Установка реактора на фундамент

Обновлено: 16.05.2024

Назначение и область применения реакторов РТ

Назначение и область применения токоограничивающих реакторов

Реакторы с естественным или принудительным воздушным охлаждением предназначены для ограничения токов короткого замыкания в электрических сетях и сохранения определенного уровня напряжения в электроустановках в случае короткого замыкания в энергосистемах с частотой 50 и 60 Гц в условиях умеренно-холодного климата и в условиях сухого и влажного тропического климата для внутренней и наружной установки.

Реакторы применяются в схемах электрических станций и подстанций с электрическими параметрами в соответствии с паспортными данными.

Применение реакторов дает возможность ограничить номинальный ток отключения линейных выключателей и обеспечить термическую стойкость отходящих кабелей. Благодаря реактору все неповрежденные линии находятся под напряжением, близким к номинальному (реактор поддерживает напряжение на сборных шинах), что повышает надежность работы электроустановок и облегчает условия работы электрооборудования.

Реакторы предназначены для работы на открытом воздухе (климатическое исполнение УХЛ, Т категория размещения 1 по ГОСТ 15150-69) и в закрытых помещениях с естественной вентиляцией (климатическое исполнение УХЛ, Т категория размещения 2, 3 по ГОСТ 15150-69).

  • высота установки над уровнем моря, м 1000;
  • тип атмосферы в месте установки тип I или тип II по ГОСТ15150-69 и ГОСТ 15543-70;
  • рабочее значение температуры окружающего воздуха, °С от минус 50 до плюс 45;
  • относительная влажность воздуха при температуре плюс 27 °С, % 80;
  • сейсмостойкость по шкале МSК–64 ГОСТ 17516-90, балл 8 – для вертикальной и ступенчатой (угловой) установки; 9 – для горизонтальной установки.

СХЕМЫ ВКЛЮЧЕНИЯ И РАСПОЛОЖЕНИЕ ФАЗ РЕАКТОРА

По схеме присоединения к сети реакторы разделяются на одинарные и сдвоенные. Одинарные реакторы на номинальные токи выше 1600 А могут иметь секционную обмотку катушки из двух параллельно соединенных секций. Принципиальные схемы включения фазы показаны на рисунке 1.


Рисунок 1 - Принципиальные схемы включения фазы

В зависимости от места установки и особенностей распределительных устройств трехфазный комплект реактора может иметь вертикальное, ступенчатое (угловое) и горизонтальное расположение фаз, показанное на рисунках 2, 3, 4.


Рисунок 2 – Вертикальное (угловое) расположение


Рисунок 3 – Ступенчатое расположение


Рисунок 4 – Горизонтальное расположение

Крупногабаритные реакторы, реакторы наружной установки (категория размещения 1) и реакторы на класс напряжения 20 кВ изготавливаются только с горизонтальным расположением фаз. Фазы реактора, изготовленные для вертикальной установки, могут использоваться как для ступенчатой (угловой) так и для горизонтальной установки. Фазы реактора, изготовленные для ступенчатой (угловой) установки, могут использоваться и для горизонтальной установки. Фазы реактора, изготовленные для горизонтальной установки, не могут быть использованы ни для вертикальной, ни для ступенчатой (угловой) установки.

Реакторы выполнены в пофазном исполнении.

Каждая фаза реактора (см. рисунок 5, 6) представляет собой катушку индуктивности с линейным индуктивным сопротивлением без стального магнитопровода. Обмотка катушки выполнена по кабельной схеме намотки в виде концентрических витков, поддерживаемых радиально-расположенными опорными колонками (бетонными или сборной конструкции). Колонки устанавливаются на опорные изоляторы, которые обеспечивают необходимый изоляционный уровень для соответствующего класса напряжения. Обмотка катушки выполняется в один или несколько параллельных проводов в зависимости от величины номинального тока. Обмотка катушки фазы выполнена из специального изолированного реакторного провода с алюминиевыми токопроводящими жилами. Катушки фаз исполнения «С» при вертикальной и исполнения «СГ» при ступенчатой (угловой) установке имеют направление намотки обмотки обратное катушкам фаз исполнений «В», «Н», что обеспечивает выгодное распределение усилий, возникающих в обмотках во время короткого замыкания. Выводы обмотки выполнены в виде алюминиевых пластин, причем каждый выводной провод обмотки имеет собственную контактную пластину. Такая конструкция позволяет сделать монтаж и ошиновку реактора легко и просто.

У одинарных реакторов с секционной обмоткой катушка состоит из двух параллельно соединяемых секций обмоток, намотанных в противоположных направлениях.

У сдвоенных реакторов обмотка катушки состоит из двух ветвей обмоток с высокой взаимоиндуктивностью и одинаковым направлением намотки обмоток ветвей.

Угол ( Ψ ) между выводами обмотки фазы показан на рисунках 7, 8, 9 и обычно составляет 0º; 90º; 180º; 270º . Отсчет углов ведется против хода часовой стрелки и определяется:

  • для одинарных реакторов:
    • от нижнего вывода к верхнему выводу – для простой обмотки;
    • от нижнего и верхнего выводов к среднему – для секционной обмотки;


    Рисунок 7 – Углы между выводами обмотки фазы одинарного реактора


    Рисунок 8 – Углы между выводами обмотки фазы одинарного реактора с секционной обмоткой


    Рисунок 9 – Углы между выводами обмотки фазы сдвоенного реактора

    Маркировка вывода наносится на верхней стороне каждой контактной пластины.

    Принцип действия реакторов основан на повышении реактивного сопротивления обмотки в момент короткого замыкания, что обеспечивает уменьшение (ограничение) токов КЗ и позволяет поддерживать в момент КЗ уровень напряжения неповрежденных присоединений.

    Одинарные реакторы позволяют осуществлять одно- или двухступенчатую схему реактирования. В зависимости от места установки в той или иной схеме соединений одинарные реакторы применяются в качестве линейных (индивидуальных), групповых и межсекционных.

    Принципиальные схемы применения одинарных реакторов показаны на рисунке 10.


    Рисунок 10 – Принципиальные схемы применения одинарных реакторов

    Линейные реакторы L1 ограничивают мощность короткого замыкания на отходящей линии, в сети и на подстанциях, питающихся на данной линии. Линейные реакторы рекомендуется устанавливать после выключателя. При этом разрывная мощность линейного выключателя выбирается с учетом ограничения мощности короткого замыкания реактором, так как авария на участке «выключатель – реактор» маловероятна.

    Групповые реакторы L2 применяются в тех случаях, когда маломощные присоединения можно объединить таким образом, чтобы реактор, ограничивающий всю группу присоединений, не приводил к недопустимому снижению напряжения в нормальном режиме. Групповые реакторы позволяют сэкономить объем распределительных устройств (РУ) по сравнению с вариантом применения линейных реакторов.

    Межсекционные реакторы L3 применяются в РУ мощных станций и подстанций. Разделяя отдельные участки, они ограничивают мощность короткого замыкания в пределах самой станции и РУ. Использование межсекционных реакторов связано со значительной степенью ограничения мощности короткого замыкания и поэтому, во избежание больших падений напряжений при номинальном режиме, следует стремиться к максимальному значению коэффициента мощности «cos», проходящей по реактору нагрузки. Межсекционные реакторы не заменяют линейные и групповые реакторы, поскольку при отсутствии последних токи КЗ от части генераторов не ограничиваются.

    Сдвоенные реакторы позволяют осуществлять полное одноступенчатое ограничение токов КЗ путем непосредственного реактирования основных генерирующих цепей (генератора, трансформатора) и обеспечивают: упрощение схемы соединений и конструкции РУ; улучшение коэффициента мощности; улучшение режима напряжений при примерно равно нагруженных ветвях. Генерирующая мощность подключается к средним контактным выводам. Допускается любое соотношение нагрузки ветвей в пределах длительно допустимого действующего тока нагрузки. Реактивное сопротивление ветви реактора зависит от режима работы. В рабочем режиме (встречное включение) ограничивающие свойства, потери мощности и реактивная мощность являются минимальными.

    В режиме короткого замыкания реактивность ветви реактора, через которую питается поврежденное присоединение, проявляется полностью, так как влияние относительно малого рабочего тока ветви неповрежденного присоединения незначительно. При наличии генерирующих мощностей со стороны ветви реактора, через которое питается поврежденное присоединение, ток в обеих ветвях сдвоенного реактора проходит последовательно (согласное включение), и за счет дополнительной реактивности, обусловленной взаимной индуктивностью ветвей, токоограничивающие свойства реактора проявляются в полной мере.

    Сдвоенные реакторы применяются в качестве групповых и секционных (см. рисунок 11)


    Рисунок 11 – Принципиальные схемы применения сдвоенных реакторов

    Реакторы должны использоваться по своему назначению и эксплуатироваться в условиях, соответствующих их климатическому исполнению и категории размещения.

    В случае применения токоограничивающих реакторов для других целей, не по их прямому назначению, следует учитывать возможность влияния режима эксплуатации (перегрузки, перенапряжения, систематичность воздействия ударных токов) на показатели и надежность реакторов.

    Режимы нагрузки и охлаждения реакторов должны соответствовать их паспортным данным.

    Толчки нагрузки, воздействующие разнонаправлено на ветви сдвоенного реактора, от самозапуска электрических машин, находящихся за реактором, не должны превышать пятикратного значения номинального тока и быть продолжительностью более 15 секунд. Подвергать реактор воздействию таких толчков нагрузки, более чем 15 раз в год, не рекомендуется.

    При применении сдвоенных реакторов в схемах, где разнонаправленные в ветвях реактора токи самозапуска электрических машин могут превышать 2,5-кратный номинальный ток реактора, включение ветвей должно производиться поочередно с выдержкой по времени не менее 0,3 секунды.

    Реакторы внутренней установки следует устанавливать в сухих и вентилируемых помещениях, где разность температур отходящего и приточного воздуха не превышает 20 ºС.

    Для реакторов, требующих при номинальных нагрузках устройства принудительного воздушного охлаждения, должен быть обеспечен обдув обмотки фаз воздухом из расчета расхода воздуха 3 – 5 м3/мин на каждый кВт потерь*. Охлаждающий воздух наиболее рационально подавать снизу через отверстие в центре фундамента**.

    Реакторы наружной установки следует устанавливать на специально отведенных и оборудованных ограждениями, соответственно действующих правил, площадках.

    Для защиты обмотки фаз от прямого попадания атмосферных осадков и солнечных лучей может быть установлен общий навес или защитная крыша, устанавливаемая отдельно на каждой фазе.

    Реакторы должны устанавливаться на фундаменты, высота которых указана в паспорте реактора.

    В местах установки не допускается наличие короткозамкнутых контуров, деталей из ферромагнитных материалов в стенах помещений, отведенных для установки реакторов, в конструкциях фундаментов и ограждений. Наличие магнитных материалов увеличивает потери, возможен чрезмерный нагрев смежных металлических частей, а при коротком замыкании – опасные усилия на конструктивные элементы из ферромагнитных материалов. Наиболее опасными с точки зрения недопустимых перегревов являются торцовые металлоконструкции – пол, потолок.

    При наличии магнитных материалов необходимо выдерживать, указанные в паспорте реактора, монтажные расстояния X, Y, Y1, h, h1 от реактора до строительных конструкций и ограждений.

    При отсутствии магнитных материалов и замкнутых токопроводящих контуров в строительных конструкциях и ограждениях монтажные расстояния можно снизить до величин изоляционных расстояний согласно правил устройства электроустановок (ПУЭ).

    При горизонтальной и ступенчатой (угловой) установке фаз реакторов необходимо строго выдерживать, указанные в паспорте, минимальные расстояния S и S1 между осями фаз, определяемые допустимыми горизонтально действующими усилиями при гарантированной электродинамической стойкости.

    Эти расстояния могут быть снижены, если в схеме установки реактора наибольшее возможное значение ударного тока меньше, чем значение тока электродинамической стойкости, указанное в паспорте реактора.

    * Количество охлаждающего воздуха – по паспорту реактора.
    ** Конструктивное решение подачи охлаждающего воздуха определяется и выполняется потребителем самостоятельно.

    Для всех фаз реакторов вертикальной установки и фаз «В» и «СГ» реакторов ступенчатой (угловой) установки контактные пластины одноименных выводов (нижних, средних, верхних) при монтаже должны находиться на одной вертикали один над другим.

    Для выбора наиболее благоприятного расположения выводов с точки зрения подключения к ошиновке, допускается поворачивать каждую фазу относительно другой вокруг вертикальной оси на угол равный 360º/N, где N – количество колонок фазы.

    Для одинарных реакторов – за подводящие выводы принимать или все нижние «Л2» или все верхние «Л1» выводы (см. рисунок 7).

    Для одинарных реакторов с секционной обмоткой – за подводящие выводы принимать или нижние и верхние «Л2» или средние «Л1» выводы (см. рисунок 8).

    Для сдвоенных реакторов – генерирующая мощность должна подключаться к средним выводам «Л1–М1» тогда нижние выводы «М1» составят одно, а верхние выводы «Л2» составят другое трехфазное присоединения (см. рисунок 9).

    Для предохранения выводов реактора от электродинамических усилий короткого замыкания подвод шин к реактору необходимо осуществлять в радиальном направлении с закреплением их на расстоянии не более 400–500 мм.

    Перед началом монтажа необходимо проверить сопротивление изоляции обмоток фаз относительно всех крепежных элементов. Сопротивление изоляции измеряют мегомметром, имеющим напряжение 2500 В (допускается применение мегомметров на 1000 В). Величина сопротивления изоляции должна быть не менее 0,5 МОм при температуре плюс (10–30) °С.

    Техническое обслуживание реакторов состоит из внешнего осмотра (через каждые три месяца эксплуатации), очистки изоляторов и обмоток от пыли сжатым воздухом и проверки заземления.

    Упаковка фаз реактора обеспечивает их сохранность при транспортировании и хранении.

    Каждая фаза упакована в отдельном ящике совместно с комплектующими и крепежными изделиями, необходимыми для монтажа и подключения.

    Фаза установлена на днище на деревянных подкладках и крепится к днищу с помощью деревянных брусков, расположенных между опорными колонками. Бруски прибиваются к днищу гвоздями и предохраняют фазу от перемещения в ящике в горизонтальной плоскости.

    Фазы, отправляемые в отдаленные районы, транспортируемые водными путями, дополнительно крепятся растяжками, которые предохраняют фазу от перемещения в ящике в вертикальной плоскости.

    Крепежные изделия упакованы в пластиковые пакеты и размещены внутри обмотки фазы.

    Документация (паспорт, РЭ) упакована в полиэтиленовый пакет и уложена между витками обмотки фазы.

    В общем случае в состав трехфазного комплекта реактора входит:

    • фаза;
    • вставка*;
    • опора*;
    • фланец;
    • переходник *;
    • изолятор;
    • крепежные изделия;
    • комплект защиты для эксплуатации на открытом воздухе **.

    * Для реакторов серии РТ.
    ** Для реакторов наружной установки (серии РБ, РТ) по желанию потребителя.

    СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ

    Реакторы серии РБ


    Примеры:

    1. Условное обозначение реактора токоограничивающего бетонного с вертикальным расположением фаз, с естественным воздушным охлаждением, класса напряжения 10 кВ, с номинальным током 1000 А, с номинальным индуктивным сопротивлением 0,45 Ом, климатического исполнения УХЛ, категории размещения 1
      РБ 10 – 1000 – 0,45 УХЛ 1 ГОСТ 14794-79.
    2. То же, с горизонтальным расположением фаз, с принудительно-воздушным охлаждением, класса напряжения 10 кВ, с номинальным током 2500 А, с номинальным индуктивным сопротивлением 0,35 Ом, климатического исполнения УХЛ, категории размещения 3
      РБДГ 10 – 2500 – 0,35 УХЛ 3 ГОСТ 14794-79.

    Реакторы серии РТ


    Примеры:

    1. Условное обозначение трехфазного комплекта реактора токоограничивающего сборного одинарного с вертикальным расположением фаз, класса напряжения 10 кВ, с номинальным током 2500 А, с номинальным индуктивным сопротивлением 0,14 Ом, с обмоткой из реакторного провода с алюминиевыми жилами, с принудительным воздушным охлаждением, климатического исполнения УХЛ, категории размещения 3
      РТВ 10-2500-0,14 АД УХЛ 3 ТУ 3411-020-14423945-2009.
    2. То же, с горизонтальным расположением фаз, класса напряжения 20 кВ, с номинальным током 2500 А, с номинальным индуктивным сопротивлением 0,25 Ом, с обмоткой из реакторного провода с алюминиевыми (или медными) жилами, с естественным воздушным охлаждением, кли- матического исполнения ТС, категории размещения 1
      РТГ 20-2500-0,25 ТС 1 ТУ 3411-020-14423945-2009.

    ТЕХНИЧЕСКИЕ ДАННЫЕ

    Основные данные и технические параметры приведены в таблице 1

    Таблица 1 – Технические параметры

    Наименование параметра Значение параметра Примечание
    Класс напряжения, кВ 6, 10, 15, 20
    Наибольшее рабочее напряжение, кВ 7,2; 12; 17,5; 24 В соответствии с клас-сом напряжения
    Частота, Гц 50
    Тип исполнения Одинарные; сдвоенные Способ присоединенияк сети
    Номинальные токи, А 400; 630; 1000; 1600; 2500; 4000
    Номинальное индуктивное сопротивление, Ом 1) 0,14; 0,18; 0,20; 0,22; 0,25; 0,28; 0,35; 0,40; 0,45; 0,56
    Сочетание номинальных токов и индуктивных сопротивлений:– одинарные на 6 и 10 кВ– одинарные на 15 и 20 кВ– сдвоенные на 6 и 10 кВ 400-0,35; 400-0,45; 630-0,25;630-0,40; 630-0,56; 1000-0,14; 1000-0,22; 1000-0,28; 1000-0,35; 1000-0,45; 1000-0,56; 1600-0,14; 1600-0,20; 1600-0,25; 1600-0,35; 2500-0,14; 2500-0,20; 2500-0,25; 2500-0,35; 4000-0,10; 4000-0,181000-0,45; 1000-0,56; 1600-0,25; 1600-0,35; 2500-0,14; 2500-0,20; 2500-0,25; 2500-0,352×630-0,25; 2×630-0,40;2×630-0,56; 2×1000-0,14;2×1000-0,22; 2×1000-0,28;2×1000-0,35; 2×1000-0,45;2×1000-0,56; 2×1600-0,14;2×1600-0,20; 2×1600-0,25;2×1600-0,35; 2×2500-0,14;2×2500-0,20 Тип реакторасерия РБсерия РТсерия РТсерия РБ
    Расположение фаз Вертикальное;ступенчатое (угловое);горизонтальное
    Допуск на номинальное значение,%:– индуктивное сопротивление– потери мощности– коэффициент связи от 0 до +15+15+10
    Класс нагревостойкости изоляции А; Е; Н* * для медного провода

    Дополнительную информацию Вы можете найти в нашем коммерческом предложении.

    Монтаж реакторов 6—10 кВ

    Реакторы применяют в электроустановках для ограничения токов короткого замыкания и сохранения уровня напряжения в сети. Они представляют собой многовитковые катушки с большим индуктивным и малым активным сопротивлением.
    По конструктивному исполнению реакторы разделяют на сухие с воздушным охлаждением и масляные. Наибольшее распространение в электроустановках напряжением 6—10 кВ получили бетонные реакторы с воздушным охлаждением, простые по конструкции и надежные в эксплуатации.
    Реакторы характеризуются номинальным током (в амперах), напряжением (в киловольтах), реактивностью (в процентах). Реактивность, будучи одним из основных параметров, представляет собой падение напряжения в одной фазе реактора в процентах от номинального напряжения (у бетонных реакторов различных исполнений обычно от 4 до 12 %).
    Реакторы используют в схемах подстанций в качестве линейных, групповых и межсекционных (шинных). Линейные реакторы ограничивают мощность коротких замыканий на отходящей линии, в сети и на подстанциях, питающихся от этой линии. Устанавливают их за масляным выключателем. При маломощных присоединениях реакторы применяют в качестве групповых. Межсекционные реакторы устанавливают в распределительных устройствах мощных электростанций и подстанций для ограничения мощности коротких замыканий отдельных участков установки. Их изготовляют одинарными и сдвоенными. Сдвоенные реакторы используют как групповые. Они более экономичны, обеспечивают высокую степень ограничения токов короткого замыкания, уменьшают колебания напряжения, а также позволяют применять более дешевую коммутационную аппаратуру.
    Особенности конструкции реактора и его технические данные находят отражение в его условном обозначении — РБ, РБА, РБАМ, РБАС, РБАСМ, где Р — реактор, Б — бетонный, А — алюминиевая обмотка, М — малые потери, С — сдвоенный. Если после букв стоят цифры, они указывают номинальный ток, напряжение и реактивность. Например, РБА-6-500-10 означает: реактор бетонный с обмоткой алюминиевого провода на номинальное напряжение 6 кВ и номинальный рабочий ток 500 А, реактивность 10 %.

    Рис. 1. Общий вид бетонного реактора РБА (а) и его трех фаз (б):

    1 — бетонная колонка, 2 — катушка, 3 - изолятор

    Бетонный реактор (рис. 1, а) состоит из обмотки в виде катушки 2 с концентрически расположенными витками специального многожильного изолированного провода, залитого в радиально расположенные бетонные колонки 1, опирающиеся на фарфоровые изоляторы 3.
    Бетонные колонки, которые являются основной изоляцией реактора, изготовляют и портландцемента марок 400 и 500. Бетон подвергают специальному технологическому режиму обработки для достижения высокой влагостойкости, высушивают и пропитывают асфальтовым лаком, а после запекания накладывают на него покровный влагостойкий лак. Каждую колонку ставят на опорном изоляторе. На фланцах нижних опорных изоляторов, устанавливаемых на полу подстанции, имеются болты для заземления. Число колонок в фазе реактора от 8 до 16 шт. Выводы реакторов представляют собой алюминиевые пластины, приваренные к проводу обмотки с набором контактных болтов.
    Комплект реакторов состоит из трех одинаковых катушек, которые ставятся на изоляторы и включаются последовательно в каждую фазу цепи.
    К помещениям, в которых устанавливают реакторы, предъявляются определенные требования: в них не должно быть предметов из магнитного материала, которые могут оказаться в магнитном поле реактора; стальные конструкции и проводники не должны создавать металлических магнитных контуров, охватывающих магнитное поле реакторов, которое замыкается через воздух в окружающем пространстве. Поэтому расстояния фаз реакторов от стен и потолка строго нормируются и указываются в проекте. Уменьшение расстояния от бетонных стен из-за наличия в них стальной арматуры может существенно влиять на увеличение потери электроэнергии в реакторах.

    Установка реакторов.

    Фазы реактора транспортируют к месту установки в заводской упаковке. Перед установкой реактор освобождают от упаковки, очищают от пыли и стружек и тщательно осматривают для выявления дефектов, препятствующих его нормальной работе: трещин и сколов у опорных изоляторов, нарушений их армировки, отбитых краев и нарушений лакового покрова, деформации витков и нарушения изоляции у бетонных колонок.
    Поврежденные изоляторы заменяют, погнутые витки обмотки выправляют, восстанавливают изоляцию витков лакотканью и покрывают бакелитовым лаком. Незначительные трещины в бетоне заделывают изоляционным асфальтовым лаком, а большие трещины и сколы — чистым цементным раствором.
    Реакторы устанавливают с соблюдением технологических правил монтажа и нормативных расстояний. Между реактором и стальными конструкциями в камере должно быть выдержано расстояние, равное не менее половины его диаметра. Опорные изоляторы армируют немагнитными материалами; для контактных соединений применяют болты из маломагнитной стали или латуни. При креплении конструкции и самого реактора по вертикали под изолятором ставят прокладки из твердого картона (металлические не рекомендуются). Три фазы реактора устанавливают вертикально, горизонтально и ступенчато (рис. 1, б).
    Для подъема реакторов в междуэтажном перекрытии камер предусматривают специальные крюки. При горизонтальной установке каждую фазу реактора с помощью талей поднимают на фундамент, опускают на фундаментные штыри, выверяют по уровню и отвесу и затягивают крепежные болты.
    При вертикальной установке фаз учитывают, что при коротких замыканиях между соседними фазами реактора возникают большие электродинамические усилия. Наиболее опасными являются усилия отталкивания между обмотками, так как они вызывают растягивающие усилия в опорных изоляторах (фарфоровые изоляторы лучше работают на сжатие, чем на растяжение). Во избежание этого при вертикальной и ступенчатой установках фаз реактора руководствуются заводскими обозначениями.
    Фазы реактора обозначают следующим образом: В — верхняя, С — средняя, Н — нижняя, Г — горизонтальная и СГ — средняя горизонтальная. Направление обмоток фаз С и СГ предусматривается обратным направлению обмоток остальных двух фаз трехфазного комплекта реактора, что обеспечивает выгодное распределение усилий, возникающих при коротких замыканиях в обмотке реактора, в бетонных колонках и изоляторах. При горизонтальной установке трехфазного комплекта реактора фазу СГ располагают между двумя крайними фазами на полу; при ступенчатой установке фазы С и СГ — на полу, а фазу В монтируют над последней. Монтаж бетонных реакторов при вертикальном расположении фаз выполняют в следующем порядке:
    устанавливают на фундамент фазу В и поднимают ее на высоту, достаточную для установки под ней фазы С;
    устанавливают фазу С и на эластичных прокладках ее бетонных колонок укрепляют опорные изоляторы;
    опускают на фазу С подвешенную фазу В и соединяют их болтами;
    поднимают соединенные фазы В и С для установки на фундамент фазы Н, на которой аналогично закрепляют изоляторы с эластичными прокладками;
    опускают две верхние фазы на фазу Н и соединяют их болтами;
    всю группу выверяют по уровню и отвесу и окончательно затягивают все крепежные болты.
    Подъем и установку фаз реактора осуществляют с помощью швеллерной траверсы с тросовым захватом, соблюдая особую осторожность, чтобы не повредить обмотки или бетонные колонки. После установки реактор заземляют через фланцы опорных изоляторов, смонтированных на фундаменте, и подвергают испытаниям в процессе пусконаладочных работ.
    Выводы реактора необходимо предохранять от усилий, которые могут возникнуть в линии при коротких замыканиях. Для этого шины к реактору подводят перпендикулярно обмоткам и закрепляют на расстоянии не более 350 мм от него.

    ПУЭ 7. Правила устройства электроустановок. Издание 7

    Раздел 4. Распределительные устройства и подстанции

    Глава 4.2. Распределительные устройства и подстанции напряжением выше 1 кВ

    Установка силовых трансформаторов и реакторов

    4.2.203. Требования, приведенные в 4.2.204-4.2.236, распространяются на стационарную установку в помещениях и на открытом воздухе силовых трансформаторов (автотрансформаторов), регулировочных трансформаторов и маслонаполненных реакторов с высшим напряжением 3 кВ и выше и не распространяются на электроустановки специального назначения. ¶

    Трансформаторы, автотрансформаторы и реакторы, указанные в настоящем параграфе, поименованы в 4.2.204-4.2.236 термином «трансформаторы». ¶

    Установка вспомогательного оборудования трансформаторов (электродвигателей системы охлаждения, контрольно-измерительной аппаратуры, устройств управления) должна отвечать требованиям соответствующих глав настоящих Правил. ¶

    Требования 4.2.212, 4.2.217, 4.2.218 не относятся к установке трансформаторов, входящих в КТП с высшим напряжением до 35 кВ. ¶

    4.2.204. В регионах с холодным климатом, с повышенной сейсмичностью должны применяться трансформаторы соответствующего исполнения. ¶

    4.2.205. Установка трансформаторов должна обеспечивать удобные и безопасные условия его осмотра без снятия напряжения. ¶

    4.2.206. Фундаменты трансформаторов напряжением 35-500 кВ должны предусматривать их установку непосредственно на фундамент без кареток (катков) и рельс. ¶

    Трансформаторы на подстанциях, имеющих стационарные устройства для ремонта трансформаторов (башни) и рельсовые пути перекатки, а также на подстанциях с размещением трансформаторов в закрытых помещениях следует устанавливать на каретках (катках). ¶

    Сейсмостойкие трансформаторы устанавливаются непосредственно на фундамент с креплением их к закладным элементам фундамента для предотвращения их смещений в горизонтальном и вертикальном направлениях. ¶

    На фундаментах трансформаторов должны быть предусмотрены места для установки домкратов. ¶

    4.2.207. Уклон масляного трансформатора, необходимый для обеспечения поступления газа к газовому реле, должен создаваться путем установки подкладок. ¶

    4.2.208. При установке расширителя на отдельной конструкции она должна располагаться таким образом, чтобы не препятствовать выкатке трансформатора с фундамента. ¶

    В этом случае газовое реле должно располагаться вблизи трансформатора в пределах удобного и безопасного обслуживания со стационарной лестницы. Для установки расширителя можно использовать портал ячейки трансформатора. ¶

    4.2.209. Трансформаторы необходимо устанавливать так, чтобы отверстие защитного устройства выброса масла не было направлено на близко установленное оборудование. Для защиты оборудования допускается установка заградительного щита между трансформатором и оборудованием. ¶

    4.2.210. Вдоль путей перекатки, а также у фундаментов трансформаторов массой более 20 т должны быть предусмотрены анкеры, позволяющие закреплять за них лебедки, направляющие блоки, полиспасты, используемые при перекатке трансформаторов в обоих направлениях. В местах изменения направления движения должны быть предусмотрены места для установки домкратов. ¶

    4.2.211. Расстояния в свету между открыто установленными трансформаторами определяются технологическими требованиями и должны быть не менее 1,25 м. ¶

    4.2.212. Разделительные перегородки между открыто установленными трансформаторами напряжением 110 кВ и выше единичной мощностью 63 МВ·А и более, должны предусматриваться: ¶

    • при расстояниях менее 15 м между трансформаторами (реакторами), а также между ними и трансформаторами любой мощности, включая регулировочные и собственных нужд;
    • при расстояниях менее 25 м между трансформаторами, установленными вдоль наружных стен зданий электростанции на расстоянии от стен менее 40 м.

    Разделительные перегородки должны иметь предел огнестойкости не менее 1,5 ч, ширину — не менее ширины маслоприемника и высоту — не менее высоты вводов высшего напряжения более высокого трансформатора. Перегородки должны устанавливаться за пределами маслоприемника. Расстояние в свету между трансформатором и перегородкой должно быть не менее 1,5 м. ¶

    Указанные расстояния принимаются до наиболее выступающих частей трансформаторов. ¶

    Если трансформаторы собственных нужд или регулировочные установлены с силовым трансформатором, оборудованным автоматическим стационарным устройством пожаротушения, и присоединены в зоне действия защиты от внутренних повреждений силового трансформатора, то допускается вместо разделительной перегородки выполнять автоматическую стационарную установку пожаротушения трансформатора собственных нужд или регулировочного, объединенную с установкой пожаротушения силового трансформатора; при этом допускается сооружение общего маслоприемника. ¶

    4.2.213. Регулировочные трансформаторы должны устанавливаться в непосредственной близости от регулируемых автотрансформаторов, за исключением случая, когда между автотрансформатором и регулировочным трансформатором предусматривается установка токоограничивающего реактора. ¶

    4.2.214. Автоматическими установками пожаротушения оснащаются: ¶

    • трансформаторы напряжением 500-750 кВ, независимо от мощности, а напряжением 220-330 кВ мощностью 250 МВ•А и более;
    • трансформаторы напряжением 110 кВ и выше мощностью 63 МВ•А и более, устанавливаемые в камерах подстанций и у зданий ГЭС;
    • трансформаторы напряжением 110 кВ и выше любой мощности, устанавливаемые в подземном здании ГЭС и ГАЭС.

    4.2.215. Пуск установки пожаротушения должен осуществляться автоматически, вручную и дистанционно со щита управления. Устройство ручного пуска должно располагаться вблизи установки в безопасном при пожаре месте. ¶

    Включение установки пожаротушения группы однофазных трансформаторов должно производиться только на поврежденные фазы. ¶

    4.2.216. Каждый масляный трансформатор, размещаемый внутри помещений следует устанавливать в отдельной камере (исключение 4.2.98), расположенной на первом этаже. Допускается установка масляных трансформаторов на втором этаже, а также ниже уровня пола первого этажа на 1 м в незатопляемых зонах при условии обеспечения возможности транспортирования трансформаторов наружу и удаления масла в аварийных случаях в соответствии с требованиями, приведенными в 4.2.103, как для трансформаторов с объемом масла более 600 кг. ¶

    При необходимости установки трансформаторов внутри помещений выше второго этажа или ниже пола первого этажа более чем на 1 м, они должны быть с негорючим экологически чистым диэлектриком или сухими в зависимости от условий окружающей среды и технологии производства. При размещении трансформаторов внутри помещений следует руководствоваться также 4.2.85. ¶

    Допускается установка в одной общей камере двух масляных трансформаторов с объемом масла до 3 т каждый, имеющих общее назначение, управление, защиту и рассматриваемых как один агрегат. ¶

    Сухие трансформаторы и имеющие негорючее заполнение устанавливаются в соответствии с 4.2.118. ¶

    4.2.217. Для трансформаторов, устанавливаемых внутри помещений, расстояния в свету от наиболее выступающих частей трансформаторов, расположенных на высоте 1,9 м и менее от пола, должны быть: ¶

    до задней и боковых стен не менее 0,3 м — для трансформаторов мощностью до 0,63 MB•А и 0,6 м — для трансформаторов большей мощности; ¶

    со стороны входа до полотна двери или выступающих частей стены не менее: 0,6 м — для трансформаторов мощностью до 0,63 МВ•А; 0,8 м — для трансформаторов до 1,6 МВ•А и 1 м — для трансформаторов мощностью более 1,6 МВ•А. ¶

    4.2.218. Пол камер масляных трансформаторов должен иметь 2%-ный уклон в сторону маслоприемника. ¶

    4.2.219. В камерах трансформаторов могут устанавливаться относящиеся к ним разъединители, предохранители и выключатели нагрузки, вентильные разрядники, ОПН, заземляющие дугогасящие реакторы, а также оборудование системы охлаждения. ¶

    4.2.220. Каждая камера масляных трансформаторов должна иметь отдельный выход наружу или в смежное помещение категорий Г или Д. ¶

    4.2.221. Расстояние по горизонтали от проема ворот трансформаторной камеры встроенной или пристроенной ПС до проема ближайшего окна или двери помещения должно быть не менее 1 м. ¶

    Выкатка трансформаторов мощностью 0,25 МВ•А и более из камер во внутренние проезды шириной менее 5 м между зданиями не допускается. Это требование не распространяется на камеры, выходящие в проходы и проезды внутри производственных помещений. ¶

    4.2.222. Вентиляционная система камер трансформаторов должна обеспечивать отвод выделяемого ими тепла (4.2.104) и не должна быть связана с другими вентиляционными системами. ¶

    Стенки вентиляционных каналов и шахт должны быть выполнены из материалов с пределом огнестойкости не менее 45 мин. ¶

    Вентиляционные шахты и проемы должны быть расположены таким образом, чтобы в случае образования или попадания в них влаги она не могла стекать на трансформаторы, либо должны быть применены меры для защиты трансформатора от попадания влаги из шахты. ¶

    Вентиляционные проемы должны быть закрыты сетками с размером ячейки не более 1х1 см и защищены от попадания через них дождя и снега. ¶

    4.2.223. Вытяжные шахты камер масляных трансформаторов, пристроенных к зданиям, имеющих кровлю из горючего материала, должны быть отнесены от стен здания не менее чем на 1,5 м или же конструкции кровли из горючего материала должны быть защищены парапетом из негорючего материала высотой не менее 0,6 м. Вывод шахт выше кровли здания в этом случае необязателен. ¶

    Отверстия вытяжных шахт не должны располагаться против оконных проемов зданий. При устройстве выходных вентиляционных отверстий непосредственно в стене камеры они не должны располагаться под выступающими элементами кровли из горючего материала или под проемами в стене здания, к которому камера примыкает. ¶

    Если над дверью или выходным вентиляционным отверстием камеры трансформатора имеется окно, то под ним следует устраивать козырек из негорючего материала с вылетом не менее 0,7 м. Длина козырька должна быть более ширины окна не менее чем на 0,8 м в каждую сторону. ¶

    4.2.224. Трансформаторы с принудительной системой охлаждения должны быть снабжены устройствами для автоматического пуска и останова системы охлаждения. ¶

    Автоматический пуск должен осуществляться в зависимости от температуры верхних слоев масла и, независимо от этого, по току нагрузки трансформатора. ¶

    4.2.225. При применении вынесенных охладительных устройств они должны размещаться так, чтобы не препятствовать выкатке трансформатора с фундамента и допускать проведение их обслуживания при работающем трансформаторе. Поток воздуха от вентиляторов дутья не должен быть направлен на бак трансформатора. ¶

    4.2.226. Расположение задвижек охладительных устройств должно обеспечивать удобный доступ к ним, возможность отсоединения трансформатора от системы охлаждения или отдельного охладителя от системы и выкатки трансформатора без слива масла из охладителей. ¶

    4.2.227. Охладительные колонки, адсорберы и другое оборудование, устанавливаемое в системе охлаждения Ц (OFWF), должны располагаться в помещении, температура в котором не снижается ниже +5 °С. ¶

    При этом должна быть обеспечена возможность замены адсорбента на месте. ¶

    4.2.228. Внешние маслопроводы систем охлаждения ДЦ (OFAF) и Ц (OFWF) должны выполняться из нержавеющей стали или материалов, устойчивых против коррозии. ¶

    Расположение маслопроводов около трансформатора не должно затруднять обслуживание трансформатора и охладителей и должно обеспечивать минимальные трудозатраты при выкатке трансформатора. При необходимости должны быть предусмотрены площадки и лестницы, обеспечивающие удобный доступ к задвижкам и вентиляторам дутья. ¶

    4.2.229. При вынесенной системе охлаждения, состоящей из отдельных охладителей, все размещаемые в один ряд одиночные или сдвоенные охладители должны устанавливаться на общий фундамент. ¶

    Групповые охладительные установки могут размещаться как непосредственно на фундаменте, так и на рельсах, уложенных на фундамент, если предусматривается выкатка этих установок на своих катках. ¶

    4.2.230. Шкафы управления электродвигателями системы охлаждения ДЦ (OFAF), НДЦ (ODAF) и Ц (OFWF) должны устанавливаться за пределами маслоприемника. Допускается навешивание шкафа управления системой охлаждения Д (ONAF) на бак трансформатора, если шкаф рассчитан на работу в условиях вибрации, создаваемой трансформатором. ¶

    4.2.231. Трансформаторы с принудительной системой охлаждения должны быть снабжены сигнализацией о прекращении циркуляции масла, охлаждающей воды или останове вентиляторов дутья, а также об автоматическом включении или отключении резервного охладителя или резервного источника питания. ¶

    4.2.232. Для шкафов приводов устройств регулирования напряжения под нагрузкой и шкафов автоматического управления системой охлаждения трансформаторов должен быть предусмотрен электрический подогрев с автоматическим управлением. ¶

    4.2.233. Планово-предупредительный ремонт трансформаторов на подстанциях следует предусматривать на месте их установки с помощью автокранов или (и) инвентарных устройств. При этом рядом с каждым трансформатором должна быть предусмотрена площадка, рассчитанная на размещение элементов, снятых с ремонтируемого трансформатора, такелажной оснастки и оборудования, необходимого для ремонтных работ. ¶

    В стесненных условиях ПС допускается предусматривать одну ремонтную площадку с сооружением к ней путей перекатки. ¶

    На ПС, расположенных в удаленных и труднодоступных районах, следует предусматривать совмещенные порталы. ¶

    На ПС напряжением 500-750 кВ, расположенных в районах со слаборазвитыми и ненадежными транспортными связями, а также на ОРУ электростанций при установке на них трансформаторов, если трансформаторы невозможно доставить на монтажную площадку гидроэлектростанций и ремонтную площадку машинного зала электростанции, для проведения планово-предупредительных ремонтных работ допускается предусматривать стационарные устройства-башни, оборудованные мостовыми кранами, с мастерской или аппаратной маслохозяйства с коллектором для передвижных установок. ¶

    Необходимость сооружения башни определяется заданием на проектирование. ¶

    4.2.234. При открытой установке трансформаторов вдоль машинного зала электростанции должна быть обеспечена возможность перекатки трансформатора к месту ремонта без разборки трансформатора, снятия вводов и разборки поддерживающих конструкций токопроводов, порталов, шинных мостов и т.п. ¶

    4.2.235. Грузоподъемность крана в трансформаторной башне должна быть рассчитана на массу съемной части бака трансформатора. ¶

    4.2.236. Продольные пути перекатки трансформаторов на подстанциях должны предусматриваться: ¶

    Установка реактора

    Проектируется линия связи 6кВ малой ТЭЦ с энергосистемой.
    Суть дела, что не можем убедить начальника малой ТЭЦ (6 генераторов, общей мощностью 24МВт),
    что на вновь вводимой КЛ-6кВ (длина 1,5кВ по улице) от шин генераторного напряжения ТЭЦ к шинам ГПП 110/6 кВ ставить реактор ближе к шинам ТЭЦ.
    Нач.ТЭЦ упёрся и отвечает , ставьте реактор на ГПП. Хотя мы хотим удержать работу ТЭЦ при кз во внешних от ТЭЦ сетях.

    Вопрос: Может кто знает, какой документ регламентирует место установки токоограничивающего реактора в такой ситуации?

    Просмотерл ПУЭ, ответа не нашел. И ещё, аналогичная линия связи 6кВ этой же ТЭЦ с энергосистемой уже существует, только на другое ГПП, но там реактор стоит именно на ГПП.

    2 Ответ от DimaSto 2017-06-29 13:15:06 (2017-06-30 11:20:38 отредактировано DimaSto)

    Например, допустим:
    На ТЭЦ стоят выключатели с коммутационной способностью 50кА. На ГПП стоят выключатели с коммутационной способностью 25кА.
    Максимальный ток КЗ (без реактора) равен 30кА. Максимальный ток КЗ (с реактором) равен 20кА.
    В этом случае реактор должен быть установлен обязательно со стороны ГПП.
    Короче: необходимость установки реактора, значение индуктивности реактора, место установки реактора определяется расчетами режимов и токов КЗ и характеристиками установленного оборудования.

    мы хотим удержать работу ТЭЦ при кз во внешних от ТЭЦ сетях.

    Это "удержание" может быть обеспечено только правильной селективностью РЗА в этой сети, а никак не реактором.

    Читайте также: