Расстояние от шпунта до фундамента

Обновлено: 04.05.2024

5. Проектирование свайных фундаментов

Выбор вариантов свайных фундаментов на площадках, примыкающих вплотную к заселенным зданиям в районах старой городской застройки и к эксплуатируемым промышленным объектам, требует детальной проработки, поскольку погружение свай забивкой или вибрированием в этих условиях обычно крайне нежелательно, а применение другой технологии погружения и свай иных типов приводит к значительному удорожанию строительства.

Как было указано в гл. 2, при погружении свай около существующих зданий возникают колебания подземных конструкций, на которые они обычно не рассчитаны, и грунтов основания. Все это может вызвать повреждение конструкций, уплотнение грунтов или потерю устойчивости грунтов с выпиранием их из-под подошвы фундаментов, дополнительную просадку или осадку основания с аварийными последствиями. Поэтому до разработки проекта свайных фундаментов вблизи существующих знаний необходимо установить, какое влияние может оказать забивка или вибропогружение свай на состояние примыкающих зданий. На этой основе выбираются и типы свай.

Опасность колебаний оценивают по допустимому ускорению колебаний, определяя допустимое расстояние от зданий до ближайших забиваемых свай, на котором здание или сооружение не получит дополнительных повреждений. Если свайное поле находится за пределами этого расстояния (для естественных оснований, сложенных выдержанными по мощности слоями однородных песчаных грунтов средней плотности и плотных, а также глинистых грунтов с показателем их текучести IL < 1 это расстояние принимается не менее 20 м), ограничений на производство сваебойных работ не накладывается. При наличии в зданиях приборов, машин и оборудования безопасное расстояние L определяется допустимой скоростью или ускорением колебаний, принимаемых в зависимости от класса машин и приборов по чувствительности к колебаниям. Если уровень колебаний окажется недопустимым для приборов, машин или оборудования, то следует их виброизолировать, или остановить на время забивки свай, или увеличить расстояние до ближайших забиваемых свай.

Допустимый уровень колебаний на рабочих местах проверяется в соответствии с требованиями «Санитарных норм проектирования промышленных предприятий» и «Положения о режиме работников виброопасных профессий, организаций и предприятий Минмонтажспецстроя СССР». Для жилых зданий допустимый уровень колебаний устанавливается в соответствии с «Санитарными нормами допустимых вибраций в жилых домах».

До настоящего времени вопрос о допустимости забивки свай вблизи существующих зданий в должной степени теоретически и экспериментально не изучен. Допустимое расстояние зависит: от характеристик и свойств грунтов, залегающих под существующими фундаментами и в основании проектируемого здания; уровня подземных вод; прочности несущих конструкций существующего здания и наличия в них каких-либо дефектов; назначения здания и размещенных в нем производств; числа забиваемых свай, их типа и др.

Наименьшее удаление свай от края существующих фундаментов должно составлять пять поперечников свай (1,5—2 м). Минимальное расстояние определяется также размерами сваебойного оборудования, которое должно работать в непосредственной близости от стен домов и сооружений.

Применение забивных свай в непосредственной близости от существующих зданий возможно в том случае, если налицо ряд условий, снижающих вероятность образования повреждений существующих зданий и сооружений от вибрации:

  • существующее здание построено на сваях, забитых в относительно плотные грунты;
  • ростверки фундаментов проектируемого здания располагаются не глубже подошвы существующих фундаментов мелкого заложения;
  • в основании существующих зданий отсутствуют слабые и структурно неустойчивые грунты;
  • состояние конструкций существующих зданий хорошее;
  • существующее здание имеет повышенную сейсмическую прочность, т.е. имеет полный каркас, монолитные или сборно-монолитные перекрытия, пояса армирования в стенах на нескольких уровнях, железобетонные фундаменты в виде сплошных плит, перекрестных монолитных или сборно-монолитных лент и т.п.

Забивные сваи, погружаемые обычным способом, использовать не рекомендуется:

  • при II или III категории повреждений существующих зданий и физическом их износе более 40 % (см. табл. 3.2);
  • при относительно низкой сейсмической прочности зданий (массивных несущих стенах, сводчатых и клинчатых перекрытиях и перемычках, перекрытиях по деревянным балкам и т.п.);
  • если в основании существующих домов залегают рыхлые пески или слабые глинистые грунты при высоком уровне подземных вод.

При разработке проектов в указанных случаях целесообразно использовать все технические возможности для увеличения разрыва между существующими фундаментами и ближайшими к ним рядами (кустами) забиваемых свай, поскольку с их удалением интенсивность динамических воздействий падает довольно быстро и уже на расстоянии 2—4 м снижается примерно вдвое, и применять технические приемы, облегчающие погружение свай (например, лидерные скважины, сваи в тиксотропной рубашке) 1 .

1 В непосредственной близости от фундаментов применение подмыва при погружении свай недопустимо. Минимальное расстояние от фундаментов, допускающее такую технологию, — 20 м (СНиП 3.02.01-83).

Уфимским НИИпромстроем разработана технология забивки свай в тиксотропной рубашке. Применение такой технологии позволяет уменьшить необходимое число ударов для погружения свай на заданную глубину в глинистые грунты [9]. Этим достигается снижение суммарного динамического воздействия на окружающую среду (по сравнению с обычной технологией), т.е. уменьшается опасность повреждения конструкций существующих зданий, уровень шума, отрицательное влияние технологических факторов на существующую застройку.

Еникиев А.X., Ковалев В.Ф. Опыт устройства свайного фундамента вблизи существующих зданий. // Возведение фундаментов при реконструкции предприятий в стесненных условиях строительства: Материалы семинара

В тех случаях когда забивка свай недопустима, возможно применение набивных свай, в том числе с уширением в нижней части. При выборе типа и конструкции буронабивных свай (включая их длину, диаметр, наличие уширения) рекомендуется руководствоваться следующими положениями:

  • при наличии в основании существующих зданий песков и супесей, способных уплотняться при динамических воздействиях, а также тиксотропных грунтов (ленточные глинистые грунты, илы, супеси) следует применять проходку скважин вращательным бурением под глинистым раствором, а бетонирование производить способом вертикально перемещающейся трубы (ВПТ);
  • если буронабивные сваи используются только в зоне примыкания, нижние концы их необходимо располагать на той же глубине, что и у забивных свай, чтобы не вызывать искусственного развития неравномерных осадок разных частей нового здания (в водонасыщенных песчаных грунтах может быть утечка грунта в пробуренные рядом скважины).

При проходке скважин, расположенных на расстоянии l ≤ 2 df от фундаментов существующего здания (здесь df — глубина заложения подошвы этих фундаментов), обязательна обсадка их трубами; скважины, расположенные на расстоянии 2 dfllh (где lh — длина ствола скважины), можно проходить без обсадных труб, но обязательно под глинистым раствором. В остальной части котлована может быть использована технология, определяемая только особенностями грунтов площадки, т.е. использование обсадных труб и глинистого раствора может оказаться не обязательным.

Применение вдавливаемых свай в непосредственной близости от фундаментов существующих зданий недопустимо при наличии в основании глинистых грунтов, которые могут существенно снизить показатели механических свойств при перемятии (сопротивление сдвигу более чем в 2 раза, модуль деформации более чем в 1,5 раза). Данные о способности грунтов к изменению свойств должны содержаться в материалах изысканий и характеризоваться показателями чувствительности грунта к нарушению его природного сложения.

Таким образом, разработку технической документации в рассматриваемых условиях следует производить после тщательного обследования состояния существующих зданий, сооружений, подземных коммуникаций, а также выполнения детальных инженерно-геологических и гидрогеологических изысканий. Проектирование таких объектов, как правило, выполняется силами специализированных проектных и исследовательских организаций.

Сотников С.Н. Проектирование и возведение фундаментов вблизи существующих сооружений

Шпунт вблизи существующего здания

Дело ясное что дело тёмное
Какое здание, какие у него фундаменты и какая у них глубина заложения?
Минимально зависит от технологии свай т.е. буронабивные или вдавливаемые (последние лучше подальше) так как когда молот бьёт обычно в радиусе метров 50 можно ожидать трещин.

Минимально не советовал бы белать буронабивные блтже 0.5 митра от края фундамента, а по хорошему метра 2 от здания отступил бы в принципе (в силу множества причин и неясности ситуации в конкретном случае)

__________________
:cool:

Фундамент существующего здания - плита, глубиной заложения -7,2м от поверхности земли. Само здание кирпичное.
Вопрос, а при чем молот если сваи вдавливания?

Для буронабивных свай из-за габарита оборудования принимали расстояние в свету от стены здания 800мм. Немного здесь есть Как тут вставить файлик то забыл, а вот вроде нашел Последний раз редактировалось FOCUS, 20.01.2015 в 16:16 .

проектирование гидротехнических сооружений

Минимальное расстоние от шпунтовой стенки до существующего здания целиком и полностью обусловлено технологией погружения/изготовления шпунта.
Забивной шпунт в этом случае не годится - т.к. затрещит здание существующее.
Остаются варианты:
буросекущиеся сваи в качестве шпунтового ограждения
задавливаемый шпунт

И тот и другой вариант зависит от оборудования используемого при производстве работ: а это могут быть громоздкие машины, а могут быть компактные вполне. Поинтересуйтесь какие подрядные организации в городе - каким оборудованием располагают.
Задавливаемый шпунт можно минимально приблизить к стене существующего здания до 0.4-0.6м (в свету - между стеной и шпунтом) - но это если оборудование будет компактное. Если нет - можно "попасть".
Про буросекущиеся сваи - выше написали - в свету от 0.5 до 0.8м, но опять-таки с оглядкой на оборудование надо принимать.

Спасибо всемм за участие! Буду пытать местных подрядчиков на предмет возможности их оборудования.

проектировщик ж/б, ОиФ

Санкт-Петербург Про буросекущиеся сваи - выше написали - в свету от 0.5 до 0.8м, но опять-таки с оглядкой на оборудование надо принимать. Еще бы добавил - с оглядкой на технологию Хмм
а в упор вибропогружением нельзя колошматить что ле?

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

Ну что, товарищи инженеры, придётся вас порадовать.

Шпунтовая стенка отсекает напряжения от фундамента в НДС основания фундаментов здания, если пересекает зону этих НДс от фундамента. Площадь уменьшается, нагрузки остаются, напряжение растёт и начинаются пластические деформации.
По-русски говоря забъёте шпунт рядом - здание осядет и треснет.
Ну если все нагрузки, конечно, тютелька в тютельку.
Традиционно считается что напряжения расходятся от фундамента под 45 градусов, но нигде в нормах этого не видел.

В качестве бонуса расскажу про чужой опыт шпунтового ограждения котлована для здания глубиной 5 м на расстоянии 100 м от существующего здания. Из третьих рук, так сказать.
Со слов проф. Сахарова СПбГАСУ.
Итого шпунтовая стенка выдержала, но покорёжилась, раскосы и распорки оказались сильнодеформированы. Строители испугались и недокопали все 5 м. В это время поплыл соседний дом.
Заказали геотехнический расчёт в АНСИСЕ, оказалось что современные нормы по расчёту шпунтов недоучитывают влияние соседних зданий или слишком распорки делают слабенькими, что-то такое.
В итоге вроде бы там сделали стену в грунте. Если не ошибаюсь.


Так что бережней со зданиями. Там люди живут.
Используйте метод вдавливания, нет шума, нет пыли, 24 часа в сутки, безопасное погружение для всех.
И вблизи больших зданий не используйте шпунтовые ограждения ниже низа их фуундаментов.

Шпунт вблизи существующего здания

Дело ясное что дело тёмное
Какое здание, какие у него фундаменты и какая у них глубина заложения?
Минимально зависит от технологии свай т.е. буронабивные или вдавливаемые (последние лучше подальше) так как когда молот бьёт обычно в радиусе метров 50 можно ожидать трещин.

Минимально не советовал бы белать буронабивные блтже 0.5 митра от края фундамента, а по хорошему метра 2 от здания отступил бы в принципе (в силу множества причин и неясности ситуации в конкретном случае)

__________________
:cool:

Фундамент существующего здания - плита, глубиной заложения -7,2м от поверхности земли. Само здание кирпичное.
Вопрос, а при чем молот если сваи вдавливания?

Для буронабивных свай из-за габарита оборудования принимали расстояние в свету от стены здания 800мм. Немного здесь есть Как тут вставить файлик то забыл, а вот вроде нашел Последний раз редактировалось FOCUS, 20.01.2015 в 16:16 .

проектирование гидротехнических сооружений

Минимальное расстоние от шпунтовой стенки до существующего здания целиком и полностью обусловлено технологией погружения/изготовления шпунта.
Забивной шпунт в этом случае не годится - т.к. затрещит здание существующее.
Остаются варианты:
буросекущиеся сваи в качестве шпунтового ограждения
задавливаемый шпунт

И тот и другой вариант зависит от оборудования используемого при производстве работ: а это могут быть громоздкие машины, а могут быть компактные вполне. Поинтересуйтесь какие подрядные организации в городе - каким оборудованием располагают.
Задавливаемый шпунт можно минимально приблизить к стене существующего здания до 0.4-0.6м (в свету - между стеной и шпунтом) - но это если оборудование будет компактное. Если нет - можно "попасть".
Про буросекущиеся сваи - выше написали - в свету от 0.5 до 0.8м, но опять-таки с оглядкой на оборудование надо принимать.

Спасибо всемм за участие! Буду пытать местных подрядчиков на предмет возможности их оборудования.

проектировщик ж/б, ОиФ

Санкт-Петербург Про буросекущиеся сваи - выше написали - в свету от 0.5 до 0.8м, но опять-таки с оглядкой на оборудование надо принимать. Еще бы добавил - с оглядкой на технологию Хмм
а в упор вибропогружением нельзя колошматить что ле?

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

Ну что, товарищи инженеры, придётся вас порадовать.

Шпунтовая стенка отсекает напряжения от фундамента в НДС основания фундаментов здания, если пересекает зону этих НДс от фундамента. Площадь уменьшается, нагрузки остаются, напряжение растёт и начинаются пластические деформации.
По-русски говоря забъёте шпунт рядом - здание осядет и треснет.
Ну если все нагрузки, конечно, тютелька в тютельку.
Традиционно считается что напряжения расходятся от фундамента под 45 градусов, но нигде в нормах этого не видел.

В качестве бонуса расскажу про чужой опыт шпунтового ограждения котлована для здания глубиной 5 м на расстоянии 100 м от существующего здания. Из третьих рук, так сказать.
Со слов проф. Сахарова СПбГАСУ.
Итого шпунтовая стенка выдержала, но покорёжилась, раскосы и распорки оказались сильнодеформированы. Строители испугались и недокопали все 5 м. В это время поплыл соседний дом.
Заказали геотехнический расчёт в АНСИСЕ, оказалось что современные нормы по расчёту шпунтов недоучитывают влияние соседних зданий или слишком распорки делают слабенькими, что-то такое.
В итоге вроде бы там сделали стену в грунте. Если не ошибаюсь.


Так что бережней со зданиями. Там люди живут.
Используйте метод вдавливания, нет шума, нет пыли, 24 часа в сутки, безопасное погружение для всех.
И вблизи больших зданий не используйте шпунтовые ограждения ниже низа их фуундаментов.

Минимальное расстояние от фундамента до шпунта

Необходимость, виды и способы установки шпунтового ограждения

Укрепление стенок шпунтами – надежный способ защиты котлована.

Рассмотрим технологию шпунтового ограждения котлована подробнее.

Что это такое?

Связь отдельных шпунтов позволяет конструкции выдерживать большие нагрузки и оставаться надежным укреплением для стен котлована.

Повышенная прочность и устойчивость позволяют применять шпунтовое ограждение на слабых почвах:

  • песчаных,
  • болотистых,
  • с высоким уровнем грунтовых вод.

Некоторые разновидности шпунтов используются при укреплении береговой линии. Они широко применяются для широких котлованов с глубиной более пяти метров.

Строительные нормы и правила

СП 45.13330.2017 регламентирует обустройство земляных сооружений. В соответствии с требованиями документа при обустройстве шпунтовых ограждений, а также других строительных работах, необходимо учитывать пересечения с действующими коммуникациями. Особенное внимание следует уделять линиям связи, силовым кабелям и магистральным трубопроводам.

СНиП 12-04-2002 «Безопасность труда в строительстве» не требует применения каких-то конкретных методов укрепления отвесных стенок котлованов и траншей, но запрещает осуществление работ в таких выемках без дополнительного укрепления стен, если их глубина превышает:

  • 1 метр, при работе на песчаной почве;
  • 1,25 метра, при строительстве в супесях;
  • 1,5 метра для глин и суглинков;
  • не более 2 метров для плотных грунтов.

Также обустройство конструкций ограждений регламентируются с помощью ГОСТ Р 57365—2016 «Стены шпунтовые. Правила производства работ».

Согласно данному документу, рекомендуется заранее проводить предварительную подготовку строительного участка к размещению шпунтов, маркировать отдельные сваи, а также проводить инженерные изыскания для определения необходимости использования шпунтового ограждения.

Разновидности

Для создания ограждений котлованов применяется несколько видов шпунтов. Каждая разновидность имеет свои особенности и назначение, вид шпунта также может ограничивать возможности применения технологий монтажа.

Шпунт Ларсена

Представляет собой металлический профиль особой формы, называемой «корытообразной». Края шпунта снабжены замками, которые делают ограждение цельной конструкцией. Размеры профиля могут достигать 35 метров в длину. Ширина составляет 0,8 м, а толщина варьируется от 1,5 до 2,3 см.

Существуют различные модели данного вида шпунта, которые могут отличаться как размерами, так и формой. Одна из моделей – Л5:

  1. Прочность – 800 кН/м.
  2. Один погонный метр профиля имеет вес 100 кг.
  3. В качестве материала используется Ст3 или 16ХГ.

Как правило, шпунт Ларсена монтируется с помощью вибрационного оборудования. Сфера применения – сложные и повышенной сложности объекты. Хорошо показывает себя на неплотных грунтах, болотистой почве, защищает котлованы от грунтовых вод.

К недостаткам изделия можно отнести высокую стоимость и то, что при установке требуется более высокая точность монтажа, чем при работе с другими видами шпунтов.

Все современные стальные шпунты представляют собой различные аналоги шпунта Ларсена. Могут отличаться от него формой и конструкцией замков, которые улучшают прочностные характеристики, а также упрощают забивку свай.

По функциональному же назначению и свойствам стальные шпунты других конфигураций совершенно идентичны шпунту Ларсена.

Металлические трубчатые сварные

Особый вид металлических стальных шпунтов – трубчатые сварные. За счет своей формы они выделяются среди аналогов и отличаются от шпунтов Ларсена повышенной в несколько раз устойчивостью к нагрузкам. Другое достоинство – большие сроки службы. К недостаткам относится высокая цена крепления устройства из стальных труб.

Деревянные

Шпунты, изготовленные из древесины – самая старая разновидность. Допускается делать ограждения из бревен, досок, бруса. Элементы погружают в почву на глубину до 6 метров, монтируют в один или два ряда, вплотную друг к другу.

При обустройстве ограждения из специально обработанного бруса, в каждом элементе имеется выступ и паз, что позволяет связать между собой элементы конструкции.

Основные преимущества:

  • доступность материала,
  • относительно невысокая его цена,
  • возможность установки без использования специальной техники.

К отрицательным качествам стоит отнести трудоемкость монтажа, низкие прочность и устойчивость к воздействию окружающей среды в сравнении с металлическими и пластиковыми шпунтами.

Полимерные

В качестве альтернативы металлическим шпунтам, можно применять элементы из полимерных материалов. Наиболее популярны ограждения из ПВХ.

Они обладают повышенной сопротивляемостью к коррозии, стойки к механическому воздействию. Панели из ПВХ обладают небольшим весом, а потому облегчается их установка, что уменьшает сроки монтажа.

Железобетон

Изготовлены из армированного бетона. По краям имеют пазы, которые позволяют соединять соседние шпунты в ограждении. Максимальная длина – 16 метров. Отличаются большим весом, а также склонностью к растрескиванию, потере целостности при механическом повреждении.

Нет возможности демонтажа, после возведения здания становятся внешним периметром фундамента. Применяются при постройке гидротехнических сооружений.

Применяемые технологии шпунтирования

Основные разновидности методик погружения шпунта, которые могут применяться как по отдельности, так и комбинироваться в различных сочетаниях:

  • ударный способ;
  • вибрационный способ;
  • вдавливание.

Для работы применяются разнообразные машины. Каждая из технологий предъявляет к технике особые требования. Наибольшее распространение имеют следующие установки:

  1. Низкочастотные вибромашины (9-10 Гц, усилие до 1700 кН).
  2. Среднечастотные (10-30 Гц, усилие 270 кН).
  3. Высокочастотные агрегаты с возможностью регулировки дисбаланса.
  4. Вибраторы высокой частоты с настройкой дисбаланса и нерезонансными фазами включения-выключения.
  5. Вдавливающие системы.
  6. Механические молоты.
  7. Воздушные молоты.
  8. Гидравлические молоты.
  9. Дизельные молоты.

Наиболее эффективным являются вибрационные методы, а использование свайного копра позволяет вибраторам достичь превосходной точности при монтаже шпунта на заданную глубину.

Вибропогружатель

Перед началом работы ее соединяют со шпунтом. За счет вызываемых оборудованием частотных колебаний плотность грунта уменьшается, и свая постепенно проникает в землю, уходя на требуемую глубину.

Основные части агрегата:

  • вибровозбудитель с двумя или четырьмя электродвигателями;
  • гаситель динамического воздействия;
  • гидравлический наголовник.

Хоть работа вибромашин и меньше влияет на окружающее пространство, чем действие забивных свайных агрегатов, но вибрация также может оказывать отрицательное действие на окружающие сооружения. Передаваясь через грунт, она хорошо воспринимается фундаментами зданий и передается на несущие конструкции, что может приводить к их разрушению.

Для снижения эффекта, вызываемого вибрациями, используют высокочастотные установки, их негативное воздействие на близлежащие строения оказывается существенно меньше.

Забивка гидравлическим молотом

Вибрационные методы плохо действуют, если требуется устанавливать шпунтовое ограждение в плотный песок, гравий, в случае, если они расположены выше грунтовых вод, а также в связанный грунт. В этом случае более действенными являются ударные способы монтажа свай.

Для работы может использоваться гидравлический молот, который представляет собой вертикально установленную штангу с бойком. Боек перемещается по штанге и ударяет по шпунту, загоняя его в землю.

Это наиболее простой и дешевый способ монтажа шпунта, однако данная методика неприменима в густозаселенных районах, рядом с историческими и архитектурными памятниками.

Через грунт на окружающие сооружения передаются ударные нагрузки, которые приводят к снижению прочности фундаментов, несущих конструкций и может вызывать деформацию сооружений.

Забивка с лидерным бурением

Для этого применяется шнековый бур, который осуществляет локальное разрыхление земли, создавая скважину с низкой плотностью грунта. Процесс бурения осуществляется с помощью специальных агрегатов – мобильных буровых установок.

Данный метод успешно используется при работе на мерзлых и плотных грунтах, где необходимость его применения очевидна. Лидерное бурение востребовано при строительстве на почвах с низкой плотностью – здесь это обусловлено невозможностью применять вибрационные и ударные методы погружения из-за высокого риска обрушения стен котлована.

В местах с высоким уровнем грунтовых вод предварительное бурение помогает обеспечить точность установки сваи, заранее задавая траекторию ее погружения.

Завинчивание и вдавливание, статическое вдавливание

Вибрационные и шумовые воздействия, оказываемые при забивке и вибропогружении могут далеко распространяться и оказывать негативное воздействие на окружающую местность.

Если недалеко находятся строительные конструкции, чувствительные к данным типам воздействий, то они будут повреждаться. Особенно ощутимо воздействие, если здания расположены на песчаных, рыхлых грунтах.

Водонасыщенный песок при вибрации склонен уплотняться, а значит грунт будет проседать, что приведет к разрушению фундамента близлежащих сооружений.

В таком случае безопаснее применять способы завинчивания или вдавливания шпунта. Хорошо подходит для глин, суглинков, песчаных грунтов, а также других почв, обладающих низкой плотностью.

Главные достоинства метода:

  1. Отсутствие ударных и вибрационных воздействий на близлежащие здания.
  2. Низкий уровень шума при работе.
  3. Снижается вероятность повреждения сваи, как, например, при забивном методе установки.

К недостаткам стоит отнести большую массу и размеры оборудования, что затрудняет подготовку его к работе и перевозку. Все элементы агрегата транспортируются несколькими грузовыми автомобилями, что сказывается на стоимости строительства, поэтому данный метод используется исключительно при строительстве крупных объектов или возведении больших массивов зданий.

Погружение с подмывом

Погружение с подмывом, когда вода идет под высоким давлением, является эффективным способом при установке шпунтов в грунты высокой плотности.

Методика предполагает введение небольшого количества воды или специального раствора через форсунки, расположенные около подошвы сваи.

Малый расход жидкости дает возможность хорошо контролировать степень размытия грунта. Поэтому негативное воздействие оказывается лишь на небольшом участке, по ходу движения шпунта, и незначительно влияют на прочность почвы.

При работе на плотном грунте используют воды под низким давлением. В таком случае вода оказывает незначительное действие на свойства грунта и не приводит к его просадке.

Промывку здесь, как правило, используют в качестве вспомогательной функции при вибрационном погружении свай. Особенно эффективна промывка в сочетании с высоковибрационным воздействием.

Расчеты

Шпунтовое ограждение делают перед началом работ по созданию котлована. Элементы, которые примут на себя основную нагрузку, забивают в землю. На начальном этапе система находится в равновесии и на шпунт грунт давит с обеих сторон с одинаковой силой.

После того, как начата разработка выемки, давление с одной стороны – с внутренней стороны котлована – снижается по мере того, как уменьшается количество грунта в этой зоне. Баланс нарушается, грунт с внешней стороны начинает давить на ограждение. Поэтому необходимо заранее произвести расчет шпунта, чтобы понимать какую нагрузку он сможет выдержать.

В ходе вычислений определяют необходимые размеры поперечного сечения и требуемую глубину погружения. Они должны быть такими, чтобы ограждение не просто оставалось устойчивым и сохраняло равновесие грунтов, но и оставался определенный запас прочности.

Расчеты могут производится одним из двух методов: графоаналитическим и аналитическим.

Параметры шпунтового ограждения определяются из условия Mu≤(m/yn)Mz, где:

  • Mu – момент вызываемый усилием давления грунта на шпунтовое ограждение и способствующий его опрокидыванию;
  • Mz – момент сопротивления опрокидыванию, работающий за счет защемления шпунтового ограждения в грунте;
  • m – коэффициент, характеризующий условия работы шпунта в грунте, для слабых грунтов значение принимается равным 0,7;
  • yn – показатель надежности, для сухого грунта принимается равным 1,1, для случая высоких грунтовых вод – 1,2.

Для определения момента сопротивления опрокидыванию необходимо вычислить несущую способность шпунта согласно общей формуле для расчета несущей способности свай F= yc(ycrR·d + V·∑ ycri·fi·li), где:

Значения коэффициентов берутся из соответствующих нормативных документов и определяются отдельно для каждой разновидности шпунта. Окончательные расчеты проводятся путем составления эпюр и подбора глубины забивки таким образом, чтобы выполнялось условие (1). В ходе вычислений также необходимо дополнительно проверить стенку, балки и распорки на прочность, а сам шпунт на разрыв замка.

Этапы работ

Установка шпунта может осуществляться несколькими способами:

  • забивкой,
  • с помощью низкочастотных или высокочастотных вибраций,
  • вдавливанием,
  • завинчиванием,
  • методом размыва.

Технологии отличаются по характеру воздействия и выбираются в зависимости от типа грунта, а также условий строительства. Но принципы установки в основном схожи и представляют собой погружение, тем или иным способом, сваи в почву.

Поэтому общий порядок действий сохраняется, а изменения касаются немногочисленных особенностей применения той или иной технологии:

При многократном использовании шпунта Ларсена верхняя часть профиля может деформироваться. Рекомендуется ее обрезать, чтобы продолжить эксплуатацию элемента.

После завершения установки шпунта, осуществляется контроль глубины его погружения. Разница между фактическим залеганием элементов и проектным значением не должна превышать предельно допустимые отклонения иначе производится выемка шпунта и повторный его монтаж.

Укрепление

В ходе строительных работ, проводимых на слабых грунтах, существует высокая вероятность проседания, деформации и даже обрушения шпунтового ограждения. Поэтому его необходимо дополнительно укреплять. Разработано несколько эффективных технологий, которые повышают устойчивость шпунтов.

Установка анкеров

При обустройстве шпунтового ограждения часто применяется метод, заключающийся в использовании для укрепления конструкции специальных анкеров. Их закладывают в грунт, находящийся за пределами зон активного взаимодействия почвы и шпунта. Один такой анкер способен выдерживать нагрузку до 500 кН.

Монтаж упрочняющих элементов производится по всему периметру котлована, промежутки между соседними анкерами делают 1-3 метра. Для максимизации эффекта элементы устанавливают под углом (от 30° до 60°).

Каждый анкер представляет собой железобетонную конструкцию, заглубленную в грунт. Для его закладки делается скважина, в которой затем размещается металлическая арматура и тяга. Затем скважина заливается бетоном. Когда раствор застынет, тягу крепят к шпунту, проводя её через специально сделанное для данной цели отверстие и фиксируя с помощью крепежных элементов.

Для успешной реализации данного метода необходимо выполнять все работы тщательно, с большой точностью, что требует больших трудозатрат и повышает финансовые расходы на строительство объекта. Поэтому анкеры устанавливают только в тех случаях, когда размеры котлована не позволяют применять распорные элементы.

Распорные крепления

Обычно в этом качестве используют металлические трубы, которые устанавливают в несколько ярусов с промежутками от 4 до 6 метров. Если длина распоров велика, то применяют специальные стойки из двутавровой балки или шпунта.

Такой метод укрепления отличается повышенной металлоемкостью. Чтобы снизить данный параметр, можно применять инвентарные рамы. При этом на шпунты ограждения накладываются инвентарные щиты. Если размеры котлована невелики, а почва плотная, то можно обойтись без распоров, применив консольное закрепление шпунтов.

Ограждения консольного типа

Если глубина котлована составляет менее пяти метров, то допустимо использовать шпунты, закрепленные в грунте. Нижняя часть элемента погружается в почву ниже днища выемки – следует убедиться, что она надежно защемлена и не имеет тенденции к обрушению.

При установке шпунтов в слабых грунтах, их заглубляют более чем на две трети высоты котлована. Для повышения прочности конструкции по верхней части ограждения монтируют обвязочную раму, сделанную из балок различных сечений.

При таком методе укрепления необходимо запретить перемещение тяжелой техники рядом с котлованом. Также вблизи ограждения нельзя размещать и хранить стройматериалы.

Типичные ошибки

Чаще всего при обустройстве крепления котлована появляются сложности, которые трудно устранить. Поэтому следует заранее позаботится о соблюдении требований строительных норм и правил:

Необходимость исправлять ошибки может значительно повысить расходы на строительство, а значит каждый этап работы необходимо тщательно готовить. Также следует ответственно подходить к выполнению всех технологических операций установки шпунтового ограждения котлована.

Стоимость создания

Для расчета стоимости создания шпунтового ограждения необходимо знать тип шпунта, периметр и глубину котлована. Тогда не составит труда вычислить количество элементов, которые понадобятся во время строительства.

Так, например, для обустройства котлована периметром 120 метров, применяя шпунт Ларсена Л5, понадобится порядка 240 элементов общим весом около 657 тонн.

Полученные значения позволят определить затраты на доставку – количество рейсов вычисляется исходя из грузоподъемности автомобиля, километраж, определяется по дальности расположения строящегося объекта. Аналогично определяется стоимость погрузочно-разгрузочных работ.

Цена же монтажа шпунта зависит от количества погонных метров погружаемого шпунта – здесь пригодится знание глубины проектируемого котлована – а также от тарифов строительных организаций, предоставляющих услуги монтажа шпунтового ограждения.

В среднем стоимость работ составляет от 450 рублей за погонный метр.

Все самое важное и полезное о котловане и его разработке найдете в этом разделе.

Заключение

При всем многообразии разновидностей, материалов и технологий укрепления грунта во время строительных работ, обустройство шпунтованного ограждения остается самым эффективным способом упрочнения котлованов.

Как рассчитывается расстояние между сваями в винтовом фундаменте?

Чтобы силовая конструкция отвечала всем требованиями безопасности, необходимо на этапе проектирования выполнить ряд условий, в том числе определить оптимальное расстояние между сваями в винтовом фундаменте.

Через какое расстояние устанавливаются винтовые сваи для фундамента, расскажем в статье.

От чего зависит интервал?

От расположения конструктивных элементов в свайном поле зависит равномерность распределения нагрузок.

  1. Тип грунта и его физико-химические свойства.
  2. Глубина промерзания.
  3. Уровень подземных источников.
  4. Вес дома и особенности его конструкции.
  5. Несущая способность выбранных свай.

Шаг между опорами не всегда выбирается одинаковым. Составленный во всех деталях план дома позволяет определить точки, в которых нагрузка на основание будет максимальной.

Так, винтовые сваи в обязательном порядке вкручивают в следующих местах:

  • под углами сооружения;
  • по линиям несущих стен;
  • под печами и каминами;
  • у входной части;
  • под тяжелым оборудованием и т.д.

С учетом всех параметров выбирают рациональное соотношение между шагом и характеристиками силовых элементов:
  • диаметром опоры,
  • толщиной металла,
  • шириной лопастей,
  • длиной трубы.

Определение несущей способности грунта

Основные факторы, от которых зависит несущая способность грунта:

  1. Тип породы.
  2. Насыщенность земли влагой.
  3. Характеристики слоев почвы.
  4. Уплотненность масс.

Перенасыщение почвы влагой, на которую влияет уровень подземных источников, снижает несущую способность грунта в несколько раз. Фактор увлажненности не касается участков, где в преобладающем количестве содержится песок средней и большой крупности. Предельные нагрузки на почву, которые не приведут к существенным осадкам фундамента, изучены и занесены в справочники общего пользования.

Данные, которыми пользуются конструкторы, занимающиеся инженерными расчетами для строительства фундамента, отражены в таблице:

Тип грунта Несущая способность, кг/см2
средняя плотность высокая плотность
переувлажненная глина 4 4
сухая глина 6,0 2,5
суглинок 3,0 2,0
супесь 3,0 2,5
песок мелкой фракции 4,0 3,0
песок средней фракции 5,0 4,0
крупный песок 6,0 5,0
гравий 4,0 3,0
галька 4,5 4,0

Для строительства на слабом и переувлажненном грунте выбирают большее количество опор, вследствие чего уменьшается растояние между силовыми элементами. Узнать геологические особенности участка можно из результатов профессиональных изысканий, которые проводят специализированные компании.

Для частно домостроения можно определить тип грунта самостоятельно. В этом случае бурят несколько скважин или копают ямы на глубину не менее 2 м. По срезу почвы станет ясно, из каких пород состоит грунт, на какой глубине находится несущий пласт, а также насколько увлажнена земля.

Расчет нагрузки

Чтобы определить суммарную нагрузку на фундамент, необходимо знать:

Для нахождения веса конструктивных элементов используют удельный вес строительных материалов, который можно узнать из справочников в общем доступе. Полезную нагрузку, которая включает вес людей и мебели, условно принимают равной 150–180 кг/м2.

Поскольку точно определить некоторые параметры достаточно сложно, добавляют к нагрузке запас надежности 10–25%.


Зная силу, которая будет по проекту давить на см2 почвы, и допустимую нагрузку одной сваи, расчетным путем находят потребность в количестве силовых элементов. В ходе проектирования проектные нагрузки делят на опорную площадь фундамента и сравнивают результат с сопротивлением почвы.

Сопоставление параметров позволяет судить о том, правильно ли рассчитано количество свай относительно геологическим условиям.

Если нагрузки превышают допустимое сопротивление почвы, то разницу нивелируют за счет уменьшения шага (увеличения количества свай) или увеличения несущей способности фундамента путем выбора опорных элементов большего диаметра.

Основные схемы свайного поля

План размещения опорных элементов подбирают индивидуально в зависимости от конструктивных особенностей сооружения, а также сложности рельефа.

Как правильно выбрать шаг?

Расстояние между соседними силовыми элементами рассчитывают, исходя из количества свай, а также их диаметрами. Для этого вначале определяют проектные нагрузки и анализируют особенности конструкции.

В случае с одиночным и ленточным расположением за основу берут периметр постройки и делят на количество свай. Результат сравнивают с минимально и максимально допустимыми параметрами и, в случае необходимости, подбирают шаг.

Ошибки в расчете расстояния между опорными элементами приведут к перерасходу средств, либо к риску проседания стен, если несущая способность фундамента в местах с максимальной нагрузкой будет недостаточной.

Минимальное и максимальное значение

Наименьшее значение шага зависит от толщины почвы, которая уплотняется лопастями вокруг сваи в процессе ее вкручивания.

Согласно нормам из СНиП, минимальный шаг принимают равным трем диаметрам опорных элементов, а максимальный – шести диаметрам.

Исключение составляют такие случаи:

Оптимальное размещение столбов

Рациональное расстояние между опорными элементами выбирается на этапе проектирования сооружения, когда есть чертеж постройки, а также известны геологические особенности участка.

Как правило, при строительстве тяжеловесных сооружений с использованием винтовых свай сокращают расстояние между ними до тех пор, пока решение остается экономически целесообразным.

На практике шага в размере 1,5 м будет достаточно, чтобы фундамент равномерно распределял максимально возможные нагрузки на грунт, если была реализована технология обвязки опор деревянным, металлическим или бетонным ростверком.

Увеличить расстояние между силовыми элементами можно за счет выбор свай с большим диаметром. В этом случае можно повысить несущую способностью основания для тяжелых сооружений.

Вся самая важная и полезная информация о свайно-винтовом фундаменте представлена в данном разделе.

Заключение

Расстояние между опорными элементами регламентируется строительными нормами, изложенными СНиП и ГОСТах.

Как правило, шаг составляет от 1,5 до 3 м. Оптимальный диапазон выбирается на этапе проектирования с учетом геологии участка, особенностей конструкции и прочности свай.

Любые вынужденные изменения в параметрах в процессе монтажа должны согласовывать с конструктором, который проводил инженерные расчеты для фундамента.

Читайте также: