Расчет фундамента на грунтовой подушке искусственном основании

Обновлено: 18.05.2024

Пособие по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83)

РЕКОМЕНДОВАНО к изданию секцией Научно-технического совета НИИОСП им. Герсеванова Госстроя СССР.

Даны рекомендации, детализирующие основные положения по проектированию и расчету оснований и особенности проектирования оснований зданий и сооружений, возводимых в особых условиях.

Для инженерно-технических работников проектных, изыскательских и строительных организаций.

ПРЕДИСЛОВИЕ

Настоящее Пособие разработано к СНиП 2.02.01-83 и детализирует отдельные положения этого документа (за исключением вопросов, связанных с особенностями проектирования оснований опор мостов и труб под насыпями).

В Пособии рассмотрены вопросы номенклатуры грунтов и методов определения расчетных значений их характеристик, принципы проектирования оснований и прогнозирования изменения уровня подземных вод, вопросы глубины заложения фундаментов, методы расчета оснований по деформациям и по несущей способности, особенности проектирования оснований зданий и сооружений, возводимых на региональных видах грунтов, а также расположенных в сейсмических районах и на подрабатываемых территориях.

Текст СНиП 2.02.01-83 отмечен в Пособии вертикальной чертой слева, в скобках указаны соответствующие номера пунктов, таблиц и формул СНиП.*

__________________

* Текст СНиП 2.02.01-83 отмечен в Пособии курсивом.

Пособие разработано НИИОСП им. Герсеванова (д-р техн. наук, проф. Е.А.Сорочан - разд.1, подраздел "Расчет оснований по деформациям" разд.2 ("Определение расчетного сопротивления грунта основания", "Расчет деформации оснований с учетом разуплотнения грунта при разработке котлована"), разд.4; канд. техн. наук А.В.Вронский - подразделы "Общие указания", "Нагрузки", "Расчет оснований по деформациям" ("Общие положения", "Расчет деформаций оснований" и "Предельные деформации основания"), "Мероприятия по уменьшению деформаций оснований и влияния их на сооружения" разд.2; канд. техн. наук О.И.Игнатова - подразделы "Нормативные и расчетные значения характеристик грунтов" и "Классификация грунтов" разд.2; канд. техн. наук Л.Г.Мариупольский - подраздел "Методы определения деформационных и прочностных характеристик грунтов" разд.2; д-р техн. наук В.О.Орлов - подраздел "Глубина заложения фундаментов" разд.2; канд. техн. наук А.С.Снарский - подраздел "Расчет оснований по несущей способности" разд.2; д-р техн. наук, проф. В.И.Крутов - разд.3; д-р техн. наук П.А.Коновалов - разд.5; канд. техн. наук В.П.Петрухин - разд.7; канд. техн. наук Ю.М.Лычко - разд.8; канд. техн. наук А.И.Юшин - разд.9; д-р техн. наук, проф. В.А.Ильичев и канд. техн. наук Л.Р.Ставницер - разд.10 при участии института "Фундаментпроект" Минмонтажспецстроя СССР (инж. М.Л.Моргулис - подраздел "Расчет оснований по несущей способности" разд.2), ПНИИИС Госстроя СССР (канд. техн. наук Е.С.Дзекцер - подраздел "Подземные воды" разд.2), МИСИ им. Куйбышева (д-р техн. наук, проф. М.В.Малышев и инж. Н.С.Никитина - подраздел "Определение осадки за пределами линейной зависимости между напряжениями и деформациями" разд.2; д-р техн. наук, проф. Э.Г.Тер-Мартиросян, канд. техн. наук Д.М.Ахпателов и инж. И.М.Юдина - подраздел "Расчет деформаций оснований с учетом разуплотнения грунта при разработке котлована" разд.2), Днепропетровского инженерно-строительного института Минвуза УССР (д-р техн. наук, проф. В.Б.Швец - разд.6) и института "Энергосетьпроект" Минэнерго СССР (инженеры Н.И.Швецова и Ф.П.Лобаторин - разд.11).

Пособие разработано под общей редакцией д-ра техн. наук, проф. Е.А.Сорочана.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее Пособие рекомендуется использовать при проектировании оснований промышленных, жилых и общественных зданий и сооружений всех областей строительства, в том числе городского и сельскохозяйственного, промышленного и транспортного. В Пособии не рассматриваются вопросы проектирования оснований мостов и водопропускных труб.

1.2. Настоящие нормы должны соблюдаться при проектировании зданий и сооружений*.

Основания и фундаменты на насыпных грунтах


Основания и фундаменты на насыпных грунтах

Описаны основные виды, особенности и физико-механические характеристики насыпных грунтов. Даны рекомендации по проведению инженерно-геологических исследований. Приведены особенности расчета оснований и фундаментов на насыпных грунтах и указаны причины возникновения деформаций зданий и сооружений. Освещен опыт устройства оснований и фундаментов на планомерно-возведенных насыпях, отвалах грунтов и отходов производства. а также свалках всевозможных материалов.
Для инженерно-технических и научных работников проектных, изыскательских, строительных и научно-исследовательских организаций.

Оглавление

Оглавление:
Предисловие
Введение
Особенности насыпных грунтов
Образование и распространение насыпных грунтов
Особенности состава, залегания и сложения насыпных грунтов
Процессы, происходящие в насыпных грунтах
Самоуплотнение насыпных грунтов от собственного веса
Классификация и основные типы насыпных грунтов
Классификация насыпных грунтов
Особенности и физико-механические характеристики основных типов насыпных грунтов
Инженерно-геологические исследования насыпных грунтов
Учет условий образования и основных особенностей насыпных грунтов
Изучение состава и сложения насыпных грунтов
Лабораторные испытания насыпных грунтов
Полевые испытания насыпных грунтов
Исследования при деформациях зданий
Расчет оснований, фундаментов и зданий на насыпных грунтах
Основы расчета оснований и фундаментов зданий по предельным состояниям
Расчет дополнительных осадок фундаментов на насыпных грунтах
Расчетные сопротивления оснований на насыпных грунтах
Проектирование уплотненных оснований на насыпных грунтах
Проектирование фундаментов в вытрамбованных котлованах
Особенности работы и расчета свайных фундаментов в насыпных грунтах
Расчет конструкций зданий на неравномерные осадки
Мероприятия при строительстве на насыпных грунтах
Учет сов местной работы конструкций с грунтом основания
Методы строительства на насыпных грунтах
Подготовка оснований на насыпных грунтах
Прорезка насыпных грунтов сваями
Конструктивные мероприятия
Водозащитные мероприятия
Выбор мероприятий при строительстве зданий и сооружений не насыпных грунтах
Уплотнение насыпных грунтов
Общие положения по уплотнению насыпных грунтов
Необходимая степень уплотнения насыпных грунтов
Опытные работы по уплотнению грунтов
Уплотнение грунтов укаткой
Уплотнение грунтов тяжелыми трамбовками
Вытрамбовывание котлованов
Глубинное уплотнение грунтовыми сваями
Глубинное уплотнение песчаными сваями
Гидровиброуплотнение песчаных грунтов
Деформация зданий и сооружений на насыпных грунтах
Развитие строительства на насыпных грунтах
Деформации промышленного здания на шлаковых отвалах
Деформации здания жилого дома на свалке грунтов и бытовых отходов
Деформации промышленного корпуса на свайных фундаментах
Основные причины деформации зданий и сооружений на насыпных грунтах
Устройство оснований и фундаментов на планомерно возведенных насыпях
Подготовка поверхности и грунта для планомерно возведенных насыпей
Возведение планомерно возведенных насыпей послойной отсыпкой грунта
Возведение планомерно возведенных насыпей гидронамывом
Доуплотнение грунтов в планомерно возведенных насыпях
Контроль за качеством работ при устройстве планомерно возведенных насыпей
Опыт строительства металлургического завода на планомерно возведенной насыпи из гравелистого грунта
Возведение обратных засыпок котлованов на строительстве Камского автомобильного завода
Возведение насыпи стипль-чезного круга Олимпийской конно-спортивной базы в Москве
Устройство оснований и фундаментов на отвалах грунтов и отходов производств
Доуплотнение отвалов грунтов и отходов производств
Опыт строительства на отвалах вскрышных пород
Опыт строительства на отвалах песчаных грунтов
Опыт строительства промышленного корпуса на отвалах из лессовидных суглинков
Опыт строительства на шлаковых отвалах
Устройство оснований на свелках грунтов и отходов производств
Учет особенностей свалок грунтов и отходов производств
Опыт строительства промышленного цеха на свалке грунтов
Опыт строительства здания речного вокзала на свалке грунтов и городских отходов

Основания и фундаменты


Основания и фундаменты

М.: Агропромиздат, 1987, - 284с., ил.; 2-е изд., перераб. и доп.

Изложены сведения о физических, физико-механических и физико-химических свойствах грунтов как оснований фундаментов и сооружений. Приведены основные положения и методы проектирования естественных и искусственных оснований, различного вида фундаментов и способы их устройства. Второе издание (1-е - в 1981 г.) доработано с учетом новых СНиП, ГОСТов, Стандартов СЭВ и других материалов. Для студентов высших сельскохозяйственных учебных заведений по специальности "Гидромелиорация".

Оглавление

Основания и фундаменты1

Основания и фундаменты2

Основания и фундаменты3

Часть I. ОСНОВЫ ГРУНТОВЕДЕНИЯ И МЕХАНИКИ ГРУНТОВ

Глава 1. Состав и строение грунтов . 7
1. Природа и составные компоненты грунтов . 7
2. Твердые частицы грунтов . 8
3. Вода в грунтах, ее виды и свойства . 13
4. Газы в грунтах . 16
5. Структура и текстура грунтов . 17

Глава 2. Физические свойства грунтов и их показатели . 23
6. Основные показатели физических свойств грунтов . 24
7. Производные показатели физических свойств грунтов . 26

Глава 3. Физико-химические свойства грунтов и их показатели . 29
8. Консистентностъ грунтов . 29
9. Просадочность грунтов . 30
10. Набухаемость и усадочность грунтов . 33
11. Плывунность и тиксотропность грунтов . 36
12. Размягчаемость, размокаемость и растворимость грунтов . 37
13. Пучинистость грунтов . 38

Глава 4. Физико-механические свойства грунтов и их показатели . 39
14. Водопроницаемость грунтов . 40
15. Деформируемость грунтов . 43
16. Прочность грунтов . 68
17. Классификационные показатели и классификация грунтов . 80

Глава 5. Характеристика различных видов грунтов . 84
18. Скальные грунты . 85
19. Нескальные грунты . 87

Глава 6. Напряжения в грунтовом массиве . 108
20. Природные напряжения . 109
21. Напряжения от внешних нагрузок в однородном полупространстве . 111
22. Напряжения от внешних нагрузок в неоднородном полупространстве . 128
23. Напряжения в грунте по подошве нагруженных площадок — контактные напряжения . 131
24. Критические нагрузки на грунт основания . 134

Часть II. ОСНОВАНИЯ И ФУНДАМЕНТЫ

Глава 7. Основные положения проектирования оснований и фундаментов . 139
25. Виды оснований и фундаментов . 139
26. Совместные деформации сооружений и оснований . 142
27. Выбор основания, фундаментов и методов их устройства . 143
28. Основные положения проектирования оснований и фундаментов по предельным состояниям . 149

Глава 8. Фундаменты неглубокого наложения . 16З
29. Конструкции фундаментов неглубокого наложения . 163
30. Проектирование фундаментов . 167
31. Проектирование гибких железобетонных фундаментов . 165

Глава 9. Расчет естественных оснований . 166
32. Определение конечных осадок . 166
33. Расчет осадок во времени . 173
34. Определение неравномерных осадок . 175
35. Проектирование оснований по первой группе предельных состояний . 177
36. Расчет нескальных оснований гидротехнических сооружений . 183

Глава 10. Искусственные основания . 188
37. Принципы расчета искусственных оснований . 188
38. Поверхностное к глубинное уплотнение грунтов механическими способами . 190
39. Замена слабых грунтов (грунтовые подушки) . 196
40. Физико-химические методы укрепления и улучшения грунтов . 197
41. Улучшение свойств лёссовых просадочных грунтов . 202
42. Искусственные основания при строительстве на заторфованных грунтах и торфах . 207

Глава 11. Свайные фундаменты . 209
43. Виды свайных фундаментов, типы и конструкции свай . 209
44. Принципы проектирования свайных фундаментов . 216
45. Расчет свай и ростверков по первому предельному состоянию . 220
46. Определение несущей способности свай испытанием статической и динамической нагрузками . 222
47. Расчет свайных фундаментов и их оснований по второму предельному состоянию . 224
48. Особенности расчета свайных фундаментов в просадочных лёссовых грунтах . 226

Глава 12. Фундаменты глубокого заложения . 228
49. Принципы проектирования фундаментов глубокого заложения . 228
50. Опускные колодцы . 229
51. Колодцы-оболочки и буровые опоры-столбы . 232
52. Кессонные фундаменты . 236

Глава 13. Устройство котлованов под фундаменты и сооружения . 238
53. Назначение размеров котлованов и разбивка их на местности . 238
54. Крепление стенок траншей и котлованов . 240
55. Осушение котлованов . 247
56. Устройство котлованов и фундаментов на местности, покрытой водой . 249

Глава 14. Проектирование и устройство оснований и фундаментов на лёссовых просадочных грунтах . 250
57. Проектирование оснований в фундаментов зданий в промышленных сооружений на просадочных грунтах . 251
58. Методы устройства оснований в гидросооружений оросительных систем на просадочных грунтах . 257
59. Проектирование оснований гидросооружений на лёссовых просадочных грунтах . 260

Глава 15. Устройство фундаментов в особых условиях . 263
60. Основные принципы устройства фундаментов и сооружений в особых грунтовых условиях . 263
61. Устройство фундаментов зданий и гидромелиоративных сооружений на водонасыщенных биогенных грунтах . 264
62. Устройство фундаментов на вечномерзлых и набухающих грунтах . 265
63. Устройство фундаментов в других сложных грунтовых условиях . 270
64. Фундаменты при динамических нагрузках . 273

Приложение . 278
Указатель литературы . 280
Предметный указатель . 281

Возведение фундаментов

Фундаменты являются опорной частью здания и предназначены для передачи нагрузки от вышерасположенных конструкций на основание.

Фундаменты здания должны удовлетворять следующим основным требованиям: обладать достаточной прочностью и устойчивостью на Опрокидывание и скольжение в плоскости подошвы, сопротивляться влиянию атмосферных факторов (морозостойкость), а также влиянию грунтовых и агрессивных вод, соответствовать по долговечности сроку службы здания, быть экономичными и индустриальными в изготовлении.

Разбив место под фундамент здания, приступают к выемке грунта. Возведение фундамента рекомендуется проводить сразу после выемки грунта. Высыхая, земля в траншее осыпается и приходится затрачивать много времени на ее удаление.

По конструкции фундаменты бывают: сплошные, ленточные, столбчатые и свайные.

Сплошные фундаменты

Представляют собой сплошную безблочную или ребристую железобетонную плиту "под всей площадью здания. Сплошные фундаменты устраивают в случаях когда нагрузка, передаваемая на фундамент, значительна, а грунт основания слабый. Эта конструкция особенно целесообразна, когда необходимо защитить подвал от проникновения грунтовых вод при высоком их уровне, если пол подвала подвергается снизу большому гидростатическому давлению.


Рис. 1 Сплошной безбалочный фундамент:

1 — железобетонная фундаментная плита

Существуют конструкции фундаментов в виде железобетонных монолитных плит, которые бывают безбалочные и ребристые.


Рис. 2. Сплошная железобетонная фундаментная плита:
а — безбалочная; б — ребристая

Устраивают под стены здания или под ряд отдельных опор. В первом случае фундаменты имеют вид непрерывных подземных стен (рис. 3 а), во втором — железобетонных перекрестных балок (рис. 3 б).

По своему очертанию в профиле ленточный фундамент под.каменную стену представляет собой в простейшем случае прямоугольник (рис. 4д). Прямоугольное сечение фундамента по высоте допустимо лишь при небольших нагрузках на фундамент и достаточно высокой несущей способности грунта.

В большинстве случаев для передачи на основание давления, не превышающего нормативного давления на грунт, приходится расширять подошву фундамента. Теоретической формой сечения фундамента с расширенной подошвой является трапеция (рис. 46). Расширение подошвы не должно быть слишком большим во избежание появления растягивающих и скалывающих напряжений в выступающих частях фундамента и появления в них трещин.


Рис. 3. Конструкции фундаментов:

а — фундамент в виде непрерывных подземных стен: 1 —ленточный фундамент; 2—стена; б—в виде перекрестных железобетонных балок: I — ленточный фундамент под колонны; 2 — железобетонная колонна

На основе опыта установлены углы наклона теоретической боковой грани фундамента к вертикали, по которой не возникает опасных растягивающих и скалывающих напряжений. Предельный угол, называемый условно углом распределения давления в материале фундамента, составляет для бетона 45°, кладки на цементном растворе состава 1:4 — 33° 30', для бутовой кладкцна сложном растворе состава 1:1:9 — 26° 30?.

В зданиях с подвалами сечение фундамента в пределах подвала устраивают прямоугольной формы с расширением ниже пола подвала, называемом подушкой (рис. 5 а). Часто фундаменты делают ступенчатого сечения (рис. 5 б).

Глубина заложения фундамента должна соответствовать глубине залегания того слоя грунта, который по своим качествам можно принять для данного здания за естественное основание. При определении глубины заложения фундамента необходимо учитывать глубину промерзания грунта. Закладывать фундаменты рекомендуется ниже глубины промерзания. Если основание состоит из влажного мелкозернистого грунта (пылеватого или мелкого песка, супеси, суглинка, глины), то подошву фундамента располагают не выше уровня промерзания грунта.

Уровень промерзания грунта принимают на глубине» где зимой наблюдается температура 0° С, за исключением глинистых и суглинистых грунтов, для которых уровень промерзания принимается на меньшей глубине, где возникает температура около -1° С.

Нормативная глубина промерзания суглинистых и глинистых грунтов указана в СНиПе 2.02.01-83 на схематической карте, в которой нанесены линии одинаковых нормативных глубин промерзания, выраженных в сантиметрах. Нормативную глубину промерзания пылеватых и мелких песков, супесей, пылеватых глин и суглинков принимают также по карте, но с коэффициентом 1,2.


Рис 4. Ленточные фундаменты:
а —- прямоугольный; б — трапецеидальный: 1 — обрез


Рис 5. Ленточные фундаменты:

а - прямоугольный с подушкой; б — ступенчатый с подушкой (1)

Исследованиями установлено, что грунт под фундаментами наружных стен регулярно отапливаемых зданий с температурой помещений не ниже +10° С промерзает на меньшую глубину, чем на открытой площадке. Поэтому расчетную глубину промерзания под фундаментами отапливаемого здания уменьшают против нормативного значения на 30% при полах на грунте; если полы по грунту на лагах — на 20%; полы, уложенные на балках — на 10%.

Глубина заложения фундамента под внутренние стены отапливаемых зданий не зависит от глубины промерзания грунта, ее назначают не менее 0,5 м от пола подвала или уровня земли.

Глубина заложения фундаментов стен зданий, имеющих неотапливаемые подвалы, назначается от пола подвала, она равна половине расчетной глубины промерзания. Предположение, что чем глубже заложен фундамент, тем больше его устойчивость и надежность работы, является неверным.

При расположении подошвы фундамента ниже уровня промерзания грунта вертикальные силы морозного пучения перестают на нее действовать снизу, но действующие на боковые поверхности касательные силы морозного пучения могут вытащить фундамент вместе с промерзшим грунтом, и оторвать его под легкими зданиями при устройстве фундаментов из кирпича и мелких блоков.

Поэтому, для успешной эксплуатации фундамента, чтобы не допустить его деформацию на пучинистых местах необходимо не только расположить подошву ниже уровня промерзания грунтов, что избавит от непосредственного давления мерзлого грунта снизу, но и нейтрализовать действующие на боковые поверхности фундамента касательные силы морозного пучения. Внутри фундамента на всю его высоту закладывают арматурный каркас, жестко связывающий верхние и нижние части фундамента, основание делают расширенным в виде опорной площадки—анкера, не позволяющей вытащить фундамент из земли при морозном пучении грунта. Данное конструктивное решение возможно при использований железобетона.

При возведении фундамента из кирпича или мелких блоков, без внутреннего вертикального армирования, стены выполняют наклонными—сужающимися кверху Приведенный способ устройства фундаментных столбов и стен при тщательном выравнивании их поверхностей значительно ослабляет боковое вертикальное воздействие пучинистых грунтов на фундамент. Влияние сил морозного пучения уменьшают: покрытием боковых поверхностей фундамента скользящим слоем полиэтиленовой пленки; отработанным машинным маслом; утепление поверхностного слоя грунта/вокруг фундамента шлаком» пенопластом, керамзитом, при котором уменьшается местная глубина промерзания грунта. Последнее применимо также для мелкозаглубленных фундаментов, построенных ранее и нуждающихся в защите от морозного пучения.

На крупнопадающем рельефе, при строительстве здания необходимо учитывать боковое давление грунта и его вероятный сдвиг. Жестко связанные в продольном и поперечном направлении ленточные фундаменты работают в этих условиях более надежно. Столбчатые фундаменты необходимо жестко объединить поверху железобетонным поясом — ростверком, для более эффективной совместной работы всех конструктивных элементов. В гравелистых, песках крупных и средней крупности, а также в крупнообломочных грунтах глубина заложения фундамента не зависит от глубины промерзания, но она должна быть не менее 0,5 м, считая от природного уровня грунта (планировочной отметки при планировке срезкой и подсыпкой).

В современном строительстве наиболее индустриальны сборные бетонные и железобетонные фундаменты из крупных фундаментных блоков. Применение сборных фундаментов позволяет значительно сократить сроки строительства и уменьшить трудоемкость работ. Сборный фундамент (рис.6) состоит из двух элементов: подушки из железобетонных блоков прямоугольной или трапецеидальной формы (рис. 7)t укладываемой на тщательно утрамбованную песчаную подготовку толщиной 150 мм, и вертикальной стенки из блоков в виде бетонных прямоугольных параллелепипедов.


Рис. 6. Сборный ленточный фундамент из бетонных блоков под стены дома с подвалом и техническим подпольем:

I— фундаментная плита; 2 — бетонные стеновые блоки; 3 — окраска горячий
битумом; 4 — цементно-песчаный раствор; 5 — отмостка; б — два слоя толя иди
гидронзола на битумной мастике; 7 — цокольное перекрытие



Рис. 7. Фундаментный блок-подушка

При строительстве на слабых сильносжимаемых грунтах, в сборных фундаментах, для повышения сопротивления растягивающим усилиям и жесткости устраивают железобетонные пояса толщиной 100—150 мм или армированные швы толщиной 30—50 мм, размещая их между подушкой и нижним рядом фундаментных блоков, а также на уровне верхнего обреза фундамента.

Стены фундаментов, монтируемые из крупных блоков, несмотря на их большую прочность, иногда устраивают толще надземной части стен. В результате прочность материала используется всего на 15—20%. Расчеты показывают, что толщину стен сборных фундаментов допустимо принимать равной толщине надземных стен, но не менее 300 мм.

Экономии строительных материалов можно добиться с помощью устройства прерывистых фундаментов, состоящих из железобетонных блоков-подушек, уложенных не вплотную, как это предусмотрено в ленточных фундаментах, а на некотором расстоянии один от другого, примерно от 0,2 до 0,9 м. Промежутки между блоками засыпают грунтом.

Столбчатые фундаменты

Имеют вид отдельных опор, устраиваемых под стены, столбы или колонны. При незначительных нагрузках на фундамент, когда давление на грунт меньше нормативного, непрерывные ленточные фундаменты под стены малоэтажных домов целесообразно заменять столбчатыми. Фундаментные столбы из бетона или железобетона перекрывают железобетонными фундаментными балками, на которых возводится стена. Чтобы устранить возможность выпирания фундаментной балки вследствие вспучивания расположенного под ней грунта, под ней устраивают песчаную или шлаковую подушку толщиной 0,5 м.

Расстояние между осями фундаментных столбов принимают равным 2,5—3 м. Столбы располагают обязательно под углами здания, в местах пересечения и примыкания стен и под простенками.

Столбчатые фундаменты под стены возводят также в зданиях большой этажности при значительной глубине заложения фундамента — 4—5 м, когда устройство ленточного непрерывного фундамента невыгодно вследствие большого его объема и, следовательно, большего расхода материалов. Столбы перекрывают сборными железобетонными балками, на которых возводят стены. Столбчатые одиночные фундаменты устраивают также под отдельные опоры зданий. На рисунке 8а изображен сборный фундамент под кирпичный столб, выполненный из железобетонных блоков-подушек. Более экономичным вариантом является укладка под кирпичные столбы железобетонных блоков-плит (рис. 8 б). Сборные фундаменты под железобетонные колонны каркасных здании могут состоять из одного железобетонного башмака стаканного типа (рис, 8в) или из железобетонных блока-стакана и опорной плиты под ним (рис. 8г).

Свайные фундаменты

Состоят из отдельных свай, объединенных сверху бетонной или Железобетонной плитой или балкой, называемой ростверком (рис. 9). Свайные фундаменты устраивают в случаях, когда необходимо передать на слабый грунт значительные нагрузки.


Рис 8. Сборные фундаменты под отдельные опоры:
а — под кирпичные столбы из блоков ленточных фундаментов; б — то же, из специальных железобетонных плит; в —под железобетонную колонну из башмака стаканного типа; г — то же, из блока-стакана и опорной плиты

Сваи дифференцируют по материалу, методу изготовления и погружения в грунт, характеру работы в грунте. По материалу сваи бывают деревянные, бетонные, железобетонные, стальные и комбинированные. По методу изготовления и погружения в грунт сваи бывают забивные, погружаемые в грунт в готовом виде, и набивные, изготовляемые непосредственно в грунте. В зависимости от характера работы в грунте различают два вида свай: сваи - стойки и висячие. Сваи-стойки своими концами опираются на прочный грунт, например, скальную породу и передают на него нагрузку (рис. 10). Их применяют, когда глубина залегания прочного грунта не превышает возможной длины сваи. Свайные фундаменты на сваях-стойках практически не дают осадки.

Если прочный грунт находится на значительной глубине применяют висячие сваи, несущая способность которых определяется суммой сопротивления сил трения по боковой поверхности и грунта под острием сваи (рис. 11).


Рис. 9. Виды свай в грунте:

а — висячие сваи; б— сваи-стойки: 1 — плотный известняк; 2 — суглинок илистый пластичный; 3 —.ил; 4 — илистый песок; 5 — торф; 6 — растительный слой

Деревянные сваи дешевы, но поскольку они быстро загнивают, если находятся в грунте с переменной влажностью, головы деревянных свай следует располагать ниже самого низкого уровня грунтовых вод. Однако на местности с высоким уровнем грунтовых вод деревянные сваи стоят очень долго, если постоянно находятся в воде. В мировой практике известны примеры четырехсотлетних зданий на деревянных сваях, по сей день находящихся в хорошем техническом состоянии.

Железобетонные сваи долговечны, дороже деревянных, но способны выдерживать значительные нагрузки. Значительно расширена область их применения ввиду того, что проектная отметка голов железобетонных свай не зависит от уровня грунтовых вод. Расстояние между осями свай определяется расчетным способом. В пределах наиболее часто встречающихся глубин погружения свай — от 5 до 20 м эти расстояния для обычных диаметров свай составляют от 3. 8d, где d — диаметр сваи.


Рис 10. Забивная свая-стойка фундамента:
I — гидроизоляция; 2 — поверхность земли; 3 — железобетонная балка ростверка; 4 — забивная свая прямоугольного сечения; 5 — плотный грунт


Рис. 11. Набивная висячая свая фундамента:
1 — гидроизоляция; 2 — железобетонная балка ростверка; 3 — набивная свая; 4 — наконечник обсадной трубы; 5—слабые грунты

Свайные фундаменты, по сравнению с блочными, дают меньшую осадку, благодаря чему снижается вероятность неравномерных деформаций грунта.

При подготовке основания иногда в грунте обнаруживают старые засыпанные колодцы, ямы, случайные слабые прослойки грунта. Во избежание неравномерной осадки фундаментов эти места необходимо расчистить и заполнить кладкой, тощим бетоном или утрамбованным песком, а при возведении фундаментов над этими местами следует наложить армированные швы.

Фундаменты подвергаются увлажнению просачивающейся через грунт атмосферной влагой или грунтовой водой. Вследствие капиллярности влага по фундаменту поднимается вверх и в стенах первого этажа появляется сырость. Чтобы преградить проникновение влаги в стены, в их нижней части устраивают изоляционный слой, чаще всего из двух слоев битумных рулонных материалов (рубероида и др.), склеенных между собой водонепроницаемой битумной мастикой.
В процессе эксплуатации фундаментов необходимо следить за осадкой основания и возможными деформациями.

Подвалы

Одним из важных условий сохранности и целостности дома является гидроизоляция подвала. Стены и полы подвалов, независимо от расположения грунтовых вод, необходимо изолировать от просачивающихся через грунт поверхностных вод, а также от капиллярной грунтовой вла-rHj поднимающейся вверх. В подвальных помещениях, при расположении уровня грунтовых вод ниже пола подвала, достаточной гидроизоляцией пола служит его бетонная подготовка и выполненный по ней водонепроницаемый пол, а гидроизоляцией стен — покрытие поверхности, соприкасающейся с грунтом, двумя слоями горячего битума. Если уровень грунтовых вод находится выше пола подвала, в этом случае создается напор воды тем больший, чем больше разность уровней пола и грунтовых вод. В связи с этим для гидроизоляции стен и пола подвала необходимо создать оболочку, которая могла бы сопротивляться воздействию гидростатического давления.

Эффективным мероприятием по борьбе с проникновением в подвал грунтовых вод является устройство дренажа. Сущность устройства дренажа заключается в следующем. Вокруг здания на расстоянии 2—3 м от фундамента устраивают канавы с уклоном 0,002-—0,006 в сторону сборной отводящей канавы. По дну канав с уклоном прокладывают трубки (бетонные* керамические или другие). В стенках трубок имеются отверстия, через которые проникает вода.

Канавы с трубами засыпают слоем крупного гравия, затем слоем крупного песка и сверху— открытым грунтом. По уложенным в канавах трубам вода стекает в низину (кювету, овраг, реку и др.). В результате устройства дренажа уровень грунтовых вод понижается.

Когда уровень грунтовых вод расположен не выше 0,2 м от пола подвала, гадроизоляцию пола и стен подвала устраивают так. После обмазки стен битумом устраивают глиняный замок, то есть до отсыпки траншеи забивают вплотную к наружной стене подвала мятую жирную глину. Бетонную подготовку пола также укладывают по слою мятой жирной глины.

При высоте уровня грунтовых вод от 0,2 до 0,5 м применяют оклеечную гидроизоляцию из двух слоев рубероида на битумной мастике (рис.12). Изоляцию укладывают по бетонной подготовке пола, поверхность которой выравнивают слоем цементного раствора или асфальта.

Поскольку конструкция пола должна выдерживать достаточно большое гидростатическое давление снизу, поверх изоляции укладывают нагрузочный слой бетона, который своим весом уравновешивает давление воды. С внешней стороны стен наклеивают изоляцию на битумной мастике и защищают кладкой из кирпича-железняка в 1/2 кирпича на цементном растворе и слоем мятой жирной глины толщиной 250 мм.

Оклеечную изоляцию наружных стен подвала располагают на 0,5 м выше уровня грунтовых вод, учитывая его возможное колебание.


Рис 12. Гидроизоляция ленточного фундамента в здании с подвалом:

1 — слой нагрузочного бетона; 2 — бетонная подготовка; 3 - рулонная гидроизоляция; 4 — мятая жирная глина 250 мм; 5 — кладка из кирпича-железняка на цементном растворе 120 мм; 6 — двойной слой битума


Рис. 13. Гидроизоляция ленточного фундамента в здании с подвалом:

1 —бетонная подготовка; 2—железобетонная плита; 3—рулонная гидроизоляция;
4 — мятая жирная глина 250 мм; 5 — кладка из кирпича-железняка на цементном
растворе 120 мм; б — двойной слой битума

Если уровень грунтовых вод расположен выше пола подвала более чем на 0,5 м, то поверх гидроизоляции пола, выполняемой из трех слоев рубероида или гидроизола, устраивают железобетонную плиту (рис. 13). Плиту заделывают в стену подвала, которая, работая на изгиб, воспринимает гидростатическое давление грунтовых вод.

При высоком уровне грунтовых вод устройство наружной гидроизоляции иногда вызывает затруднения. В таких случаях ее выполняют по внутренней поверхности стен подвала <рис.14). Гидростатический напор воспринимается специальной железобетонной конструкцией — кессоном.


Рис. 14. Гидроизоляция подвала при больших напорах грунтовых вод;

1 — рулонная изоляция; 2 — бетонная подготовка; 3 — цементный слой; 4 — цементная стяжка; 5 — железобетонная коробчатая конструкция; 6 — чистый пол; 7 — цементная штукатурка по битумной обмазке; 8 — гидроизоляция

Необходимые особенности, которые учитываются при строительстве фундаментов и возведении цоколей

При закладке фундаментов любого типа необходимо соблюдать следующие правила:

В большинстве фундаментных конструкций применяется бетон. Бетон обладает свойством "созревания", 28 - 30 дней. После заложения бетонной конструкции ее надо выдерживать в течение данного времени без нагрузок и желательно закрыть либо рубероидом, либо другим подручным материалом от пересыхания верхнего слоя. В период схватывания бетона периодически поливать фундамент водой, чтобы не допустить его неравномерного высыхания. Так что постройка дома на только что возведенном фундаменте таит в себе опасность, дефекты не заставят ждать.

Гидроизоляция фундамента имеет важное значение. Она заключается в обмазке горячим битумом всей поверхности, соприкасающейся с грунтом. Изолируют также и стены. Для этого прокладывают два слоя рубероида (1-й слой - между цоколем и нулевым уровнем; 2-й слой - между цоколем и основной стеной дома). Это предохраняет стены дома и цоколь от сырости.

Защита наружной стороны цоколя от атмосферных влияний. Это достигается штукатуркой или облицовкой плиткой. Для затирки фундамента в смесь добавляют резиносодержащие компоненты (золу от сгоревших автомобильных покрышек). Получается "шуба" для цоколя. Она красива и надежна.

При возведении цоколя предусматриваются вентиляционные отверстия. Летом они служат для проветривания подпола, а зимой их закрывают, чтобы сырость не попала в дом.

Отмостка необходима для защиты фундамента от воздействия поверхностных вод. Ширина отмостки от 0,75 до I метра с наклоном от стены цоколя. В качестве материалов используются: железобетон, асфальт, бетон или хорошо утрамбованная глина.

Устройство слива дождевой воды с крыш также влияет на прочность фундамента. Дождевая вода с крыши попадает на отмостку, разбивает ее и цоколь постепенно, неравномерно увлажняет грунт вблизи фундамента. Это сказывается на несущей способности фундамента и способствует проседанию фундамента.

Устройство искусственного основания под фундамент

Искусственные основания. Классификация. Методы устройства

К искусственному основанию прибегают в случаях, когда грунт слабый и проектировать фундамент на естественном основании не представляется возможным, а применять сваи или фундаменты глубокого заложения нецелесообразно по технико-экономическим соображениям.

В соответствии с этим все методы устройства искусственных оснований можно разбить на три группы:

1) механическое изменение свойств грунтов основания (укатка, трамбование, гидровиброуплотнение и т д );

2) полная или частичная замена грунтов основания или их переработка (грунтовые подушки, грунтовые сваи, грунтовые покрытия под дороги, аэродромы и т д);

3) физико-химическое улучшение свойств грунтов основания (уплотнениение водопонижением, замачивание лёссовых грунтов, силикатизация, цементация, электроукрепление и т д )

Выбор метода устройства искусственного основания решают в каждом конкретном случае на основе технико-экономического сравнения в зависимости от следующих факторов: физико-механических свойств грунтов; конструкции сооружения; наличия специализированного технологического оборудования.

К методам устройства искусственно улучшенных оснований с уплотнением грунта относят также сооружение фундаментов в вытрамбованных котлованах.

Выбор метода улучшения работы и свойств грунтов в основании в значительной степени зависит от характера напластования и свойств грунтов, интенсивности передаваемых нагрузок, особенностей сооружения и возможностей строительной организации.


Устройство грунтовых подушек. При действии на грунт внешней местной равномерно распределенной нагрузки наибольшие нормальные напряжения возникают в нем непосредственно под местом ее приложения. С глубиной и в стороны от площади загружения напряжения быстро уменьшаются вслед­ствие рассеяния в окружающем грунте. Зоны сдвигов возникают под краями фундаментов и затем развиваются в глубину и частично в стороны. Если в пределах области возможных значительных уплотнений и зон сдвигов заменить слабый грунт на малосжимаемый с относительно высоким сопротивлением сдвигу, можно существенно улучшить ра­боту грунтов в основании. Примером такого решения является устройство под фундаментами подушек (рис.) песчаных или из иного материала (гравия, щебня, шлака, отходов различ­ных производств), К материалу, применяемому для подушек, предъявляются следующие требования: удобоукладываемость с заданной плотностью, малая сжимаемость, относительно высо­кое сопротивление сдвигу, устойчивость его скелета при движе­нии грунтовых вод.

Песок в подушке должен быть уплотнен, так как, если он будет находиться в рыхлом или близком к рыхлому состоянию, возможна его осадка в результате динамических воздействий, а также замачивания. По этой причине не допускается укладка в подушку мерзлого песка, не поддающегося уплотнению. При большой стоимости пески для устройства подушек иног­да используют местные грунты, поддающиеся уплотнению. Выше уровня подземных вод можно применять супеси, суглинки и даже глины. В подушку эти грунты укладывают при оптималь­ной влажности с тщательным контролем за однородностью их состава и степенью их уплотнения.


Глубинное уплотнение грунтов динамическими воздействиями. Для уплотнения насыщенных водой песчаных грунтов применяют глубинное вибрирование. Виброуплотнение песков можно производить двумя способами: погружением вибратора (вибробулавы) в песок аналогично погружению вибробулавы в бетонную смесь или погружением в грунт стерж­ня с прикрепленным к его голове вибропогружателем. В этом и другом случае колебательные движения передаются песку, который сначала частично или полностью разжижается, а затем постепенно уплотняется.


Вибробулавы обычно используют для уплотнения слоя песка толщиной от 1 до 10 м. В целях ускорения работ на специаль­ной раме укрепляют куст вибраторов, погружая и извлекая его из грунта с помощью крапа. При необходимости уплотнения слоя песка толщиной 5. 20 м можно применять вибропогружатель, который крепится к труб­чатому стержню.

Взрывами уплотняют толщи просадочных лёссовых грунтов. Для этого грунты предварительно замачивают через фильтрующие или сов­мещенные скважины. Затем в скважины устанавливают заряды в трубках и производят ряд взрывов, следующих один за дру­гим через несколько секунд. Уплотненный таким образом лёссо­вый грунт теряет просадочные свойства и может быть использован в качестве естественного основания сооружении.

Уплотнение грунта статической нагрузкой. Рассмотренными выше способами невозможно эффективно уплотнить слабые, насыщенные водой пылевато-глинистые грунты (илы, очень пористые глины и суглинки, находя­щиеся в текучем и текучепластичном состоянии) и торфы, так как они обладают малой водопроницаемостью, а их уплотнение связано с выдавливанием поды из пор грунта. Для уплотнения таких грунтов используют статическую нагрузку в виде насыпи. При этом для ускорения процесса уплотнения устраивают дрены (рис.а). Давление по подошве насыпи должно быть больше давления от проектируемого сооружения в пределах площади застройки. Обычно насыпь отсыпают послойно, так как выполнение се сразу на необходимую высоту может привести к потере устой­чивости слабых грунтов в ее основании.

Уплотнение грунта водопонижением. Слабые пылевато-глинистые грунты, которые способны отдавать воду из пор (илы, ленточные глины, заторфованные супеси и др.), можно уплотнить, понижая уровень подземных вод, например, путем откачки воды из скважин-фильтров. Пони­жение уровня подземных вод приводит к снятию выталкиваю­щего давления воды, что вызывает в скелете грунта значитель­ное повышение напряжений, действие которых на грунт будет аналогичным действию внешней нагрузки. Отжимаемая в про­цессе уплотнения вода откачивается из скважин-фильтров.

Слабо фильтрующие пылевато-глинистые грунты во многих случаях не отдают воду. Тогда для их уплотнения прибегают к использованию электроосмоса. Для этого в грунт погружают электроды и пропускают через них постоянный электрический ток. По мере прохождения тока поровая вода концентрируется у катода. Катод делается в виде иглофильтра (рис). Из группы иглофильтров вода откачивается вихревыми насосами. Таким образом, пылевато-глинистый грунт уплотняется как вследствие понижения уровня подземных вод и увеличения на­пряжений в скелете грунта, так и благодаря уменьшению влаж­ности грунта в результате движения поровой воды к катодам. При использовании электроосмоса грунт уплотняется доста­точно быстро и только в пределах необходимой площади. Кроме того, увеличивается прочность этого грунта, т. е. он закрепляется, при этом улучшаются его строительные качества.

Смолизация. Растворы синтетических смол, способных твердеть в грунтах, можно нагнетать в поры грунта. После твердения смол грунт превращается в достаточно твердое тело. В качестве вяжущего вещества в настоящее время широко применяют карбамидную смолу с отвердителями.

Карбамидную смолу используют для омоноличивания мелких и пылеватых песков с коэффициентом фильтрации 0,5. 5 м/сут, а также для закрепления лёссовых грунтов. В качестве отвердителя используют, в частности, раствор соляной кислоты, соединяя с ним раствор корбамидной смолы непосредственно перед инъецированном. Иногда в грунт предварительно нагнетают раствор соляной кислоты 3. 5 %-ной концентрации.

К настоящее время известно несколько видов синтетических смол (фенолъные, фурановые и др.), которые можно использовать, для закрепления грунтов, в т. ч. получаемые из отходов производства. Для закрепления супесей и суглинков начинают также применять электросмолизацию.

Битумизация и глинизация. Оба эти метода используются для уменьшения водопро­ницаемости грунтов.

Битумизацию применяют для снижения водопроницаемости трещиноватой скальной породы. При этом в скважины нагне­тают расплавленный битум или битумную эмульсию с коагулян­том. Битум тампонирует полости и трещины в грунте, фильтра­ция воды прекращается или сильно снижается.

Читайте также: