Расчет свайно плитного фундамента

Обновлено: 14.06.2024

Расчет и проектирование свайно-плитного фундамента с применением грунтоцементных свай

В свайно-плитном фундаменте часть нагрузки воспринимает плита, опирающаяся на грунт, а другую часть нагрузки воспринимают сваи, передающие нагрузку на нижележащие слои грунта.

Одной из технологией, позволяющей выполнять устройство свай, является технология струйной цементации грунтов.

Сущность технологии заключается в перемешивании грунтов струей цементного раствора. В результате в грунтовом массиве формируются сваи из нового материала – грунтоцемента, обладающего высокими деформационными характеристиками.

В отличие от буронабивных свай технология позволяет устраивать сваи в обводненных грунтах без использования обсадных труб.

Другим преимуществом является возможность выполнения работ в стесненных условиях городских строительных площадок.

Кроме того, технология позволяет выполнять комбинированные сваи, когда верхняя часть состоит из железобетонной сваи, а нижняя – из грунтоцементной сваи.


Фото 1. Реконструкция здания в Москве.

Существующие методики расчета комбинированных свайно-плитных фундаментов предусматривают применение железобетонных свай, обладающих жесткостью на много превышающую жесткость грунтового основания. В отличие от железобетонных свай грунтоцементные сваи обладают более низкой жесткостью, что предполагает рассматривать грунтоцементную сваю, как колонну, сформированную из укрепленного (сцементированного) грунта.

Жесткость подобной сваи сравнима с жесткостью грунтового основания, поэтому для расчета таких свай может быть применен иной подход – определение осадки фундаментной плиты на укрепленном основании.

В настоящей работе приводится сопоставление методики расчета свайно-плитного фундамента с применением нормативных российских методик, а также методики, основанной, на укреплении грунта грунтоцементными колоннами.

Статья содержит ряд примеров применения грунтоцементных свай при устройстве свайно-плитных фундаментов.

2. Устройство свайно-плитного фундамента при реконструкции здания.

При реконструкции зданий для сохранения исторически-архитектурного облика города очень часто применяют следующее решение. Внутренняя часть здания демонтируется и оставляется только один фасад, поддерживаемый металлическим каркасом из двутавров. Такое решение применено при реконструкции одного из исторических зданий в городе Москва (фото 1). Проектом предусмотрено возведение 7-и этажного здания с 2-х этажной подземной автостоянкой.

Заказчиком было принято решение об устройстве свайно-плитного фундамента. Рассматривался вариант применения буронабивных свай и вариант грунтоцементных свай по технологии струйной цементации грунтов.

Стоит отметить, что на момент принятия решения генподрядчиком уже был выкопан котлован глубиной 4,0 м и установлен первый ярус распорной системы из труб. Это обстоятельство сыграло решающую роль при принятии решения в пользу технологии струйной цементации грунтов, т.к. при производстве работ по устройству грунтоцементных свай может быть применена буровая установка с короткой мачтой, позволяющей выполнять работы под распорными трубами.

Сущность методики, заложенной в программе GeoSet, заключается в следующем. В программе задаются жесткость каждой сваи и грунтов в основании плиты, которые можно вычислить по нормативным методикам. Из решения системы уравнений находится осадка свайно-плитного фундамента.

Преимущество программы в том, что она позволяет рассчитывать осадку свайно-плитного фундамента с неравномерной сеткой расположения свай, а также вычислять усилия в каждой свае.

Результаты расчета показали, что максимальная осадка фундаментной плиты на естественном основании (без свай) составила 17,6 см, минимальная осадка – 6,2 см, относительная разность осадок – 0,0033. Неравномерная осадка здания обусловлена дополнительной нагрузкой от сохраняемого фасада здания.

Как было указано выше, для снижения крена и максимальных осадок здания было принято решение об устройстве дополнительных грунтоцементных свай под фундаментной плитой.

В нагруженной части здания, примыкающей к сохраняемому фасаду, сваи устраивали с шагом 3,0 м, в менее нагруженной – с шагом 2,0 м(рис.1). Длина свай принята равной 10,2 м.

Диаметр грунтоцементных свай, выполняемых по однокомпонентной технологии Jet1, в песчаных грунтах принят равным 750 мм, в глинистых – 600 мм. Модуль деформации грунтоцементных свай в песчаных грунтах принят равным 3000 МПа, в глинистых грунтах – 1000 МПа.

По результатам расчетов в программе GeoSet максимальная осадка здания составляет 5,7 см, минимальная осадка – 3,2 см, относительная разность осадок – 0,0007 (рис. 2).

План свайного поля

Рис.1. План свайного поля.


Рис. 2. Результаты расчета осадки здания и нагрузки на сваи в программе GeoSet.

Кроме того, расчет осадки здания выполнялся по методике, сущность которой заключается в том, что грунтоцементные сваи и грунт рассматриваются как грунтовый массив с
осредненным (эффективным) модулем деформации.


где Ep , Eg – модули деформации свай и грунта;

Sp , S – площади всех свай и общая площадь плиты.

По результатам расчетов максимальная осадка здания составила 6,8 см, минимальная осадка – 1,6 см, относительная разность осадок – 0,0015. Несмотря на то, что в этой методике не учитывается неравномерность расположения свай, результаты расчета по методу осреднения характеристик сопоставимы с результатами расчета свайно-плитного фундамента.

Прогнозируемая величина максимальной осадки свайно-плитного фундамента по результатам расчетов составила 5,7-6,8 см, что в 2 раза ниже предельной максимальной осадки 15,0 см, принятой по нормативным документам, что гарантирует безопасную эксплуатацию здания.

Из-за стесненности площадки оборудование (высоконапорный насос, миксерную станцию для приготовления цементного раствора и силос для цемента) пришлось разместить на борту котлована на площадке размерами 8,0х8,0 м. Работы по устройству грунтоцементных свай выполнялись из котлована глубиной 6,8 м.

Для контроля качества работ выполнены опытные сваи с последующим определением диаметра свай и определением прочности на сжатие выбуренного из свай керна. Диаметр грунтоцементных свай в песчаных грунтах составил 750-900 мм (фото 2). По результатам испытаний прочность грунтоцемента на сжатие составила 5-12 МПа, что превышает проектные характеристики.

Производительность устройства грунтоцементных свай длиной 10,2 м составила 6-8 свай в смену.


Фото 2. Грунтоцементная свая.

2. Проектирование свайно-плитного фундамента из комбинированных свай.

В настоящее время на Аккермановском руднике ведется строительство цементного завода. Первоначально для силоса сырьевой муки по проекту предполагался свайно-плитный фундамент из железобетонных забивных свай 30х30 см длиной 6,0 м.

Количество свай – 300 шт. Размер плиты – 18,8х18,8 м, толщина – 3,0 м. Общая нагрузка от силоса и плиты – 25 139 тс (71 тс/м2).

По предварительным изысканиям геология представляет собой глину, которую подстилает известняк. По проекту сваи должны были опираться на известняк. Но после начала бурения лидерных скважин для погружения свай оказалось, что кровля известняка имеет кратерообразный характер с пиками и впадинами, вследствие чего большая часть свай не доходят до кровли известняка, являющимся несущим слоем. Это может привести к ненормативным осадкам и крену силоса.

С целью снижения осадок до безопасного уровня было предложено в основании железобетонных свай выполнить грунтоцементные сваи по технологии струйной цементации грунтов (рис. 3).


Рис. 3. Разрез свайно-плитного фундамента. 1 – глина, 2 – известняк.

Моделирование напряженно-деформированного состояния свайно-плитного фундамента и грунтового массива выполнено с помощью метода конечных элементов в трехмерной постановке.

Дискретизацию расчетной области выполняли треугольными элементами с линейной аппроксимацией перемещений в области элемента. Конечно-элементная модель расчетной области представлена на рисунке 4.

Согласно геологическим изысканиям модуль деформации глины составляет 15 МПа, известняка – 1000 МПа.

Диаметр грунтоцементных свай по технологии Jet1 в глинистых грунтах принят равным 500 мм, модуль деформации грунтоцементных свай – 500 МПа.

Учет свай выполнялось путем задания расчетного слоя с осредненным модулем деформации по правилу механической смеси.

В расчетной модели было задано 4 слоя. Осредненные модули деформации слоев приведены в таблице 1.

Наименование слоя Е, МПа
1 Фундаментная плита 32 500
2 Глина с железобетонными сваями 2 972
3 Глина с грунтоцементными сваями 132
4 Известняк 1 000

Основная сложность заключалась в моделировании рельефа известняка, имеющего кратерообразный характер. В соответствие с проведенными дополнительными инженерно-геологическими данным на расчетную область нанесли точки, соответствующие отметкам кровли известняка, затем эти точки соединили поверхностями.

Выполненные расчеты показали, что максимальная осадка фундаментной плиты составила 1,8 см, что ниже принятого допустимого значения 5,0 см (рис. 5). Величина крена 0,0005 также не превышает допустимое значение 0,0020.


Рис. 4. Фрагмент конечно-элементной модели.


Рис. 5. График распределения осадки в грунтовом массиве, м.

На первом этапе выполняли устройство грунтоцементных свай по технологии струйной цементации грунтов (фото 3).

Скважины бурили до кровли известняка для установления его фактической отметки и на 1,0 м заглублялись в слой известняка. Затем производился подъем монитора до отметки на 1,0 м выше отметки низа железобетонных свай.

В процессе устройства грунтоцементных свай также были выявлены многочисленные прослойки известняка в слое глины, что усложняло бурение скважин.

На втором этапе производили забивку железобетонных свай с погружением их в тело грунтоцементных свай на 500 мм. Забивку свай производили с устройством лидерных скважин диаметром 250 мм.

Для контроля качества из опытных грунтоцементных свай был отобран керн и определены деформационные и прочностные характеристики грунтоцемента. Средняя прочность на сжатие составила – 2,5 МПа, модуль деформации – 543 МПа, модуль упругости – 1082 МПа. Результаты испытаний подтвердили заданные в проекте значения.


Фото 3. Устройство грунтоцементных свай.

3. Устройство свайно-плитного фундамента с применением грунтоцементных свай Jet2

Основание фундамента здания сложены слабыми лессовыми грунтами (супеси, суглинки), склонными к большим просадкам при замачивании под действием давления, передаваемого фундаментной плитой. Физико-механические свойства грунтов представлены в таблице 2.

С целью снижения осадок до безопасного уровня предложено выполнить устройство грунтоцементных свай в основании фундаментной плиты. Сваи устраиваются по технологии Jet2, диаметр свай в суглинках принят равным 1,5 м.

Расчет осадки свайно-плитного фундамента выполнялся в программе GeoSet.

Оптимальная длина свай, полученная по результатам расчетов, составляет 28,0 м. Сваи устраиваются с шагом 4,3 м, в местах лифтовой шахты запроектировано дополнительно 4 сваи. Общее количество свай – 42 шт.

Модуль деформации грунтоцементных свай в глинистых грунтах – 1000 МПа.

В соответствие со схемой нагружения вычислена равнодействующая сила, равная 54 418 тс (59 тс/м2). Анализ схемы нагружения показал, что эксцентриситет равнодействующей силы составил по х – 0,46 м, по y – 0,04 м.

Средняя жесткость свай, вычисленная в программе, составляет Es = 6209 тс/м, жесткость грунтового основания – C = 59 тс/м2.

По результатам расчетов средняя осадка здания составила 17,0 см (рис. 6), что не превышает допустимую осадку для зданий на плитных фундаментов – 22,5 см.

Относительная разность осадок составила 0,003.

Ниже представлена фотография объекта на этапе откопки грунтоцементных сваи и возведения фундаментной плиты (фото 4).


Рис. 6. Осадка свайно-плитного фундамента.


Фото 4. Свайно-плитный фундамент с грунтоцементными сваями. Устройство фундаментной плиты.

Определение сечения свайных фундаментов и расчет

Вид готового свайного фундамента

Вид готового свайного основания

Свайно-ростверковые фундаменты отличаются достаточно простой конструкцией, но, несмотря на популярность они нестабильные. Так как основания не имеют большой несущей площади, они подвержены горизонтальным и вертикальным подвижкам почвы.

Также на их устойчивость в значительной мере влияют размеры и масса самого здания, а также климатические условия в регионе, объем и качество используемых строительных материалов, диаметр подошвы опоры.

Сваи всегда устанавливаются подошвой ниже глубины промерзания почвы, а заводские стальные конструкции изготавливаются и поставляются строго определенной длины и диаметра. Также важную роль играет конструкция ростверка, особенно то, из чего он сделан. Многие застройщики часто решаются самостоятельно сделать сваи прямо на строительной площадке, для этого подготавливают определенный объем бетона и арматуры, но такие конструкции часто не подходят для больших типов сооружений.

Зачем нужно использовать расчет свайного фундамента

Эскиз с указанием параметров необходимых при расчете свайного фундамента

Эскиз с указанием параметров необходимых при расчете

Учитывая, что сваи в фундаментах – это обычные точки опоры, которые отвечают за равномерный перенос всего объема нагрузок, со стороны здания и грунта через подошву на прочные слои почвы, они подбираются только после расчета ростверка. К примеру, максимально допустимые размеры, толщина, конструкция, прочие параметры.

Также на выбор диаметра используемых в строительстве свай влияют факторы, связанные с типом грунта, которые также учитываются в расчетах. Расчет свайного фундамента нужен для некоторых удобств:

  1. Получится сделать расширенный проект свайного основания с учетом мест установки опор, а также расстояния между ними.
  2. Можно существенно экономить на объеме используемых строительных материалов, подобрав оптимальный тип опоры.
  3. Расчет предусматривает выбор оптимальной по диаметру опоры, ее длины и габаритов, а также подбор типа подошвы.

Также можно сразу определить, подойдут винтовые сваи для данного типа строительства или нужно использовать набивные или иные типы свай.

Расчет свайного фундамента

Схема для расчета осадок свайного основания

Он выполняется по параметрам предельных значений первой и второй группы факторов, указанных ниже. Каждая группа состоит из ряда параметров, в результате суммирования которых и можно подобрать оптимальные по диаметру опоры. Первая группа:

  • расчет нагрузки со стороны материала несущих конструкций;
  • расчет максимально возможного сопротивления почвы на продавливание и деформацию;
  • несущая способность самого основания.
  • осадка основания сваи с учетом максимально допустимого сечения подошвы;
  • перемещение сваи за счет сил смещения;
  • наличие трещин в конструкции сваи.

Перед началом расчетов, нужно провести подробный геологический анализ почвы на месте строительной площадки и определиться с максимально допустимой длиной опор. Можно по данным нагрузок на почву сразу определиться с количеством и сечением опор, но рекомендуется проверить расчеты лишний раз, особенно при возведении жилых зданий на крутых склонах и откосах.

Выбор материала ростверка

Схема устройства ростверков свайных фундаментов

Схема устройства ростверков свайных фундаментов

На данный момент, ростверки могут возводиться из следующих строительных материалов:

  1. Деревянный брус, колода или бревно. Масса конструкции незначительная, плотность составляет до 1 кг/м 2 . Рекомендуется для малых сооружений типа бань, сараев или иных хозяйственных построек, армирование свай и ростверк не практикуется.
  2. Бетон и железобетон. Здесь рекомендованная марка бетона не ниже В20, размеры, такие как ширина составит не менее толщины несущих стен с добавочным коэффициентом 1,2, длина проектная, толщина – не менее 25 см.

Минимальная толщина ростверка рассчитывается с учетом сечения опоры. В свою очередь опора, особенно железобетонная, должна быть жестко заделана в контур ростверка на высоту не менее двух диаметров конструкции, толщина плиты подбирается в результате расчета максимальной нагрузки на продавливание. Высота ростверка иногда составляет до 1,2 метра, рассчитывается исходя из параметров самого здания. После проведения расчета диаметра и максимальной нагрузки на прогиб, рекомендуется уточнить размеры ростверка, исходя из расчетного количества опор.

Выбор конструкции

Схематическое отображение расчета несущей способности свай оснований

Схематическое отображение расчета несущей способности свай оснований

Материал и конструкцию несущих конструкций свайно-ростверкового фундамента подбирают исходя из местных условий. Если почва содержит достаточно большое количество влаги, тогда рекомендуются бетонные и железобетонные несущие конструкции с большим сечением, ведь железные быстро будут уничтожены коррозией. Но при их выборе нужно также учитывать конструктивные особенности, достоинства и недостатки, а также финансовой фактор.

Длина сваи зависит от типа и структуры грунта на строительной площадке. По правилам, винтовые сваи вкручиваются ниже глубины промерзания почвы, а бетонные конструкции устанавливаются широкой подошвой на прочный грунт. Расчет сваи по первой группе предельных состояний производится по двум параметрам:

Прочность материала опоры

Сопротивление материала опор можно посчитать по формуле без учета продольного изгиба:

Где Yc – стандартный коэффициент, для набивных свай 0,6, для остальных – 1; Y cb – коэффициент используемого строительного материала, для свай – 1; Rb – сопротивление строительных материалов сжатию, кПа, это табличные данные; Ab – площадь подошвы опоры, м 2 ; Rsc – сопротивление арматурного каркаса, кПа; As – площадь сечения арматурного каркаса, м 2

Расчет несущей способности грунта

В зависимости от характера передачи нагрузки от здания на почву, все опоры делятся на две группы: стойки и висячие конструкции. Стойки – это конструкции, которые опираются на прочный слой почвы своей подошвой или ввинчиваются в грунт. Объем используемого строительного материала для наполнения может быть разным для каждой отдельной несущей опоры в зависимости от ее длины, максимально допустимого диаметра подошвы, сечения по всей длине. Висячие опоры передают нагрузку на грунт своим нижним концом и боковыми поверхностями, к этой группе относятся буро-набивные сваи. При выборе несущих конструкций важную роль играет сечение подошвы, ведь чем оно больше, тем большие нагрузки способно выдержать основание.

Несущую способность стойки можно рассчитать по формуле:

Расчет висячей сваи делается намного сложнее, ведь все они устанавливаются без выемки почвы и за время монтажа деформируются с расширением.

Выбор оптимального количества опор по параметрам допустимого сечения

Условный расчет количества свай в фундаменте

Условный расчет количества свай в фундаменте

Минимальное количество опор для фундаментов с низким ростверком можно посчитать по формуле:

После расчета минимально необходимого количества опор можно начинать делать эскизный проект будущего основания. Расстояние между опорами принимают до 1,5 метра, их обязательно нужно устанавливать на углах пересечения несущих стен и в точках наиболее высокой нагрузки на грунт. Объем строительных материалов рассчитывается индивидуально, исходя из местных условий и характеристик опор.

Предварительное распределение свай по минимальной площади нижней кромки ростверка рассчитывается так:

Тут параметры a, b – это ширина и длина опоры, а с – ширина обреза, той части опоры, которая отрезается при выравнивании фундамента по горизонтальной плоскости.

Если полученная площадь окажется недостаточной для размещения свай, тогда будет необходимо увеличить размеры подошвы и, соответственно, ее объем. Если и увеличение не дает необходимых параметров нагрузки на грунт, тогда проектировщики увеличивают длину сваи, ее диаметр, количество или объем используемых строительных материалов.

В некоторых случаях целесообразно комбинировать сразу несколько видов свай или увеличивать объем подошвы за счет устройства свайного поля. Его рекомендуется устраивать в тех случаях, когда на единицу площади грунта оказывается значительная нагрузка со стороны здания. Как правило, такие поля монтируют в бетонные стаканы, объем необходимых строительных материалов рассчитывается отдельно, как и марка бетона. Также здесь настоятельно рекомендуется провести расчет допустимой нагрузки на строительные материалы.

Расчет осадки фундамента по второй группе выполняется аналогично расчету осадки фундамента мелкого заложения. Осадка определяется по диаметру и площади подошвы сваи, а также их количества и выбора допустимого материала при растяжении. При этом, если будут запроектированы висячие опоры, тогда деформацию не рассчитывают.

Расчет комбинированных свайно-плитных фундаментов с использованием контактной модели Текст научной статьи по специальности «Строительство и архитектура»

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Семенов В.В., Чунюк Д.Ю.

Предложен метод расчета комбинированных свайно-плитных фундаментов с использованием контактной модели .

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Семенов В.В., Чунюк Д.Ю.

Несущая способность и осадки плитно-свайных фундаментов при циклическом нагружении Выбор типа фундаментов и оснований многофункционального комплекса «Фатих, Амир и Хан» по ул. Фатыха Амирхана г. Казани Численное моделирование свайных фундаментов в расчетно-аналитическом комплексе SCAD Office Фундаменты высотных зданий Взаимодействие свай большой длины с массивом грунта в составе плитно-свайного фундамента i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы. i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Расчет комбинированных свайно-плитных фундаментов с использованием контактной модели»

расчет комбинированных сваино-плитных фундаментов с использованием контактной модели

В.В. Семенов Д.Ю. Чунюк

За последние годы свайные фундаменты стали самым широко используемым типом фундаментов в промышленном и гражданском строительстве. Потребность в сооружении свайных фундаментов становиться особенно актуальной в связи с тем, что территории с благоприятными для строительства грунтовыми условиями являются освоенными, увеличивается этажность зданий и нагрузки на основания. Известно также, что в ряде случаев использование свайных фундаментов и на достаточно прочных грунтах, и в случаях, когда с поверхности залегает прослойка прочного грунта, оказывается в экономическом и технологическом отношении более эффективным по сравнению с фундаментами мелкого заложения. В этих случаях, при контакте ростверка с грунтом, часть внешней нагрузки может передаваться через подошву ростверка. Для массивных сооружений на группах и полях свай такой тип фундаментов принято называть комбинированными свайно-плитны-ми фундаментами. Для расчета таких типов фундаментов на кафедре Механики грунтов, оснований и фундаментов Московского Государственного Строительного Университета был разработан инженерный метод расчета, для шага свай в группе более 4Ь, основанный на совместном рассмотрении жесткости основания плитной части и группы свай с учетом расположения и взаимовлияния, и решении на основе полу-

ченных данных контактной задачи теории упругости с использованием метода конечных элементов.

Контактные модели широко используются в инженерной практике для расчета плитных, балочных фундаментов, ростверков и т.п.

Рассматривая в общем случае центральную нагрузку, т.е. случай равномерного упругого сжатия, формула для определения коэффициента жесткости основания плитной части будет иметь следующий вид:

где: Е0 - модуль деформации грунта; v0 - коэффициент Пуассона грунта находящегося непосредственно под плитной частью; кс - безразмерный коэффициент, зависящий от отношения сторон плитной части принимаемый по H.A. Цыто-вичу и М.И. Горбунову - Посадову в зависимости от жесткости плитной части; ^проств - приведенная площадь плитной части определяемая по формуле:

При определении приведенной площади ростверка диаметр сваи принимается, с учетом образования

В.В. Семенов, Д.Ю. Чюнюк

и осадки совместно со сваей грунтовой рубашки и определяется по формуле:

где: а - диаметр сваи; 5 - толщина грунтовой рубашки.

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Для определения коэффициента жесткости свай преобразовываем формулу П.Л.Пастернака для однослойного трехмерного основания и представляем ее в виде:

дошвой свайного фундамента, залегают слоистые напластования грунтов, будет определяться по формуле:

где: Ка - мощность активной зоны сжатия грунта под сваями; Ет -

среднее значение модуля деформации грунта на всю глубину активной зоны сжатия грунта под сваями; V - коэффициент Пуассона грунта активной зоны.

Активная зона сжатия грунта под подошвой свайного фундамента определяется с помощью метода эквивалентного слоя предложенного Н.А.Цытовичем и равна удвоенной мощности эквивалентного слоя:

где: Ка - то же, что и формуле (5); К - мощность отдельных слоев грунта, причем первый слой от условной подошвы свайного фундамента принимается равным четырем диаметрам сваи с модулем Е0; Е< - модуль деформации последующих слоев грунта; - расстояние от нижней границы сжимаемой толщи до середины рассматриваемого слоя.

Определив коэффициенты жесткости основания плитной части и свай комбинированного свайно плитного фундамента можно определить долю участия ростверка в несущей способности по формуле:

где: Кэ - мощность эквивалентного слоя

где: Ь - ширина фундамента; к0 - безразмерный коэффициент определяемый в зависимости от отношения т=Ь/1 и п=а/Ь (где а и Ь длина и ширина площади загруже-ния) определяемое по таблице; А/ -коэффициент эквивалентного слоя для нагрузки, действующей на глубине I:

А1 = (1 -у)/(1 -у- 2у 2) (7)

Среднее значение модуля деформации грунта на всю глубину активной зоны сжатия грунта под сваями, в общем случае, когда под по-

Исходя из этого, количество свай комбинированного свайно-плитного фундамента определится по формуле:

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

где: N - расчетная вертикальная нагрузка на фундамент на основе расчета оснований по 1-му пре-

дельному состоянию; Рсв - расчетная нагрузка на сваю.

На основе всего выше сказанного расчет комбинированного свай-но-плитного фундамента можно представить в виде следующего алгоритма:

B.B. Семенов, Д.Ю. Чюнюк

Рис. 1. Схема разбиения плана сооружения на сетку конечных элементов и присвоение им жесткостных характеристик

свай и плитной части. С1 - жесткость плитной части С2 - жесткость оснований свай

17 к / % ? к i Г 7ЙПЖ 1 г к it i П? к/к F к Гк I

Шг— JSrJSrjSrjSrjsr jjrjjrisrjjrjjr ДЯНЯГЛГДЯВДГ «вдад-ДЯДО

Bp S rj Я fj J Fj Я rJ Я Ijnrj S FJ 8 rJ rj Я rJ Я fjsrj rj Д FJ srj 9 ri S rjHrj S fj В ri rj Я rj S rjarj Я rj IfÜ Я rjS rj я rj j rj j rj Srj я rjj rj я fj j rj j rj S^ ¡Щrj SO Srjj rj jrj я fj|rj S rj j rj j rj jrj я rjjB

./ щцгщ,i/ .у .¡f i,\t ^rv ,\i у mШЩщ^ щщ^

1. На первом этапе, рассмотрения плана сооружения, производится разбивка его на сетку конечно-элементной модели. Шаг элементов принимается с учетом расположения разбивочных осей здания, а также исходя из диаметра применяемых свай.

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2. Сбор нагрузок на фундамент.

3. Определение коэффициента жесткости (коэффициента постели) плитной части и группы свай.

4. По формуле 10 производится определение количества свай приходящихся на фундамент, и, исходя из шага и разбивочной конечно-элементной сетки, определяется их положение в плане, так же на данном этапе задаемся толщиной плитной части.

5. Присваивается элементам сетки соответствующие им жесткости, исходя из жесткости основания плиты и группы свай (см. Рис.1).

6. Формируется схема загруже-ний. Следует помнить, что при фор-

мировании схемы загружения, нагрузки передаваемые на фундамент, следует располагать в местах пересечения конечных элементов (в узловых точках).

7. После формирования расчетной схемы, производится расчет с помощью соответствующих конечно-элементных программ (LIRA, SCAD, STARK и т.д.) и анализ результатов.

8. B случае больших деформаций или недопустимых напряжений в конструкции следует вернуться к расчету количества свай или увеличить толщину плиты, и произвести повторный расчет.

Исходя из данного алгоритма принятие окончательного решения по определению конструкции фундамента сводится к сравнению полученных данных с нормативными деформациями для сооружений категории и технико-экономическому анализу.

Расчет фундаментных плит на свайном основании Текст научной статьи по специальности «Строительство и архитектура»

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Журавлев Евгений Петрович, Макаркин Сергей Викторович, Алехин Владимир Николаевич

В статье рассматриваются варианты моделирования свайного основания с использованием метода конечных элементов при расчете зданий. Свайное основание моделировалось в виде отдельных стержневых конечных элементов в программном комплексе «Лира 9.4» или с использованием специальных конечных элементов-свай в программном комплексе «ING+ 2008». По результатам расчета в программном комплексе «Лира 9.4» и в программном комплексе «ING+ 2008» было произведено армирование фундаментной плиты , произведен сравнительный анализ, сделаны выводы.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Журавлев Евгений Петрович, Макаркин Сергей Викторович, Алехин Владимир Николаевич

Оценка эффективности свайно-плитных фундаментов с промежуточной подушкой на примере высотных зданий в сейсмических районах Краснодарского края Практическая реализация метода вертикального армирования неоднородного основания для компенсации неравномерной деформируемости грунтового массива и снижения сейсмических воздействий на надземное сооружение Моделирование напряженно-деформированного состояния кирпичного здания на свайном фундаменте при его надстройке Обоснование рациональной конструкции фундамента здания с высоким центром тяжести для строительства в сейсмическом районе Опыт реализации нестандартных методов проектирования и строительства фундаментов высотных зданий в сейсмических районах i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы. i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Расчет фундаментных плит на свайном основании»

УДК 624.15 Журавлев Е.П. Макаркин С. В. Алехин В.Н.

Расчет фундаментных плит на свайном основании

Журавлев Евгений Петрович

Макаркин Сергей Викторович

канд. техн. наук, доцент УГТУ-УПИ.

канд. техн наук, проф. декан строительного факультета УГТУ-УПИ

Shuravlev Е. P., Makarkin S.V., Alechin V. N.

CALCULATION OF FOUNDATION SLAB ON PILE BASE

В современной практике проектирования возможны различные варианты моделирования свайного основания при расчете зданий с использованием метода конечных элементов. Нами были рассмотрены два варианта моделирования свайного основания.

Рассмотренные варианты моделирования свайного основания были реализованы при расчете десятиэтажного монолитного здания. Высота здания 37 м с подвалом и техническим этажом. Фундаментная плита имеет размеры в плане 29,2x21,5 м (см. рисунок 1). Толщина плиты принята 0.9 м. В проекте применены забивные железобетонные сваи длиной 12 м сплошного квадратного сечения (0,3х0,3 м).

Шаг свай принят 1,2 м в двух направлениях, количество свай 453 шт. Грунтовые условия площадки: слой № 1 — песок мелкий рыхлый, h1 = 1.8 тЕ1 = 8 МПа; слой №

Рисунок 1. Схема расположения фундаментной плиты, стен и колонн подвала

Слой № 1 Слой №2 Слой № 3 Слой № 4 Слой № 5 Слой №6,7

Рисунок 2. Схема работы сваи в грунте

2 — глина тугопластичная к2 = 2.4 тЕ2 = 10 МПа; слой № 3 — суглинок текучепластичный к3 = 1.2 т Е3 = 2МПа; слой №4 — глина мягкопластичная к = 5.8 тЕ3 = 7МПа; слой № 5 — суглинок тугопластичный к5 = 2.8 т Е5= 6 МПа; слой № 6 — суглинок тугопластичный к3 = 8 тЕ3 = 12 МПа.

Первый вариант свайного основания был реализован с использованием ПК «Лира 9.4». Схема работы сваи представлена на рисунке 2. Коэффициенты постели по боковой поверхности для стержневого конечного элемента (КЭ) № 10, моделирующего сваю, рассчитывались по рекомендациям [1]. Для КЭ № 210 под нижним концом сваи учитывался кусочно-линейный закон деформирования материала [2]. Этот элемент моделировал отпор грунта под острием сваи, трение боковой поверхности сваи о грунт, и позволил произвести расчет в нелинейной постановке.

Максимально допустимые напряжения для КЭ № 210 рассчитывались исходя из несущей способности сваи по грунту. Относительные деформации, соответствующие несущей способности сваи при задании билинейного закона деформирования материала, рассчитывались исходя из начального модуля деформации грунта под нижним концом сваи.

Результаты расчета здания с фундаментной плитой на свайном основании при учете физически нелинейной работы свай в грунте представлены на рисунках 3, 4.

По результатам расчета здания при учете его совместной работы с фундаментной плитой на свайном основании можно сделать следующие выводы:

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

различным схемам армирования фундаментной плиты;

3 При моделировании свайного поля в ПК «Лира 9.4» рекомендуется задавать жесткость крайних рядов свай в 2-3 раза больше получившейся при расчете с использованием рекомендаций [1]. В этом случае при расчете в ПК «Лира 9.4» можно получить распределение усилий в сваях, согласующиеся с распределением усилий, получен-

Рисунок 3. Погонные значения изгибающих моментов в фундаментной плите а) по сечению 1-1; б) по сечению 2-2 (см. рис. 1.)

Рисунок4. Распределение продольныхусилий в сваях а) сечение 1-1; б) сечение 2-2 (см. рис. 1.)

4 Для обеспечения распределяющей функции плитного фундамента следует предусматривать непрерывное (фоновое) верхнее и нижнее армирование фундаментной плиты продольной рабочей арматурой, площадь которой должна составлять не менее 20% от соответствующей максимальной расчетной в зонах усиления [4].

Список использованной литературы

1 СП 50-102-2003. Проектирование и устройство свайных фундаментов. М.: ГУП НИИОСП. ФГУП ЦПП, 2004.

2 Стрелец-Стрелецкий Е. Б., Бо-говис В. Е. «Лира 9.4». Руководство пользователя. Основы: Учеб. пособие. Киев: Факт. 2008. 164 с.

4 Сорочан Е. А., Безволев С. Г. Рекомендации по проектированию фундаментных плит // Информационный вестник Мособлгосэкспертизы. 2003. выпуск № 3. С. 26-28.

Фундамент плита на сваях своими руками: пошаговая инструкция

Содержание

Монтаж СПФ при возведении коттеджа или загородного дома оправдан в следующих случаях:

  1. В зонах с повышенной сейсмической активностью.
  2. На пучинистых грунтах, при этом несущие сваи рекомендуется дополнительно усилить перед сооружением монолитной плиты.
  3. В местах, где глубина промерзания грунта ниже 2,5 м.
  4. Пласты грунтовых вод расположены высоко к поверхности земли.
  5. При возведении сооружений чувствительных к вибрациям (из пенобетона, стекла).
  6. Строительство пристройки к существующему зданию на монолитном или ленточном фундаменте.

Часто свайно-плитное основание применяют при отсутствии данных гидрогеологических изысканий участка. Во многих случаях стоимость устройства СПФ оказывается ниже, чем проведение исследований. Для подстраховки будущие владельцы частного дома выбирают этот тип основания, как самого надежного и долговечного.

Фундамент плита на сваях своими руками: пошаговая инструкция

Расчеты комбинированного свайно-плитного фундамента

Расчет СПФ состоит из двух частей:

  1. расчет свайного фундамента;
  2. расчет параметров бетонной плиты.

Расчет плитной части более сложный. Он учитывает следующие факторы:

  1. планируемая нагрузка на плитное основание;
  2. глубина промерзания грунта;
  3. наличие дренажной системы;
  4. наличие и толщина подушки между подземными водами и основанием;
  5. неравномерность свайного фундамента;
  6. условия взаимодействия плиты с грунтом и пр.

При наличии определенных знаний для расчета СПФ можно использовать профессиональную программу GeoPlate, которая позволит не только точно определить параметры бетонной плиты, но рассчитает осадку с учетом всех физических и геометрических данных.

Фундамент плита на сваях своими руками: пошаговая инструкция

Толщина монолитной плиты зависит от марки бетонной смеси, используемой для ее заливки, площади сооружения и его массы. Для дома 10х10 из тяжелых строительных материалов (кирпич керамический, железобетон) оптимальная толщина плиты будет составлять 30-40 см. Строение такой же площади, но возведенное из легких материалов нуждается в основании толщиной 20-30 см. Для легких конструкций и небольших домиков 6х6 м достаточно плиты толщиной 10 см.

Зная площадь основания и толщину плиты легко вычислить требуемое количество бетонной смеси для устройства СПФ: площадь основания х толщина в метрах = кол-во бетона (м3).

Дом из какого материала Вам нравится больше всего? Дом из бруса Дом из кирпича Бревенчатый дом Дом из газобетонных блоков Дом по канадской технологии Дом из оцилиндрованного бревна Монолитный дом Дом из пеноблоков Дом из сип-панелей Проголосовало: 3314

Расчет осадки

Расчет осадки также производится в профессиональных инженерных программах типа PLAXIS. При строительстве дома массой до 12-15 тонн осадка фундамента будет составлять не более 1-3%, поэтому производить сложные расчеты осадки необязательно. Однако если строительство ведется на пучинистых почвах, то расчет лучше произвести и с его учетом продолжать строительство.

Технология строительства СПФ

Общая технология строительства описана в СП 22.13330. В соответствии с нормативами процесс обустройства свайно-плитного основания включает следующие этапы:

Подготовительные работы

Под этим понятием подразумевается расчистка участка от мусора, выравнивание, выполнение разметки расположения свай по схеме. Также на данном этапе решается вопрос с покупкой или изготовлением бетонной смеси для плиты. Учитывая, что заливку фундаментной плиты лучше производить за один раз, бетон лучше заказать на ближайшем РБУ. Замесить такое количество бетона самостоятельно практически нереально, однако если у вас есть соответствующее оборудование, опыт и несколько помощников, можно изготовить смесь на участке.

Монтаж свай

Монтаж винтовых свай может осуществляться ручным или механическим способом. После того, как сваи погружены в грунт до нужной глубины проводится их выравнивание путем обрезки. Дальше на готовое свайное поле устанавливается плитная часть основания.

Фундамент плита на сваях своими руками: пошаговая инструкция

Устройство плиты на винтовых сваях

Плитная часть СПФ изготавливается в следующем порядке:

Фундамент плита на сваях своими руками: пошаговая инструкция

Для усиления конструкции по торцам монтируются П-образные металлические элементы из арматуры.

  • Заливка бетоном марки В15 или В20. Чтобы равномерно залить всю бетонную массу в едином направлении необходимо использовать бетононасос. Таким оборудованием всегда оснащены автобетоносмесители, доставляющие бетон. Для выравнивания бетонного слоя используется правило.
  • Утрамбовка производится при помощи виброоборудования.

Заливка монолитного основания на сваях начинается с мест, где расположены наружные свайные опоры. Утрамбовка также должна производиться сначала вокруг свай, а потом по всей площади плиты.

  • Фундамент на винтовых сваях с монолитной плитой окончательно затвердевает через 7-10 дней. В процессе затвердевания рекомендуется соблюдать температурный режим. При сухой погоде и температуре выше +22 необходимо поливать плиту каждые 2-3 часа, чтобы избежать появления трещин. При наличии осадков нужно укрыть СПФ пленкой или соорудить временный навес.

Фундамент плита на сваях своими руками: пошаговая инструкция

Свайно-ростверковый фундамент с монолитной плитой

После того как монолитный ростверк наберет прочность (через 7-10 суток) приступают к устройству монолитной плиты. Поэтапное строительство в этом случае аналогично тем процессам, которые выполняются при устройстве фундамента на винтовых сваях с металлическим ростверком: подбетонка, гидроизоляция, утепление, опалубка, армирование, заливка бетонного массива, утрамбовка.

Расчет свайно плитного фундамента

Поиск автор: Admin, 7 лет назад, рубрика: Основания и фундаменты, Основы проектирования, Расчет конструкций

расчет осадки свайного фундамента

Рис.1. Инженерно-геологический разрез по скважине 1

Расчет осадки КСП фундамента по СП 50-102-2003

Предложенная в СП 50-102-2003 методика расчета комбинированного свайно-плитного фундамента по деформациям основана на совместном рассмотрении показателей жесткости входящих в его состав элементов (свайного поля и плитного ростверка).

3. Общая жесткость КСП фундамента определяется как сумма двух выше найденных значений (жесткости свай и плитного ростверка):
4. Осадка КСП фундамента составит:
где: γf = 1,2 – коэффициент надежности по нагрузке.

Вывод: осадка основания комбинированного свайно-плитного фундамента блока «А» составила 40 мм.

Читайте также: