Расчет фундамента на ветер

Обновлено: 18.05.2024

Расчёт нагрузки на фундамент

Оглавление:

А ведь всего этого можно было избежать, если бы изначально расчету нагрузки на фундамент было уделено достаточно внимания.Ознакомьтесь с материалом о том зачем это делается, а также как грамотно и верно выполнять расчёт нагрузки на фундамент.

Как выполняется расчет

Что включается в такой расчет, и что нужно учитывать? Рассмотрим некоторые параметры.

  • У различных видов грунта отличная друг от друга несущая способность, поэтому нельзя опираться на тот факт, что у друга дом на мелкозаглубленном ленточном фундаменте стоит уже несколько лет, и ничего.
  • Учитывая вес строительных материалов, проводится вычисление массы строения.
  • Какая снеговая нагрузка на кровлю в регионе. Тип, и форма крыши играют огромную роль в таком подсчете.
  • Ветровая нагрузка. Любой дом, особенно высокий, испытывает ощутимые нагрузки в ветреную погоду, а если ветер постоянно дует в одну и ту же сторону, то фундамент будет подвержен дополнительной нагрузке. Особенно это ощутимо в легких домах, с не очень прочным фундаментом.
  • Вес мебели, сантехники и отделочных материалов.

расчёт нагрузки на фундамент фото

Полученные данные и собранная информация служит для учета несущей характеристики, размера и опорной площади возводимого фундамента. Пренебрежение этими требованиями приводит к ситуациям, описанным в начале статьи.

Расчет нагрузки для ленточного фундамента

При расчете нагрузки на ленточный фундамент, нужно определить количество заливаемого бетона, для чего нужно узнать общую площадь с учетом установленной опалубки. Полученную цифру (в м 3 ) нужно умножить на массу 1 м 3 , которая колеблется в пределах 2000–2500 кг. При расчете фундамента лучше перестраховаться, поэтому за основу возьмем 2500 кг.

Расчет нагрузки для ленточного фундамента

Потребуется узнать полную массу дома, снеговую нагрузку на крышу и давление ветра. Эти 4 показателя слаживаются и делятся на площадь основания. Выглядит это так:

(масса фундамента + масса дома + снеговая + ветровая нагрузка) / площадь основания = искомая цифра.

Поскольку расчет получается приблизительным, нужно иметь запас прочности около 25%.

Расчет нагрузки для столбчатого фундамента

Для того чтобы определить нагрузку на столбчатый фундамент, придется умножить площадь сечения столба на его высоту, в результате чего станет известен объем одной опоры. Полученные данные умножаются на цифру, обозначающей плотность материала, из которого сделаны столбы (q). Таким образом произведен расчет нагрузки для одного столба, а чтобы узнать расчетную нагрузку всего фундамента, результат перемножим на количество опор.

РАСЧЕТ НАГРУЗКИ ДЛЯ СТОЛБЧАТОГО ФУНДАМЕНТА

Если при расчете получилось, что фундамент не соответствует требованиям, то можно увеличить сечение столбов или увеличить число опор, сократив между ними расстояние.

Расчет нагрузки для свайного фундамента

Расчет нагрузки на свайный фундамент выполняется таким образом:

  • Полная масса будущего здания умножается на коэффициент запаса надежности.
  • Опорная площадь 1 квадратного сечения сваи определяется путем перемножения размеров двух сторон. При использовании круглых свай опорная площадь одной из них вычисляется по формуле: R2×3,14. Затем полученные данные умножаются на количество используемых свай, задействованных в фундаменте.
  • Теперь необходимо узнать нагрузку на 1 см 2 грунта, для чего масса здания делится на опорную площадь фундамента, и удостовериться, что нормативная допустимая нагрузка на грунт в норме.

Одной из особенностей свайного фундамента является правильный выбор сечения и длины свай, для чего нужно знать особенности грунта. Например, в некоторых районах, свая длиной в 3 м может не дойти до твердого основания, и приобретать опоры нужно только после предварительной геологической разведки.

В случае необходимости грунт можно уплотнить путем вбивания дополнительных, не предусмотренных проектом свай, но это приведет к дополнительным, незапланированным затратам.

Анализ грунта

Проектируя фундамент, можно самостоятельно выполнить геодезический анализ грунта, узнав:

  • Тип почвы.
  • Уровень расположения грунтовых вод.

Также необходимо узнать уровень промерзания грунта, в чем могут помочь карты с такими данными.

уровень промерзания грунта

Рис. Уровень промерзания грунта в России

Используя ручной бур, по периметру площадки и в центре делается несколько скважин, глубиной до 2,5 м, в результате чего можно увидеть, какой тип почвы, а на следующий день можно увидеть, появилась ли в ней вода, и какой ее уровень.

Структура грунтов на территории Московской области

Рис. Слои почвы в Московской области

Что касается типа почвы, то разобраться в этом непростом вопросе поможет дополнительная информация:

  • Если при извлечении бура почва рассыпается – это песчаный грунт.
  • Из извлеченного грунта можно скатать цилиндр, но при этом он весь покрывается трещинами – это супеси.
  • Получается скатать цилиндр, но при попытке согнуть он ломается – это легкий суглинок.
  • Скатанный цилиндр на изгибе покрывается многочисленными трещинами – это тяжелый суглинок, в составе которого много глины.
  • Цилиндр скатывается легко, на изгибе не ломается и не трескается – перед нами глинистый грунт.

Используя полученные данные, можно определить какой тип фундамента лучше всего сделать на этом участке и нужно ли делать для него дренажную систему.

Определение несущей способности грунта

Ниже приведена таблица, с помощью которой можно разобраться с несущей способность грунта. Зная, какой тип грунта вы извлекли при пробном бурении, не составит его найти в таблице, и получить больше информации.

Тип почвы Несущая способность
Супесь От 2 до 3 кгс/см 2
Щебенистая почва с пылевато -песчаным заполнителем 6 кгс/см 2
Плотная глина От 4 до 3 кгс/см 2
Щебенистая почва с заполнителем из глины От 4 до 4.5 кгс/см 2
Среднеплотная глина От 3 до 5 кгс/см 2
Гравийная почва с песчаным заполнителем 5 кгс/см 2
Влагонасыщенная глина От 1 до 2 кгс/см 2
Гравийная почва с заполнителем из глины От 3.6 до 6 кгс/см 2
Пластичная глина От 2 до 3 кгс/см 2
Крупный песок Среднеплотный - 5, высокоплотный - 6 кгс/см 2
Суглинок От 1.9 до 3 кгс/см 2
Средний песок Среднеплотный - 4, высокоплотный - 5 кгс/см 2
Песок, супеси, глина, суглинок, зола От 1.5 до 1.9 кгс/см 2
Мелкий песок Среднеплотный - 3, высокоплотный - кгс/см 2
Сухая пылеватая почва Среднеплотная - 2.5, высокоплотная - 3 кгс/см 2
Водонасыщенный песок Среднеплотный - 2, высокоплотный - 3 кгс/см 2
Влажная пылеватая почва Среднеплотная - 1.5, высокоплотная 2 кгс/см 2
Водонасыщенная пылеватая почва Среднеплотная - 1, высокоплотная - 1.5 кгс/см 2

Таблица 1: Расчетное сопротивление разных видов грунтов

Наши услуги

Компания «Богатырь» предоставляет услуги по погружению железобетонных свай – мы забиваем сваи, выполняем лидерное бурение и привезем непосредственно на строительную площадку сваи, с помощью которых и соорудим свайный фундамент. Если вы заинтересованы в том, чтобы проектировка, гео разведка и монтаж свайного фундамента был выполнен высококвалифицированными специалистами, то отправьте запрос или позвоните нам, воспользовавшись формой и контактными данными, указанными внизу сайта.

Расчет фундаментов (основания) от ветровой и снеговой нагрузок

Я так понимаю, что при расчете по I-й ГПС (по несущей способности) фундамент и основания (только п. 2.3 СНиП 2.02.01-83) считается на основное сочетание расчетных нагрузок (куда ветер и снег будут входить с полным расчет значением как кратковременные).
При расчете по II-й ГПС (по деформациям):
- необходимо ли учитывать усилия на фундамент (основания) от ветровой нагрузки (в основном это Q и M).
Некоторые люди молвят, что ветер – это кратковременная нагрузка, а расчет по деформациям должны участвовать только постоянные и длительные нагрузки.
- какая часть расчетной снеговой нагрузки учитывается при расчете фундамента (основания) по деформациям.
Согласно п.2.6 СНиП 2.02.01 снег при расчете по деформациям должен быть длительной нагрузкой.
Я так понимаю: согласно СНиП 2.01.07-85 п.1.7к «К длительным нагрузкам относятся снеговые нагрузки с пониженным расчетным значением, определяемым умножением полного расчетного значения на коэффициент 0,5» и 5.7* «Нормативное значение снеговой нагрузки следует определять умножением расчетного значения на коэффициент 0,7» получаем:
что та часть снеговой нагрузки, участвующая при расчете основания по II ГПС (по деформациям), будет равна:Sснег длит=Sрасч*0.5*0.7= Sрасч*0.35. Прошу подтвердить или опровергнуть.

Прочитал СНиП, несколько тем по форуму, переговорил с несколькими людьми точного однозначного ответа не получил.

Сейчас считаю фундаменты для одноэтажного пром. здания и усилия от ветра существенно сказываются на габарите подошвы фундамента (особенно на крайних колонн)

Расчет фундаментов (основания) от ветровой и снеговой нагрузок

Я так понимаю, что при расчете по I-й ГПС (по несущей способности) фундамент и основания (только п. 2.3 СНиП 2.02.01-83) считается на основное сочетание расчетных нагрузок (куда ветер и снег будут входить с полным расчет значением как кратковременные).
При расчете по II-й ГПС (по деформациям):
- необходимо ли учитывать усилия на фундамент (основания) от ветровой нагрузки (в основном это Q и M).
Некоторые люди молвят, что ветер – это кратковременная нагрузка, а расчет по деформациям должны участвовать только постоянные и длительные нагрузки.
- какая часть расчетной снеговой нагрузки учитывается при расчете фундамента (основания) по деформациям.
Согласно п.2.6 СНиП 2.02.01 снег при расчете по деформациям должен быть длительной нагрузкой.
Я так понимаю: согласно СНиП 2.01.07-85 п.1.7к «К длительным нагрузкам относятся снеговые нагрузки с пониженным расчетным значением, определяемым умножением полного расчетного значения на коэффициент 0,5» и 5.7* «Нормативное значение снеговой нагрузки следует определять умножением расчетного значения на коэффициент 0,7» получаем:
что та часть снеговой нагрузки, участвующая при расчете основания по II ГПС (по деформациям), будет равна:Sснег длит=Sрасч*0.5*0.7= Sрасч*0.35. Прошу подтвердить или опровергнуть.

Прочитал СНиП, несколько тем по форуму, переговорил с несколькими людьми точного однозначного ответа не получил.

Сейчас считаю фундаменты для одноэтажного пром. здания и усилия от ветра существенно сказываются на габарите подошвы фундамента (особенно на крайних колонн)

Расчет фундаментов (основания) от ветровой и снеговой нагрузок

Я так понимаю, что при расчете по I-й ГПС (по несущей способности) фундамент и основания (только п. 2.3 СНиП 2.02.01-83) считается на основное сочетание расчетных нагрузок (куда ветер и снег будут входить с полным расчет значением как кратковременные).
При расчете по II-й ГПС (по деформациям):
- необходимо ли учитывать усилия на фундамент (основания) от ветровой нагрузки (в основном это Q и M).
Некоторые люди молвят, что ветер – это кратковременная нагрузка, а расчет по деформациям должны участвовать только постоянные и длительные нагрузки.
- какая часть расчетной снеговой нагрузки учитывается при расчете фундамента (основания) по деформациям.
Согласно п.2.6 СНиП 2.02.01 снег при расчете по деформациям должен быть длительной нагрузкой.
Я так понимаю: согласно СНиП 2.01.07-85 п.1.7к «К длительным нагрузкам относятся снеговые нагрузки с пониженным расчетным значением, определяемым умножением полного расчетного значения на коэффициент 0,5» и 5.7* «Нормативное значение снеговой нагрузки следует определять умножением расчетного значения на коэффициент 0,7» получаем:
что та часть снеговой нагрузки, участвующая при расчете основания по II ГПС (по деформациям), будет равна:Sснег длит=Sрасч*0.5*0.7= Sрасч*0.35. Прошу подтвердить или опровергнуть.

Прочитал СНиП, несколько тем по форуму, переговорил с несколькими людьми точного однозначного ответа не получил.

Сейчас считаю фундаменты для одноэтажного пром. здания и усилия от ветра существенно сказываются на габарите подошвы фундамента (особенно на крайних колонн)

Расчет фундамента на ветер

РУКОВОДСТВО
ПО РАСЧЕТУ ЗДАНИЙ И СООРУЖЕНИЙ НА ДЕЙСТВИЕ ВЕТРА

Руководство содержит рекомендации по определению ветровой нагрузки на здания и сооружения и указания по динамическому расчету высоких сооружений на действие ветра. В приложениях приведено обоснование основных положений и метода динамического расчета и даны примеры расчета зданий и сооружений на действие ветра.

Руководство предназначено для инженерно-технических работников проектных и научно-исследовательских институтов.

Руководство составлено к главе СНиП II-6-74* "Нагрузки и воздействия. Нормы проектирования".

* На территории Российской Федерации действуют СНиП 2.01.07-85, здесь и далее по тексту. - Примечание изготовителя базы данных.

В Руководстве приведены основные положения по определению ветровой нагрузки на здания и сооружения, а также указания по динамическому расчету высоких сооружений башенного типа (башни, дымовые трубы и т.п.), высоких зданий, антенно-мачтовых систем, градирен и др.

Рассмотрены вопросы аэродинамического возбуждения высоких сооружений и гибких призматических конструкций.

В прил.1 приведены аэродинамические коэффициенты для зданий, сооружений и конструкций.

Прил.2 содержит обоснование основных положений по определению статической составляющей ветровой нагрузки и метода динамического расчета высоких зданий и сооружений на действие турбулентного ветра.

В прил.3 даны примеры расчета высоких зданий и сооружений на действие ветра.

В Руководстве единицы физических величин приняты в системе СИ. Таблица соотношений между единицами этой системы и технической системы МКГСС дана в прил.4.

Руководство разработано в отделении динамики сооружений Центрального научно-исследовательского института строительных конструкций им. В.А.Кучеренко канд. техн. наук М.Ф.Барштейном.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее Руководство составлено к главе СНиП II-6-74 "Нагрузки и воздействия. Нормы проектирования" и распространяется на проектирование промышленных, гражданских и сельскохозяйственных зданий и сооружений.

1.2. Здания и сооружения, проектируемые с учетом настоящего Руководства, должны удовлетворять требованиям главы СНиП II-6-74 "Нагрузки и воздействия", а также требованиям, предъявляемым действующими нормативными документами к аналогичным зданиям и сооружениям.

1.3. Ветровая нагрузка на здания и сооружения должна определяться как сумма статической и динамической составляющих.

Статическая составляющая, соответствующая установившемуся скоростному напору, должна учитываться во всех случаях. Динамическая составляющая, вызываемая пульсациями скоростного напора, должна учитываться при расчете: сооружений с периодом собственных колебаний более 0,25 с (мачт, башен, дымовых труб, опор линий электропередачи, аппаратов колонного типа, транспортерных галерей, открытых этажерок и т.п.); многоэтажных зданий высотой более 40 м; поперечных рам одноэтажных однопролетных производственных зданий высотой более 36 м при отношении высоты к пролету более 1,5.

1.4. Для высоких сооружений круговой цилиндрической формы (дымовых труб, мачт и т.п.) необходимо также производить поверочный расчет на резонанс, возникающий при таких скоростях ветра, когда частота срыва вихрей совпадает с собственной частотой колебаний сооружений поперек потока.

Примечание. В гибких призматических конструкциях при определенных скоростях ветра могут возникнуть колебания поперек потока, связанные с явлением аэродинамической неустойчивости таких тел. Указания по расчету и мероприятия по уменьшению колебаний таких конструкций устанавливаются на основании данных аэродинамических испытаний.


2. НОРМАТИВНОЕ ЗНАЧЕНИЕ СТАТИЧЕСКОЙ СОСТАВЛЯЮЩЕЙ ВЕТРОВОЙ НАГРУЗКИ. КОЭФФИЦИЕНТЫ ПЕРЕГРУЗКИ


2.1. Нормативное значение статической составляющей ветровой нагрузки должно определяться по формуле


, Па, (1)


;


- нормативный скоростной напор ветра на высоте 10 м над поверхностью земли, принимаемый по п.3.1; - плотность воздуха, кг/м; - скорость ветра на высоте 10 м над поверхностью земли, м/с; - коэффициент, учитывающий изменение скоростного напора по высоте, принимаемый в соответствии с указаниями, изложенными в пп.4.1-4.4; - аэродинамический коэффициент, принимаемый по табл.1, прил.1.

2.2. Коэффициент перегрузки для ветровой нагрузки на здания должен приниматься равным 1,2; на высокие сооружения, где ветровая нагрузка имеет решающее значение, 1,3, если в нормах проектирования этих сооружений не приводится другое значение этого коэффициента. Коэффициент перегрузки для дымовых труб высотой от 150 до 300 м рекомендуется принимать равным 1,4, выше 300 м - 1,5.

3. НОРМАТИВНЫЕ СКОРОСТНЫЕ НАПОРЫ

3.1. Нормативный скоростной напор ветра () для данного географического района устанавливается на основе статистического анализа климатологических данных по скоростям ветра в этом районе (районы СССР принимаются по карте, приведенной в главе СНиП II-6-74 "Нагрузки и воздействия. Нормы проектирования").

Скоростные напоры в зависимости от района СССР должны приниматься по табл.1.

Сбор ветровых нагрузок в каркасном доме

В статье "Сбор нагрузок в каркасном доме" на примере были собраны вертикальные нагрузки на фундаменты каркасного дома. При жестком соединении колонн с фундаментами для расчета последних нужно определить также моменты и поперечные силы. В этой статье мы займемся сбором ветровых нагрузок на рамы здания.


Естественно, объема статьи не хватит, чтобы определить нагрузку на все фундаменты, поэтому мы выберем одну колонну на пересечении осей «Б» и «2» (на плане – розовая) и для нее будем стремиться определить нагрузку.

Для этого нам нужно будет «вырезать» две рамы – вдоль оси «Б» и вдоль оси «2», собрать на них ветер, а затем с учетом вертикальных нагрузок из статьи «Сбор нагрузок в каркасном доме» рассчитать эти рамы (расчет рам изложен в статье «Расчет каркаса с плоскими перекрытиями для определения нагрузки на фундамент»).

Сбор ветровой нагрузки на раму вдоль оси «Б» (ветер слева)

Первым делом открываем ДБН В.1.2-2:2006 «Нагрузки и воздействия», раздел 9 «Ветровые нагрузки».

Чтобы найти расчетное значение ветровой нагрузки на 1 кв. метр здания, воспользуемся формулой (9.2):

Значение W 0 – это по сути полное нормативное ветровое давление на высоте до 10 м, мы определим по таблице из приложения Е, выбрав ветровую нагрузку для нужного города; W 0 = 470 Па = 47 кг/м 2 .

Коэффициент надежности по эксплуатационному расчетному значению ветровой нагрузки γfe выбираем из таблицы пункта 9.15 при η = 0,02 (для объектов массового строительства); γfe = 0,21.

Коэффициент С определяется по формуле (9.3):

С = С aer*Ch*Calt*Crel*Cdir*Cd.

Разберем, как находить каждый из коэффициентов.

1) Коэффициент С aer – это аэродинамический коэффициент, который зависит от формы здания. Дело в том, что при одинаковой силе ветра (в нашем случае это 47 кг/м 2 ) при обдуве зданий разной конфигурации мы получим разный эффект, выраженный в усилении или ослаблении этого ветрового давления на поверхность. Коэффициент вполне логичен, а его значение получено опытным путем. Чтобы найти С aer для нашей конструкции, нужно заглянуть в схему 2 приложения И, в которой рассмотрено здание с двускатными покрытиями:


На схеме мы видим разрез дома и его план, а также коэффициенты Ce c индексами от 1 до 3, которые и будут равны искомому С aer для разных частей здания. Заметьте также, что на схеме указано направление ветра, для которого верны данные коэффициенты. Так как рама у нас вдоль оси «Б» не симметрична, необходимо будет в итоге сделать расчет рамы для ветра в двух направлениях: со знаком «+» и «-», выбрав затем наихудшие значения усилий.


Итак, на стену по оси «1» (левую) ветер будет действовать с понижающим коэффициентом Се = + 0,8 (знак «+» означает, что ветер действует на поверхность; знак «-» - ветер действует от поверхности, как бы отрывая от нее).

Для правой стены по оси «4» коэффициент Се3 нужно найти из таблицы того же приложения И, для этого определим два значения:

1 – отношение b / l = 9.5/9 = 1.05, где b – длина здания в плане (перпендикулярно ветру), l – длина здания в плане (вдоль направления ветра);

2 – отношение h 1/ L = 5/9 = 0.55, где h 1 – высота дома от уровня земли до низа крыши; L – длина здания (вдоль направления ветра).

Так как полученные нами значения 1,05 и 0,55 не совпадают с имеющимися в таблице, нужно определять значения Се3 интерполяцией.

Предлагаю сделать это графическим методом (в любой чертежной программе).

Шаг 1. Найдем значение Се3 при b / l = 1.05 и h 1/ L = 0,5:



Откладываем отрезок равный 1 (2-1=1). С одной стороны вниз откладываем отрезок длиной 0,4 (соответствует 1); с другой – 0,5 (соответствует 2). Значения 0,4 и 0,5 мы взяли из таблицы приложения И. Соединяем отрезки наклонной линией. Разбиваем отрезок, равный 1, на 20 частей, т.к. (2-1)/(1,05-1)=20; откладываем вертикальные отрезки в каждой точке (от 1,05 до 1,95) – расстояние между ними по 0,05. Находим первый отрезок (розовый), соответствующий значению 1,05, и измеряем его длину: -0,405 – это искомая величина (с минусом потому, что 0,4 и 0,5 – тоже с минусом).

Шаг 2. Найдем значение Се3 при b / l = 1.05 и h 1/ L = 1:



Делаем все по тому же принципу, только с одной стороны откладываем отрезок длиной 0,5; с другой – 0,6. Получаем значение -0,505.

Шаг 3. Найдем значение Се3 при b / l = 1.05 и h 1/ L = 0,55:



Откладываем отрезок равный 0,5 (1-0,5=0,5). С одной стороны откладываем отрезок длиной 0,405 (соответствует 0,5); с другой – 0,505 (соответствует 1). Соединяем их наклонной линией. Разбиваем отрезок, равный 0,5, на 10 частей, т.к. (1-0,5)/(0,55-0,5)=10; откладываем вертикальные отрезки в каждой точке (от 0,55 до 0,95) – расстояние между ними по 0,05. Находим первый отрезок (розовый), соответствующий значению 0,55, и измеряем его длину: -0,415 – это искомая величина (с минусом потому, что 0,405 и 0,505 – тоже с минусом).

Для левого ската крыши коэффициент Се1 также определяется интерполяцией. Угол наклона крыши 30 градусов, h 1/ L = 0,55.

Шаг 1. Найдем значение Се1 при α = 30 и h1/L = 0,5:



Откладываем отрезок равный 20. С одной стороны откладываем отрезок длиной 0,4 вниз – так как 0,4 у нас со знаком «-» (соответствует 20); с другой – 0,3 вверх – так как 0,3 со знаком «+» (соответствует 40). Соединяем их наклонной линией. Разбиваем отрезок, равный 20, на 2 части, т.к. (40-20)/(30-20)=2. Откладываем отрезок (розовый), соответствующий значению 30 градусов, и измеряем его длину: -0,05 – это искомая величина (с минусом потому, что отрезок отложен вниз).

Шаг 2. Найдем значение Се1 при α = 30 и h 1/ L = 1:



Откладываем отрезок равный 20. С одной стороны откладываем отрезок длиной 0,7 вниз – так как 0,7 у нас со знаком «-» (соответствует 20); с другой – 0,2 вниз – так как 0,2 тоже со знаком «-» (соответствует 40). Соединяем их наклонной линией. Разбиваем отрезок, равный 20, на 2 части, т.к. (40-20)/(30-20)=2. Откладываем отрезок (розовый), соответствующий значению 30 градусов, и измеряем его длину: -0,45 – это искомая величина (с минусом потому, что он отложен вниз).

Шаг 3. Найдем значение Се1 при α = 30 и h 1/ L = 0,55:



Откладываем отрезок равный 0,5. С одной стороны вниз откладываем найденный в шаге 1 отрезок длиной 0,05 (соответствует 0,5); с другой – 0,45 (соответствует 1). Соединяем их наклонной линией. Разбиваем отрезок, равный 0,5, на 10 частей, т.к. (1-0,5)/(0,55-0,5)=10; откладываем вертикальные отрезки в каждой точке (от 0,55 до 0,95) – расстояние между ними по 0,05. Находим первый отрезок (розовый), соответствующий значению 0,55, и измеряем его длину: -0,09 – это искомая величина (с минусом потому, что 0,05 и 0,45 – тоже с минусом).

В итоге, мы нашли искомый коэффициент Се1 при α = 30 и h 1/ L = 0,5:

Для правого ската крыши коэффициент Се2 определяем интерполяцией. Угол наклона крыши 30 градусов, h 1/ L = 0,55.

2) Коэффициент С h – это коэффициент высоты здания, который дает увеличение ветрового давления с увеличением высоты дома. Легко представить: чем выше взобраться, тем сильнее ветер. Обратите внимание, что подбирать этот коэффициент нужно по изменению 1 к ДБН «Нагрузки и воздействия». Согласно этому документу коэффициент Сh определяется по табл.9.01 для зданий и сооружений, старший период собственных колебаний которых не превышает 0,25 сек, и по табл.9.02 для всех других зданий и сооружений. Как разобраться с этими таблицами и периодами собственных колебаний? Если конфигурация здания сбалансирована настолько, что ветер не создаст значительных колебаний конструкции, то значения коэффициента берутся из таблицы 9.01 (в ней коэффициенты значительно меньшие, чем в таблице 9.02). Проверить старший период собственных колебаний конструкции можно, рассчитав ее в программном комплексе (например, с этой задачей справляются Мономах и Лира). Для нашего скромного домика мы возьмем данные из таблицы 9.01.

Зададимся типом местности II – сельская местность.

Для части здания ниже 5 метров С h = 0,7. В нашем примере это как раз стены дома. Для крыши будет следующий коэффициент С h = 0,82 (находится интерполяцией при максимальной высоте дома 7,9 м).

3) Коэффициент С alt – это коэффициент, учитывающий размещения дома на высоте над уровнем моря. При проектировании любого объекта у нас всегда есть данные по абсолютной отметке, к которой мы уже потом привязываем относительные. Если эта абсолютная отметка меньше 500 м, то С alt = 1. Если дом строится в горах, то коэффициент равен удвоенной величине абсолютной отметки (в километрах).

В нашем случае для г. Николаева С alt = 1.

4) Коэффициент С rel – учитывает рельеф местности и повышается, если дом стоит на склоне. Для ровной местности С rel = 1.

5) Коэффициент С dir = 1, можете почитать о нем в ДБН, по-видимому, больше единицы он бывает в каких-то исключительных случаях, о которых ДБН умалчивает.

6) Коэффициент С d = 1, он, как и коэффициент С h , зависит от периода колебаний здания.

Определим коэффициент С и распределенную по поверхности стен и крыши ветровую нагрузку W е (ветер слева):

1) для левой стены по оси «1»

С = 0,8*0,7*1*1*1*1 = 0,56;

W е1 = 0,21*47*0,56 = 5,53 кг/м 2 ;

2) для правой стены по оси «4»

С = -0,415*0,7*1*1*1*1 = -0,29;

W е2 = 0,21*47*(-0,29) = -2,86 кг/м 2 (нагрузка действует в направлении от здания);

3) для левого ската крыши (у оси «1»)

С = -0,09*0,82*1*1*1*1 = -0,07;

W е3 = 0,21*47*(-0,07) = -0,7 кг/м 2 (отрывающая нагрузка);

4) для правого ската крыши (у оси «4»)

С = -0,41*0,82*1*1*1*1 = -0,34;

W е4 = 0,21*47*(-0,34) = -3,36 кг/м 2 (отрывающая нагрузка).

Для варианта «ветер справа» нагрузки будут зеркальны.

Определим ветровую нагрузку W (кг/м), приходящуюся на раму по оси «Б». Для этого нужно умножить распределенную по площади нагрузку W е на расчетный пролет сбора нагрузки для колонны (стропильной ноги). Расчетный пролет для крайних колонн, к которым приложена ветровая нагрузка (согласно плану в начале статьи), равен 2,75 м. Стропильные ноги установлены с шагом 1,2 м, значит для всех стропильных ног, кроме крайних (на торцах здания) расчетный пролет будет равен 1,2 м; для крайних – 1,2/2 = 0,6 м.



1) Ветровая нагрузка W 1 на колонну по оси 1/Б:

W 1 = W е1 * L = 5.53*2.75 = 15.2 кг/м;

2) Ветровая нагрузка W 2 на колонну по оси 4/Б:

3) Ветровая нагрузка W 3 на стропильную ногу у оси 1:

4) Ветровая нагрузка W 4 на стропильную ногу у оси 4:

W 4 = W е4 *L = -3,36 * 1,2 = -4,03 кг/м.



На рисунке значения ветровой нагрузки указаны без знака «-», т.к. стрелками указано направление действия нагрузок.

Сбор ветровой нагрузки на раму вдоль оси «2» (ветер слева)

Расчетное значение ветровой нагрузки на 1 кв. метр здания:

Здесь W 0 = 470 Па = 47 кг/м 2 ; ? fe = 0,21 – как и в предыдущем расчете.

Коэффициент С определяется по формуле:

С = С aer*Ch*Calt*Crel*Cdir*Cd;

здесь Calt = Crel = Cdir = Cd = 1; Ch = 0,7 – до 5 метров; Ch = 0,82 – до верха дома (как в предыдущем расчете).

Найдем С aer для частей здания (ветер слева).

На стену по оси «А» (левую) ветер будет действовать с понижающим коэффициентом Се = + 0,8.

Для правой стены по оси «Г» коэффициент Се3 нужно найти из таблицы, для этого определим два значения:

1 – отношение b / l = 9 /9,5 = 0,95, где b – длина здания в плане (перпендикулярно ветру), l – длина здания в плане (вдоль направления ветра);

2 – отношение h 1/ L = 5/9,5 = 0.53, где h 1 – высота дома от уровня земли до низа крыши; L – ширина здания (вдоль направления ветра).

Согласно примечанию к схеме 2 приложения И (ДБН «Нагрузки и воздействия») при ветре, перпендикулярном торцу здания, для всего покрытия Се = -0,7.



Определим коэффициент С и распределенную по поверхности стен и крыши ветровую нагрузку W е (ветер слева):

1) для левой стены по оси «А» на уровне до 5 м:

С = 0,8*0,7*1*1*1*1 = 0,56;

W е1 = 0,21*47*0,56 = 5,53 кг/м 2 ;

для левой стены по оси «А» на уровне 7,9 м:

С = 0,8*0,82*1*1*1*1 = 0,66;

W е1' = 0,21*47*0,66 = 6,51 кг/м 2 ;

2) для правой стены по оси «Г» на уровне до 5 м:

С = -0,406*0,7*1*1*1*1 = -0,28;

W е2 = 0,21*47*(-0,28) = -2,76 кг/м 2 (нагрузка действует в направлении от здания);

для правой стены по оси «Г» на уровне 7,9 м:

С = -0,406*0,82*1*1*1*1 = -0,33;

W е2' = 0,21*47*(-0,33) = -3,26 кг/м 2 (нагрузка действует в направлении от здания);

3) для коньковой балки по оси «Б»:

С = -0,7*0,82*1*1*1*1 = -0,57;

W е3 = 0,21*47*(-0,57) = -5,63 кг/м 2 (отрывающая нагрузка).

Для варианта «ветер справа» нагрузки будут зеркальны.

Определим ветровую нагрузку W (кг/м), приходящуюся на раму по оси «2». Для этого нужно умножить распределенную по площади нагрузку W е на расчетный пролет сбора нагрузки для колонны (балки). Расчетный пролет для крайних колонн, к которым приложена ветровая нагрузка, разный для первого и второго этажей, т.к. на первом этаже есть колонна по оси «3», а на втором этаже этой колонны уже нет. В итоге, расчетный пролет для первого этажа (до трех метров) равен 3 м, а для второго этажа – 4,5 м. Уменьшением нагрузки на верхнюю часть колонны, в связи с уменьшением площади сбора нагрузки (стена сужается из-за крыши), пренебрегаем для упрощения расчета, эта нагрузка пойдет в запас. Расчетный пролет для коньковой балки равен сумме половины пролетов каждой стропильной ноги: 2,6 + 2,6 = 5,2 м.



1) Ветровая нагрузка W 1 на колонну по оси 2/А на 1 этаже:

W 1 = W е1 * L = 5.53*2.75 = 15.2 кг/м;

Ветровая нагрузка W 1 на колонну по оси 2/А на 2 этаже до отметки +5 м:

W 1 = W е1 * L = 5.53*4,5 = 24,9 кг/м;

W 1 = W е1' * L = 6,51*4,5 = 29,3 кг/м

(ветровая нагрузка на уровне от 5 до 7,9 м переменная, она возрастает от 24,9 до 29,3 кг/м);

2) Ветровая нагрузка W 2 на колонну по оси 2/Г на 1 этаже:

Ветровая нагрузка W 2 на колонну по оси 2/А на 2 этаже до отметки +5 м:

(ветровая нагрузка на уровне от 5 до 7,9 м переменная, она возрастает от -12,4 до -14,7 кг/м);

3) Ветровая нагрузка W 3 на коньковую балку по оси «2»:



Итак, ветровые нагрузки собраны. Можно приступать к расчету рам дома для определения нагрузок на столбчатые фундаменты.

Еще полезные статьи:

А в комментариях к этой теме прошу задавать вопросы только по содержанию статьи.

Расчет ветровой нагрузки на здание

Ветровое загружение является одним из самых сложных для понимания, особенно если при расчетах конструкций на ветровую нагрузку учитывать пульсацию ветра. Расчет ветровой нагрузки с учетом пульсации ветра предполагает необходимость: вычислять частоты собственных колебаний здания или сооружения, учитывать пиковую ветровую нагрузку, резонансное вихревое возбуждение и т.д.

Как видим, тема довольна сложная и мы ее разберем в следующих статьях. Поэтому в данном случае немного упростим задачу и рассмотрим расчет ветровой нагрузки на стены прямоугольных в плане зданий с одно- или двускатной кровлей без учета пульсации ветра (в соответствии с СНиП «Нагрузки и воздействия).

Содержание скрыть

Общие положения

Нормативное значение основной ветровой нагрузки w следует определять как сумму средней w m и пульсационной w ps составляющих:

w = w m + w ps

w ps – пульсационная составляющая, применяется при расчетах с учетом пульсации ветра.

Обычно вычисляют только w m – нормативное значение средней составляющей ветровой нагрузки.

Нормативное значение ветровой нагрузки

w 0 – нормативное значение ветрового давления (скоростного напора);
k – коэффициент, учитывающий изменение ветрового давления по высоте. Зависит от эквивалентной высоты ze, п оэтому коэффициент k в формулах часто записывают как k (ze).
c – аэродинамический коэффициент.


Нормативное значение ветрового давления

Нормативное значение ветрового давления w 0 принимается в зависимости от ветрового района:

Карта ветровых районов:

Карта ветровых районов

Карта ветровых районов

Коэффициент k, учитывающий изменение ветрового давления для высоты z e

Эквивалентная высота z e отличается от z (высоты от земли до расчетной отметки) и рассчитывается в соответствии со следующей таблицей:

z – высота от поверхности земли;

d – размер здания в направлении, перпендикулярном расчетному направлению ветра (поперечный размер);

h – высота здания.

Если эквивалентная высота здания или сооружения ze ≤ 300 м, то коэффициент k определяется в зависимости от типа местности по следующей таблице:

В данной таблице типы местности:

А – открытые побережья морей, озер и водохранилищ, сельские местности, в том числе с постройками высотой менее 10 м, пустыни, степи, лесостепи, тундра;

В – городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;

С – городские районы с плотной застройкой зданиями высотой более 25 м.

Сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны сооружения на расстоянии 30h – при высоте сооружения h < 60м и на расстоянии 2км – при h > 60м.

Аэродинамический коэффициент с e

Аэродинамический коэффициент внешнего давления c e учитывает изменение направления давления нормальных сил в зависимости от того, с какой стороны находится стена или скат крыши по отношению к ветру, с подветренной или с наветренной.

Знак плюс у аэродинамических коэффициентов определяет направление давления ветра на соответствующую поверхность (активное давление), знак “минус” – от поверхности (отсос).

В новом СП20.12330.11 в отличие от СНиП введено зонирование участков стен и крыши, наподобие Еврокоду.

Прямоугольные в плане здания с двускатными покрытиями

В соответствии с СП 20.13330.2016 (приложение В.1.2), аэродинамический коэффициент c для наветренных, подветренных и различных участков боковых стен прямоугольных в плане с двускатными покрытиями зданий определяется в соответствии со следующей таблицей:

стена

стена

План и боковые стены здания для определения ветровой нагрузки

Вертикальные стены прямоугольных в плане зданий

Величина е равняется меньшему из: b или 2h

Рассмотрим только боковой ветер, нормальный к большей (более длинной) стороне здания.

Skhema 2

Знак «плюс» у коэффициентов c e соответствует направлению давления ветра на соответствующей поверхности (активное давление); знак «минус» – от поверхности (отсос ветра).

Расчетное значение ветровой нагрузки

γ f = 1,4 – коэффициент надежности по ветровой нагрузке

Пример расчета ветровой нагрузки на здание высотой менее 5 метров

Собрать ветровую нагрузку на колонны рамы здания высотой 4м прямоугольной в плане формы. Район строительства – сельская местность вблизи г. Курск.

Skhema 3
Skhema 3.1

Город Курск находится во II ветровом районе с нормативным значением ветрового давления:

Тип местности А, значит изменение давления ветра по высоте в соответствии с таблицей 2 (у нас высота строения 4м < 5м):

Аэродинамический коэффициент с:

– для стены с наветренной стороны с e = 0,8;

– для стены с подветренной стороны с e = -0,5

Коэффициент надежности по ветровой нагрузке γ f = 1,4

Расчетное значение ветровой нагрузки:

w p активное давление = 30 ∙ 0,75 ∙ 0,8 ∙ 1,4 = 25,8 кг/м 2 ;

w p отсос = 30 ∙ 0,75 ∙ 0,5 ∙ 1,4 = 15,8 кг/м 2 ;

Собираем ветровую нагрузку на колонны , учитывая грузовые площади для крайних (3 м) и средних (6 м) колон:

Стена с наветренной стороны:

q 1 кр = 25,8 кг/м 2 ∙ 3 м = 75,6 кг/м – для крайней колонны;

q 2 ср = 25,8 кг/м 2 ∙ 6 м = 151,2 кг/м – для средней колонны;

Стена с подветренной стороны:

q 1 кр = 15,8 кг/м 2 ∙ 3 м = 47,4 кг/м – для крайней колонны;

q 2 ср = 25,8 кг/м 2 ∙ 6 м = 94,8 кг/м – для средней колонны;

Skhema 4

Пример расчета ветровой нагрузки на здание высотой более 5 метров

Собрать ветровую нагрузку на колонны рамы здания высотой более 5м (см разрез на чертеже) прямоугольной в плане формы. Район строительства – такой же, как и в предыдущем примере – сельская местность вблизи г. Курск.

Расчёт ветровой нагрузки на здание высотой более 5м

Расчетная схема для расчёта ветровой нагрузки на здание высотой более 5м

Город Курск находится во II ветровом районе, а значит нормативное значение ветрового давления будет равно:

w 0 = 30 кгс/м 2

Аэродинамический коэффициент с:

– для стены с наветренной стороны с e = 0,8;

– для стены с подветренной стороны с e = -0,5

Т ак как коэффициент k зависит от эквивалентной высоты z e , следовательно имеет переменное значение по высоте здания, а ветровые нагрузки q 1 и q 2 – величины постоянные, то чтобы правильно рассчитать значение ветровой нагрузки w p , нам необходимо найти эквивалентную нагрузку qэкв

Расчетное значение ветровой нагрузки: w p = q экв ⋅ c e ⋅ γ f

Formula 1

Skhema 7

Formula 2.1

Все моменты считаем относительно нулевой отметки.

Skhema 9
Formula 3.1

Skhema 8

Formula 4

Formula 5

Расчетное значение ветровой нагрузки:

w p активное давление = 27,71 ∙ 0,8 ∙ 1,4 = 31,03 кг/м 2

w p отсос = 27,71 ∙ 0,5 ∙ 1,4 = 19,4 кг/м 2

Ветровая нагрузка со стороны активного давления ветра:

q 1 кр = 31,03 кг/м 2 ∙ 3 м = 93,09 кг/м – для крайней колонны

q1 ср = 31,03 кг/м 2 ∙ 6 м = 186,2 кг/м – для средней колонны

Ветровая нагрузка со стороны отсоса ветра:

q 2 кр = 19,4 кг/м 2 ∙ 3 м = 58,2 кг/м – для крайней колонны

q 2 ср = 19,4 кг/м 2 ∙ 6 м = 116,4 кг/м – для средней колонны

Считается, что ветровую нагрузку W 0 следует прикладывать к нижнему поясу фермы.

Эквивалентная нагрузка q экв действует до низа фермы, а верхнюю часть ветровой нагрузки мы учитываем с помощью W 0 . (В этом случае не нужно путать значения w 0 – нормативное значение ветрового давления и W 0 – ветровую нагрузку в верхней части рамы.)

Находим W 0 – равнодействующую ветровой нагрузки в уровне нижнего пояса фермы, которая действует от низа фермы до наивысшей точки конструкции.

W 0 = W + W ′ – активное давление + отсос

Formula 6

B = 6 м – пролет здания;

H покр = H фермы + H фонаря + H плиты покрытия + пирог крыши = 3 м;

Читайте также: