятор.

В расчёт заложены среднестатистические цифры удельного веса оконных конструкций с двухкамерным стеклопакетом (35 кг/м²) и дверей (15 кг/м²).

Шаг 4: Указываем параметры перегородок в доме. В калькуляторе несущие и не несущие перегородки считаются отдельно. Сделано это специально, так как в большинстве случаев несущие перегородки более массивные (они воспринимают нагрузку от перекрытий или крыши). А не несущие перегородки являются просто ограждающими конструкциями и могут возводиться, к примеру, просто из гипсокартона.

Шаг 5: Указываем параметры крыши. В-первую очередь выбираем её форму и уже исходя из неё задаём нужные размеры. Для типовых крыш площади скатов и углы их наклона рассчитываются автоматически. Если же Ваша крыша имеет сложную конфигурацию, то площадь её скатов и угол их наклона, необходимые для дальнейших расчётов, придётся определять опять же самостоятельно на бумажке.

Вес кровельного покрытия в калькуляторе рассчитывается с учётом веса стропильной системы, принятого равным 25 кг/м².

Далее для определения снеговой нагрузки необходимо по прилагаемой карте выбрать номер подходящего района.

Расчёт в калькуляторе производится на основании формулы (10.1) из СП 20.13330.2011 (Актуализированная версия СНиП 2.01.07-85*):

где 1,4 — коэффициент надёжности по снеговой нагрузке принятый по пункту (10.12);

0,7 — понижающий коэффициент зависящий от средней температуры в январе для данного региона. Данный коэффициент принимается равным единице при средней январской температуре выше -5º С. Но так как практически на всей территории нашей страны средние январские температуры ниже этой отметки (видно на карте 5 приложения Ж данного СНиПа), то в калькуляторе изменение коэффициента 0,7 на 1 не предусмотрено.

ce и ct — коэффициент, учитывающий снос снега и термический коэффициент. Их значения приняты равными единице для облегчения расчётов.

Sg — вес снегового покрова на 1 м² горизонтальной проекции крыши, определяется исходя из выбранного нами снегового района по карте;

μ — коэффициент, значение которого зависит от угла наклона скатов крыши. При угле более 60º μ =0 (т.е. снеговая нагрузка вообще не учитывается). При угле менее 30º μ =1. При промежуточных значениях угла наклона скатов необходимо производить интерполяцию. В калькуляторе это делается на основании простой формулы:

μ = 2 — α/30 , где α — угол наклона скатов в градусах

Шаг 6: Указываем параметры перекрытий. Помимо веса самих конструкций в расчёт заложена эксплуатационная нагрузка равная 195 кг/м² для цокольного и межэтажных перекрытий и 90 кг/м² для чердачного перекрытия.

Внеся все исходные данные, нажмите кнопку «РАССЧИТАТЬ!». При каждом изменении какого-либо исходного значения для обновления результатов также нажимайте данную кнопку.

Обратите внимание! Ветровая нагрузка при сборе нагрузок на фундамент в малоэтажном строительстве не учитывается. Можно посмотреть пункт (10.14) СНиП 2.01.07-85* «Нагрузки и воздействия».

Сбор нагрузок на фундамент — пример


Перед строительством дома важно грамотно запроектировать его несущие конструкции. Расчет нагрузки на фундамент позволит обеспечить надежность опор под здание. Его проводят перед подбором фундамента после определения характеристик грунта.

Какие воздействия испытывает фундамент и их определение

Самый главный документ при определении веса конструкций дома — СП «Нагрузки и воздействия». Именно он регламентирует, какие нагрузки приходятся на фундамент и как их определить. По этому документу можно разделить нагрузки на следующие типы:

Временные в свою очередь делятся на длительные и кратковременные. К постоянным относят те, которые не исчезают при эксплуатации дома (вес стен, перегородок, перекрытий, кровли, фундамента). Временные длительные — это масса мебели и оборудования, кратковременные — снег и ветер.

Постоянные нагрузки

Чтобы рассчитать постоянные нагрузки, потребуется знать:

  • размеры элементов дома;
  • материал, из которого они изготовлены;
  • коэффициенты надежности по нагрузке.


Совет! Для начала рекомендуется нарисовать схему дома, на которой будут нанесены габариты здания, размеры его конструкций. Далее можно воспользоваться таблицей, в которой приведены массы для основных материалов и конструкций.

Тип конструкции Масса
Стены
Из керамического и силикатного полнотелого кирпича толщиной 380 мм (1,5 кирпича) 684 кг/м 2
То же толщиной 510 мм (2 кирпича) 918 кг/м 2
То же толщиной 640 мм (2,5 кирпича) 1152 кг/м 2
То же толщиной 770 мм (3 кирпича) 1386 кг/м 2
Из керамического пустотелого кирпича толщиной 380 мм 532 кг/м 2
То же 510 мм 714 кг/м 2
То же 640 мм 896 кг/м 2
То же 770 мм 1078 кг/м 2
Из силикатного пустотелого кирпича толщиной 380 мм 608 кг/м 2
То же 510 мм 816 кг/м 2
То же 640 мм 1024 кг/м 2
То же 770 мм 1232 кг/м 2
Из бруса (сосна) толщиной 200 мм 104 кг/м 2
То же толщиной 300 мм 156 кг/м 2
Каркасные с утеплением толщиной 150 мм 50 кг/м 2
Перегородки и внутренние стены
Из керамического и силикатного кирпича (полнотелого) толщиной 120 мм 216 кг/м 2
То же толщиной 250 мм 450 кг/м 2
Из керамического кирпича пустотелого толщиной 120 мм (250 мм) 168 (350) кг/м 2
Из силикатного кирпича пустотелого толщиной 120 мм (250 мм) 192 (400) кг/м 2
Из гипсокартона 80 мм без утеплителя 28 кг/м 2
Из гипсокартона 80 мм с утеплителем 34 кг/м 2
Перекрытия
Железобетонные сплошные толщиной 220 мм с цементно-песчаной стяжкой 30 мм 625 кг/м 2
Железобетонные из пустотных плит 220 мм со стяжкой 30 мм 430 кг/м 2
Деревянное по балкам высотой 200 мм с условием укладки утеплителя плотностью не более 100 кг/м 3 (при меньших значениях обеспечивается запас по прочности, поскольку самостоятельные расчеты не имеют высокой точности) с укладкой в качестве напольного покрытия паркета, ламината, линолеума или ковролина 160 кг/м 2
Кровля
С покрытием из керамической черепицы 120 кг/м 2
Из битумной черепицы 70 кг/м 2
Из металлической черепицы 60 кг/м 2

Также потребуется рассчитать собственную массу фундамента дома. Перед этим нужно определиться с глубиной его заложения. Она зависит от следующих факторов:

  • глубина промерзания почвы;
  • уровень расположения грунтовых вод;
  • наличие подвала.

При залегании на участке крупнообломочных и песчаных грунтов (средний, крупный) можно не углублять подошву дома на величину промерзания. Для глин, суглинков, супесей и других неустойчивых оснований, необходима закладка на глубину промерзания грунта в зимний период. Определить ее можно по формуле в СП «Основания и фундаменты» или по картам в СНиП «Строительная климатология» (этот документ сейчас отменен, но в частном строительстве может быть использован в ознакомительных целях).

При определении залегания подошвы фундамента дома важно контролировать, чтобы она располагалась на расстоянии не менее 50 см от уровня грунтовых вод. Если в здании предусмотрен подвал, то отметка основания принимается на 30-50 см ниже отметки пола помещения.

Определившись с глубиной промерзания, потребуется подобрать ширину фундамента. Для ленточного и столбчатого ее принимают в зависимости от толщины стены здания и нагрузки. Для плитного назначают так, чтобы опорная часть выходила за пределы наружных стен на 10 см. Для свай сечение назначается расчетом, а ростверк подбирается в зависимости от нагрузки и толщины стен. Можно воспользоваться рекомендациями по определению из таблицы ниже.

Тип фундамента Способ определения массы
Ленточный железобетонный Умножают ширину ленты на ее высоту и протяженность. Полученный объем нужно перемножить на плотность железобетона — 2500 кг/м 3 . Рекомендуем: Расчет ленточного фундамента.
Плитный железобетонный Умножают ширину и длину здания (к каждому размеру прибавляют по 20 см на выступы на границы наружных стен), далее выполняют умножение на толщину и плотность железобетона. Рекомендуем: Расчет плитного фундамента по нагрузке.
Столбчатый железобетонный Площадь сечения умножают на высоту и плотность железобетона. Полученное значение нужно помножить на количество опор. При этом вычисляют массу ростверка. Если у элементов фундамента имеется уширение, его также необходимо учесть в расчетах объема. Рекомендуем: Расчет столбчатого фундамента.
Свайный буронабивной То же, что и в предыдущем пункте, но нужно учесть массу ростверка. Если ростверк изготавливается из железобетона, то его объем перемножают на 2500 кг/м 3 , если из древесины (сосны), то на 520 кг/м 3 . При изготовлении ростверка из металлопроката потребуется ознакомиться с сортаментом или паспортом на изделия, в которых указывается масса одного погонного метра. Рекомендуем: Расчет буронабивных свай.
Свайный винтовой Для каждой сваи изготовитель указывает массу. Нужно умножить на количество элементов и прибавить массу ростверка (см. предыдущий пункт). Рекомендуем: Расчет винтовых свай.

На этом расчет нагрузки на фундамент не заканчивается. Для каждой конструкции в массе нужно учесть коэффициент надежности по нагрузке. Его значение для различных материалов приведено в СП «Нагрузки и воздействия». Для металла он будет равен 1,05, для дерева — 1,1, для железобетона и армокаменных конструкций заводского производства — 1,2, для железобетона, который изготавливается непосредственно на стройплощадке — 1,3.

Временные нагрузки

Проще всего здесь разобраться с полезной. Для жилых зданий она равняется 150 кг/м2 (определяется исходя из площади перекрытия). Коэффициент надежности в этом случае будет равен 1,2.

Снеговая зависит от района строительства. Чтобы определить снеговой район потребуется СП «Строительная климатология». Далее по номеру района находят величину нагрузки в СП «Нагрузки и воздействия». Коэффициент надежности равен 1,4. Если уклон кровли более 60 градусов, то снеговую нагрузку не учитывают.

Определение значения для расчета

При расчете фундамента дома потребуется не общая его масса, а та нагрузка, которая приходится на определенный участок. Действия здесь зависят от типа опорной конструкции здания.

Тип фундамента Действия при расчете
Ленточный Для расчета ленточного фундамента по несущей способности нужна нагрузка на погонный метр, исходя из нее рассчитывается площадь подошвы для нормальной передачи массы дома на основание, исходя из несущей способности грунта (точное значение несущей способности грунта можно узнать только с помощью геологических изысканий). Полученную в сборе нагрузок массу нужно разделить на длину ленты. При этом учитываются и фундаменты под внутренние несущие стены. Это самый простой способ. Для более подробного вычисления потребуется воспользоваться методом грузовых площадей. Для этого определяют площадь, с которой передается нагрузка на определенный участок. Это трудоемкий вариант, поэтому при строительстве частного дома можно воспользоваться первым, более простым, способом.
Плитный Потребуется найти массу, приходящуюся на каждый квадратный метр плиты. Найденную нагрузку делят на площадь фундамента.
Столбчатый и свайный Обычно в частном домостроении заранее задают сечение свай и потом подбирают их количество. Чтобы рассчитать расстояние между опорами с учетом выбранного сечения и несущей способности грунта, нужно найти нагрузку, как в случае с ленточным фундаментом. Делят массу дома на длину несущих стен, под которые будут установлены сваи. Если шаг фундаментов получится слишком большим или маленьким, то сечение опор меняют и выполняют расчет заново.

Пример выполнения вычислений

Удобнее всего сбор нагрузок на фундамент дома делать в табличной форме. Пример рассмотрен для следующих исходных данных:

  • дом двухэтажный, высота этажа 3 м с размерами в плане 6 на 6 метров;
  • фундамент ленточный железобетонный монолитный шириной 600 мм и высотой 2000 мм;
  • стены из кирпича полнотелого толщиной 510 мм;
  • перекрытия монолитные железобетонные толщиной 220 мм с цементно-песчаной стяжкой толщиной 30 мм;
  • кровля вальмовая (4 ската, значит, наружные стены по всем сторонам дома будут одинаковой высоты) с покрытием из металлической черепицы с уклоном 45 градусов;
  • одна внутренняя стена посередине дома из кирпича толщиной 250 мм;
  • общая длина гипсокартонных перегородок без утепления толщиной 80 мм 10 метров.
  • снеговой район строительства ll, нагрузка 120 кг/м2 кровли.

Далее рассмотрен пример расчета в табличной форме.

Определение нагрузки Коэффициент надежности Расчетное значение, тонн
Фундамент

0,6 м * 2 м * (6 м * 4 + 6 м) = 36 м 3 — объем фундамента

6 м * 4 шт = 24 м — протяженность стен

24 м * 3 м = 72 м 2 -площадь в пределах одного этажа

6 м * 2 шт * 3 м = 36 м 2 площадь стен на протяжении двух этажей

6 м * 6 м = 36 м 2 — площадь перекрытий

36 м 2 *625 кг/м 2 = 22500 кг = 22, 5 тонн — масса одного перекрытия

10 м * 2,7 м (здесь берется не высота этажа, а высота помещения) = 27 м 2 — площадь

(6 м * 6 м)/cos 45ᵒ (угла наклона кровли) = (6 * 6)/0,7 = 51,5 м 2 — площадь кровли

Чтобы понять пример, эту таблицу нужно смотреть совместно с той, в которой приведены массы конструкций.

Далее необходимо сложить все полученные значения. Итого нагрузка для данного примера на фундамент с учетом собственного веса составляет 409,7 тонн. Чтобы найти нагрузку на один погонный метр ленты, необходимо разделить полученное значение на протяженность фундамента (посчитано в первой строке таблицы в скобках): 409,7 тонн /30 м = 13,66 т/м.п. Это значение берут для расчета.

При нахождении массы дома важно выполнять действия внимательно. Лучше всего уделить этому этапу проектирования достаточное количество времени. Если совершить ошибку в этой части расчетов, потом возможно придется переделывать весь расчет по несущей способности, а это дополнительные затраты времени и сил. По завершении сбора нагрузок рекомендуется перепроверить его, для исключения опечаток и неточностей.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Расчет фундаментов (основания) от ветровой и снеговой нагрузок

Я так понимаю, что при расчете по I-й ГПС (по несущей способности) фундамент и основания (только п. 2.3 СНиП 2.02.01-83) считается на основное сочетание расчетных нагрузок (куда ветер и снег будут входить с полным расчет значением как кратковременные).
При расчете по II-й ГПС (по деформациям):
- необходимо ли учитывать усилия на фундамент (основания) от ветровой нагрузки (в основном это Q и M).
Некоторые люди молвят, что ветер – это кратковременная нагрузка, а расчет по деформациям должны участвовать только постоянные и длительные нагрузки.
- какая часть расчетной снеговой нагрузки учитывается при расчете фундамента (основания) по деформациям.
Согласно п.2.6 СНиП 2.02.01 снег при расчете по деформациям должен быть длительной нагрузкой.
Я так понимаю: согласно СНиП 2.01.07-85 п.1.7к «К длительным нагрузкам относятся снеговые нагрузки с пониженным расчетным значением, определяемым умножением полного расчетного значения на коэффициент 0,5» и 5.7* «Нормативное значение снеговой нагрузки следует определять умножением расчетного значения на коэффициент 0,7» получаем:
что та часть снеговой нагрузки, участвующая при расчете основания по II ГПС (по деформациям), будет равна:Sснег длит=Sрасч*0.5*0.7= Sрасч*0.35. Прошу подтвердить или опровергнуть.

Прочитал СНиП, несколько тем по форуму, переговорил с несколькими людьми точного однозначного ответа не получил.

Сейчас считаю фундаменты для одноэтажного пром. здания и усилия от ветра существенно сказываются на габарите подошвы фундамента (особенно на крайних колонн)

Расчет фундаментов (основания) от ветровой и снеговой нагрузок

Я так понимаю, что при расчете по I-й ГПС (по несущей способности) фундамент и основания (только п. 2.3 СНиП 2.02.01-83) считается на основное сочетание расчетных нагрузок (куда ветер и снег будут входить с полным расчет значением как кратковременные).
При расчете по II-й ГПС (по деформациям):
- необходимо ли учитывать усилия на фундамент (основания) от ветровой нагрузки (в основном это Q и M).
Некоторые люди молвят, что ветер – это кратковременная нагрузка, а расчет по деформациям должны участвовать только постоянные и длительные нагрузки.
- какая часть расчетной снеговой нагрузки учитывается при расчете фундамента (основания) по деформациям.
Согласно п.2.6 СНиП 2.02.01 снег при расчете по деформациям должен быть длительной нагрузкой.
Я так понимаю: согласно СНиП 2.01.07-85 п.1.7к «К длительным нагрузкам относятся снеговые нагрузки с пониженным расчетным значением, определяемым умножением полного расчетного значения на коэффициент 0,5» и 5.7* «Нормативное значение снеговой нагрузки следует определять умножением расчетного значения на коэффициент 0,7» получаем:
что та часть снеговой нагрузки, участвующая при расчете основания по II ГПС (по деформациям), будет равна:Sснег длит=Sрасч*0.5*0.7= Sрасч*0.35. Прошу подтвердить или опровергнуть.

Прочитал СНиП, несколько тем по форуму, переговорил с несколькими людьми точного однозначного ответа не получил.

Сейчас считаю фундаменты для одноэтажного пром. здания и усилия от ветра существенно сказываются на габарите подошвы фундамента (особенно на крайних колонн)

Расчет фундамента при ветровых нагрузках

Как самостоятельно рассчитать нагрузку на фундамент?

Целью расчета является выбор типа фундамента и его размеров. Задачи, решаемые для этого, заключаются в: оценке нагрузок от конструкции будущего сооружения, действующие на единицу площади грунта; сравнении полученных результатов с несущими способностями пласта на глубине заложения.


  • Регион (климатические условия, сейсмоопасность).
  • Сведения о типе почвы, уровне подземных вод на площадке застройки (предпочтительно такую информацию получить по результатам геологических изысканий, но при предварительной оценке можно воспользоваться данными по соседним участкам).
  • Предполагаемая планировка будущего здания, количество этажей, тип кровли.
  • Какие стройматериалы будут использованы для сооружения.

Окончательный расчет фундамента может быть выполнен только после проектирования и желательно, если это сделает специализированная организация. Однако предварительную оценку возможно провести самостоятельно с целью определения подходящего места, количества требуемых материалов и объёма работ. Это позволит повысить долговечность (не допустить деформаций основания и конструкций здания) и уменьшить расходы. Достаточно просто и удобно задача решается с применением онлайн-калькуляторов, получивших распространение в последнее время.


К первым относят общий вес самого строения. Он складывается из массы стен, основы, кровли, перекрытий, утеплителя, окон и дверей, мебели, бытовой техники, канализации, отопления, водопровода, отделки, жильцов. Второй вид носит временный характер. Это выпавший снег, сильный ветер, сейсмические воздействия.

Общая последовательность расчета

  • Определение веса здания, ветровых и снеговых давлений.
  • Оценка несущей способности почвы.
  • Вычисление массы основания.
  • Сравнение суммарной нагрузки от массы сооружения и его фундамента, воздействия снега и ветра с расчетным сопротивлением земли.
  • Корректировка размеров (при необходимости).

Массу строения рассчитывают по его площади (Sd). Для вычислений используется средний удельный вес кровли, стен и перекрытий в зависимости от применяемых материалов из справочных таблиц.

Удельный вес 1 м2 стен:

Бревно ø14-18см 100
Керамзитобетон толщиной 35 см 500
Полнотелый кирпич шириной 250 мм 500
То же 510 мм 1000
Опилкобетон толщиной 350 мм 400
Деревянный каркас 150 мм с утеплителем 50
Пустотелый кирпич шириной 380 мм 600
То же 510 мм 750


Удельный вес 1 м2 перекрытий:

Плиты железобетонные пустотные 350
Цокольное по деревянным балкам с утеплителем плотностью до 500 кг/м3 300
То же 200 кг/м3 150
Чердачное по деревянным балкам с утеплителем плотностью до 500 кг/м3 200
Железобетонное 500


Удельный вес 1 м2 кровли:

Листовая сталь 30
Шифер 50
Черепица 80

Массу здания вычисляют как сумму сомножителей площади сооружения на удельные веса кровли, стен и перекрытий. К полученному весу постройки необходимо добавить полезные нагрузки (мебель, люди), которые ориентировочно рекомендуют принимать для жилых помещений из расчета 100 кг массы на 1 м2.

2. Ветровая нагрузка на фундамент.

Находится по формуле:

W=W ∙k, где W =24-120 кг/м2 — нормативное значение давления ветра (по таблицам в зависимости от региона России).

При определении величины коэффициента k учитывают тип местности:

  • А — ровные участки.
  • Б — имеются препятствия 10 м высотой.
  • С — районы городской застройки высотой >25 м.

Коэффициент изменения давления по высоте (k)

Высота дома, м А Б С
до 5 0,75 0,5 0,4
10 1,0 0,65 0,4
20 1,25 0,85 0,5

Для высотных зданий (башни, мачты) расчет выполняют с учетом пульсаций ветра.

3. Снеговое давление на фундамент.

Определяется как произведение площади кровли на коэффициент её уклона и на вес одного квадратного метра снежного покрова, величина которого зависит от региона.

Нормативная нагрузка от снегового покрова для России, кг/м2:

Юг 50
Север 190
Средняя полоса 100


Коэффициент влияния наклона крыши:

0-20° 1,0
20-30° 0,8
30-40° 0,6
40-50° 0,4
50-60° 0,2

Чтобы определить, какая нагрузка приходится на фундамент, надо просуммировать статические и временные воздействия и умножить полученный результат на коэффициент запаса (1,5). Подобные расчеты легко выполняются с помощью калькуляторов, содержащих базы необходимых данных.

4. Несущая способность грунта.

При разработке проекта обязательной процедурой является проведение геологических изысканий в месте строительства. По итогам этих работ определяют тип почвы, а по ней и несущую способность пласта на глубине заложения основания. Последняя зависит ещё от уровней промерзания (df) и залегания грунтовых вод (dw).

Заглубление в землю подошвы:

При расчете предполагается, что нагрузки между сваями распределяются равномерно. Вычисляют вес всех опор: Мсф = Sc∙L∙n∙ρ, где Sc — площадь поперечного сечения одной сваи, L — высота столба (длина сваи), n — количество, ρ — плотность материала.

Определяют сумму всех нагрузок на почву: Рфсдсфвнсн, где Мд — вес дома, Мсф — масса всех опор, Рвн и Рсн — ветровые и снеговые давления. Вычисляют напряжение на грунт и сравнивают с его несущей способностью: Рфс/( Sс∙ n )

Расчет фундаментов (основания) от ветровой и снеговой нагрузок

Прочитал СНиП, несколько тем по форуму, переговорил с несколькими людьми точного однозначного ответа не получил.

Сейчас считаю фундаменты для одноэтажного пром. здания и усилия от ветра существенно сказываются на габарите подошвы фундамента (особенно на крайних колонн)

Расчет фундаментов (основания) от ветровой и снеговой нагрузок

Прочитал СНиП, несколько тем по форуму, переговорил с несколькими людьми точного однозначного ответа не получил.

Сейчас считаю фундаменты для одноэтажного пром. здания и усилия от ветра существенно сказываются на габарите подошвы фундамента (особенно на крайних колонн)

Расчет фундаментов (основания) от ветровой и снеговой нагрузок

Прочитал СНиП, несколько тем по форуму, переговорил с несколькими людьми точного однозначного ответа не получил.

Сейчас считаю фундаменты для одноэтажного пром. здания и усилия от ветра существенно сказываются на габарите подошвы фундамента (особенно на крайних колонн)

Ветровая нагрузка на фундамент

РУКОВОДСТВО
ПО РАСЧЕТУ ЗДАНИЙ И СООРУЖЕНИЙ НА ДЕЙСТВИЕ ВЕТРА

Руководство содержит рекомендации по определению ветровой нагрузки на здания и сооружения и указания по динамическому расчету высоких сооружений на действие ветра. В приложениях приведено обоснование основных положений и метода динамического расчета и даны примеры расчета зданий и сооружений на действие ветра.

Руководство предназначено для инженерно-технических работников проектных и научно-исследовательских институтов.

Руководство составлено к главе СНиП II-6-74* "Нагрузки и воздействия. Нормы проектирования".

* На территории Российской Федерации действуют СНиП 2.01.07-85, здесь и далее по тексту. - Примечание изготовителя базы данных.

В Руководстве приведены основные положения по определению ветровой нагрузки на здания и сооружения, а также указания по динамическому расчету высоких сооружений башенного типа (башни, дымовые трубы и т.п.), высоких зданий, антенно-мачтовых систем, градирен и др.

Рассмотрены вопросы аэродинамического возбуждения высоких сооружений и гибких призматических конструкций.

В прил.1 приведены аэродинамические коэффициенты для зданий, сооружений и конструкций.

Прил.2 содержит обоснование основных положений по определению статической составляющей ветровой нагрузки и метода динамического расчета высоких зданий и сооружений на действие турбулентного ветра.

В прил.3 даны примеры расчета высоких зданий и сооружений на действие ветра.

В Руководстве единицы физических величин приняты в системе СИ. Таблица соотношений между единицами этой системы и технической системы МКГСС дана в прил.4.

Руководство разработано в отделении динамики сооружений Центрального научно-исследовательского института строительных конструкций им. В.А.Кучеренко канд. техн. наук М.Ф.Барштейном.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее Руководство составлено к главе СНиП II-6-74 "Нагрузки и воздействия. Нормы проектирования" и распространяется на проектирование промышленных, гражданских и сельскохозяйственных зданий и сооружений.

1.2. Здания и сооружения, проектируемые с учетом настоящего Руководства, должны удовлетворять требованиям главы СНиП II-6-74 "Нагрузки и воздействия", а также требованиям, предъявляемым действующими нормативными документами к аналогичным зданиям и сооружениям.

1.3. Ветровая нагрузка на здания и сооружения должна определяться как сумма статической и динамической составляющих.

Статическая составляющая, соответствующая установившемуся скоростному напору, должна учитываться во всех случаях. Динамическая составляющая, вызываемая пульсациями скоростного напора, должна учитываться при расчете: сооружений с периодом собственных колебаний более 0,25 с (мачт, башен, дымовых труб, опор линий электропередачи, аппаратов колонного типа, транспортерных галерей, открытых этажерок и т.п.); многоэтажных зданий высотой более 40 м; поперечных рам одноэтажных однопролетных производственных зданий высотой более 36 м при отношении высоты к пролету более 1,5.

1.4. Для высоких сооружений круговой цилиндрической формы (дымовых труб, мачт и т.п.) необходимо также производить поверочный расчет на резонанс, возникающий при таких скоростях ветра, когда частота срыва вихрей совпадает с собственной частотой колебаний сооружений поперек потока.

Примечание. В гибких призматических конструкциях при определенных скоростях ветра могут возникнуть колебания поперек потока, связанные с явлением аэродинамической неустойчивости таких тел. Указания по расчету и мероприятия по уменьшению колебаний таких конструкций устанавливаются на основании данных аэродинамических испытаний.


2. НОРМАТИВНОЕ ЗНАЧЕНИЕ СТАТИЧЕСКОЙ СОСТАВЛЯЮЩЕЙ ВЕТРОВОЙ НАГРУЗКИ. КОЭФФИЦИЕНТЫ ПЕРЕГРУЗКИ


2.1. Нормативное значение статической составляющей ветровой нагрузки должно определяться по формуле


, Па, (1)


;


- нормативный скоростной напор ветра на высоте 10 м над поверхностью земли, принимаемый по п.3.1; - плотность воздуха, кг/м; - скорость ветра на высоте 10 м над поверхностью земли, м/с; - коэффициент, учитывающий изменение скоростного напора по высоте, принимаемый в соответствии с указаниями, изложенными в пп.4.1-4.4; - аэродинамический коэффициент, принимаемый по табл.1, прил.1.

2.2. Коэффициент перегрузки для ветровой нагрузки на здания должен приниматься равным 1,2; на высокие сооружения, где ветровая нагрузка имеет решающее значение, 1,3, если в нормах проектирования этих сооружений не приводится другое значение этого коэффициента. Коэффициент перегрузки для дымовых труб высотой от 150 до 300 м рекомендуется принимать равным 1,4, выше 300 м - 1,5.

3. НОРМАТИВНЫЕ СКОРОСТНЫЕ НАПОРЫ

3.1. Нормативный скоростной напор ветра () для данного географического района устанавливается на основе статистического анализа климатологических данных по скоростям ветра в этом районе (районы СССР принимаются по карте, приведенной в главе СНиП II-6-74 "Нагрузки и воздействия. Нормы проектирования").

Скоростные напоры в зависимости от района СССР должны приниматься по табл.1.

Читайте также: