Поверхностные фундаменты для опор вл

Обновлено: 09.05.2024

Поверхностные фундаменты для опор вл

Унифицированные железобетонные фундаменты используются при установке опор линий электропередач напряжением 35-500 кВ. Широкое распространение унифицированных железобетонных фундаментов для закрепления опор ЛЭП обусловлено исторически сформированной базой типовых проектных решений с использованием таких конструкций, положительным опытом их применения, а также серийным освоением продукции заводами ЖБК.

В качестве железобетонных фундаментных конструкций для установки опор ВЛ применяются монолитные грибовидные подножники с вертикальной или наклонной стойкой, различные составные фундаменты, сваи из напряженного и ненапряженного железобетона. Для увеличения несущей способности фундамента в слабых грунтах разработаны специальные опорные и подкладные плиты, ригели. В качестве фундаментной конструкции под оттяжки опор ВЛ используются анкерные плиты. В одноцепных железобетонных и деревянных опорах ВЛ до 35 кВ, в опорах линий связи широко применяются железобетонные трапецеидальные приставки.

Унифицированные фундаменты металлических опор ВЛ серия 3.407-115

Унифицированные фундаменты металлических опор ВЛ серия 3.407-115

Грибовидные фундаменты под унифицированные металлические опоры ЛЭП 35-500 кВ выпускаются серийно в соответствии с рабочими чертежами по серии 3.407-115. Проектом разработаны фундаменты различных габаритных размеров и конструкций основных частей. К основной группе относятся монолитные грибовидные подножники с наклонными или вертикальными стойками, подножники с навесными плитами, сборные фундаменты с болтовым соединением стойки и плиты основания. Дополнительная группа включает грибовидные монолитные фундаменты под анкерно-угловые опоры ЛЭП с модернизированными наголовниками, оснащенными карманами под болты и повышенные составные фундаменты со сварным или болтовым соединением стойки и нижней части. Применение сборных и составных фундаментов обусловлено необходимостью создания крупногабаритных фундаментов для особых условий применения.

Унифицированные составные фундаменты для стальных опор ЛЭП серия 3.407.1-144

Унифицированные фундаменты металлических опор ВЛ серия 3.407-115

Унифицированные сборные фундаменты серии 3.407.1-144 разработаны институтом «Энергосетьпроект» взамен своих грибовидных предшественников по серии 3.407-115 выпуск 2, 3. Фундаменты применяются в качестве подножников для свободностоящих металлических опор ВЛ 35-500 кВ. Конструкция удобна для транспортировки, состоит из отдельно изготовленных железобетонных плит и стоек, которые, на месте установки фундамента, скрепляются между собой двумя шпонками.

Замена фундаментов серии 3.407-115 на фундаменты серии 3.407.1-144 может производиться по таблице замены и на основании проверочных расчетов несущей способности фундаментов под унифицированные опоры ЛЭП.

Фундаменты металлических опор ВЛ проект 13478тм

Унифицированные фундаменты металлических опор ВЛ серия 3.407-115

Фундаменты под стальные промежуточные и анкерно-угловые опоры ВЛ 35-500кВ по типовому проекту 13478тм изготавливают в виде монолитных подножников. Типовой проект 13478тм был разработан институтом «Энергосетьпроект» в качестве модернизации фундаментных конструкций с учетом технологических доработок и особенностей производства на предприятии АО "Светлогорский ЗЖБИиК". Грибовидные фундаменты производят в опалубках аналогичных фундаментов проекта 3.407.-115 выпуск 1 в соответствии с ТУ 5800-001-00113371-2001.

Маркировка фундаментов под унифицированные опоры ВЛ по проекту 13478тм идентична маркировке железобетонных конструкций серии 3.407-115. Добавленный к маркировке индекс «с», указывает на завод-изготовитель.

Железобетонные сваи фундамента опор ВЛ серия 3.407-115

Унифицированные фундаменты металлических опор ВЛ серия 3.407-115

Сваи из вибрированного железобетона для устройства фундаментов опор ВЛ 35-500кВ выпускаются по чертежам типового проекта 3.407-115 выпуск 4.
Сваи выполнены в виде цельных забивных железобетонных конструкций квадратного сечения с заостренным наконечником и оголовком в соответствии с маркировкой сваи. Арматурный каркас свай выполняется из ненапрягаемой продольной арматуры. Проектом предусмотрено изготовление 6 и 8 метровых свай с поперечными размерами ствола 25х25см, и 8, 10, 12 метровых сваи с сечением 35х35см.
Сваи железобетонные применяются в односвайных и многосвайных фундаментах опор ВЛ, рассчитаны на эксплуатацию в различных климатических условиях, в различных грунтах, включая болотистые. Исключения составляют скальные грунты и искусственные насыпные с твердыми включениями.

Железобетонные сваи фундамента опор ВЛ серия 3.407.9-146

Железобетонные сваи фундамента опор ВЛ серия 3.407.9-146

Железобетонные сваи квадратного сечения изготавливаются в соответствии с рабочими чертежами серии 3.407.9-146 выпуск 2, и применяются в фундаментах под стальные опоры ЛЭП 35-500 кВ.
Разработано 4 типоразмера свай квадратного сечения 35х35 см, длиной 6, 8, 10, 12 м с двумя типами армирования, с напрягаемой и ненапрягаемой арматурой – всего 14 марок свай. Все оголовки свай изготавливаются с закладной деталью в виде металлического листа с длинной шпилькой, которая при необходимости отрезается. В фундаменте стойки опоры с оттяжками к листу закладной детали приваривают опорные плиты; в фундаменте свободностоящих стальных опор – приваривают наголовники с двумя или четырьмя болтами; для закрепления оттяжек в боковое отверстие сваи устанавливаются скобы. Проектом 3.407.9-146 выпуск 2 также предусмотрено изготовление составных железобетонных свай под опоры ВЛ длиной до 24м.

Железобетонные сваи энергетические проект 12614тм-т1

Железобетонные сваи энергетические проект 12614тм-т1

Специальные железобетонные сваи для устройства фундаментов опор ВЛ в районах Западной Сибири разработаны и изготавливаются по чертежам типового проекта 12614тм-т1.

Проектом разработано 4 типоразмера свай квадратного сечения 35х35 см, длиной 6, 8, 10, 12 м . Сваи изготавливаются из обычного вибрированного железобетона. Сваи фундаментов под унифицированные опоры ВЛ применяются в любых грунтовых условиях, включая глубокие болота. Расшифровка условного обозначения свай по проекту 12614тм-т1 аналогична серии 3.407-115 выпуск 4 за исключением маркировки оголовка: Нр – оголовок с одним болтом для крепления ростверка или башмаков стальных опор.

Ригели для опор ВЛ типа АР, Р, РФ, РЦ

Ригели для опор ВЛ типа АР, Р, РФ, РЦ

Ригели железобетонные выпускаются в соответствии с типовыми чертежами серий 3.407-115 и 3.407.9-158 и применяются при установке опор ВЛ 35-750кВ.

Ригели служат для увеличения боковой поверхности и несущей способности фундаментов опор при действии горизонтальных опрокидывающих нагрузок от сил тяжения проводов. Это особенно актуально при строительстве ЛЭП в слабых грунтах.
В зависимости от области применения железобетонные ригели отличаются габаритными размерами и имеют различные маркировки. Крепление ригеля на центрифугированные, вибрированные железобетонные стойки и унифицированные подножники металлических опор ВЛ производится специальными хомутами через предусмотренные конструктивные отверстия.

Анкерные, опорные, подкладные плиты для опор ЛЭП серия 3.407-115

Анкерные, опорные, подкладные плиты для опор ЛЭП серия 3.407-115

Анкерные, опорные и подкладные плиты являются типовыми конструкциями для установки опор ВЛ и выпускаются в соответствии с чертежами серии 3.407-115 выпуск 5.

Анкерная плита ПА для фиксации оттяжек стальных или железобетонных опор ЛЭП 35-500кВ выполняется в виде монолитной железобетонной прямоугольной конструкции 6 типоразмеров с продольным ребром жесткости по центру.
Опорная плита ОП для опирания железобетонной стойки опоры ВЛ в слабых почвах имеет в зависимости от маркировки круглую или квадратную в плане форму и оснащена стаканом для установки.
Подкладная плита ПП используется в слабых грунтах для расширения площади опирания фундаментов опор до размеров 3.6х3.6 м, изготавливается в виде плоской прямоугольной конструкции.

Железобетонные приставки производятся по типовым чертежам серии 3.407-57/87 согласно техническим условиям по ГОСТ 14295-75. В основе железобетонных приставок лежит тяжелый вибрированный бетон. Армирование изделий осуществляется при помощи сварных или вязанных пространственных каркасов.
Железобетонные трапецеидальные приставки ПТ применяются при монтаже одноцепных железобетонных или деревянных опор ВЛ напряжением до 35 кВ. Помимо строительства ЛЭП приставки ПТ широко применяют при установке телефонных и телеграфных линий связи.
Приставки ПТ могут применяться в слабоагрессивной среде, а также в сильноагрессивной среде с применением гидроизоляции. Конструкции приставок рассчитаны на эксплуатацию в IV и V гололедно-ветровых районах при температуре воздуха не ниже -55°С и сейсмичности до 9 баллов.

Поверхностные фундаменты для опор вл

ФУНДАМЕНТЫ ДЛЯ ОПОР КОНТАКТНОЙ СЕТИ ЖЕЛЕЗНЫХ ДОРОГ

Foundations for overhead contact line supports оf railways. Specifications

Дата введения 2014-06-01

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении" (ВНИИНМАШ)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 27 июня 2013 г. N 57-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 8 ноября 2013 г. N 1473-ст межгосударственный стандарт ГОСТ 32209-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2014 г.

5 В настоящем стандарте реализованы требования технического регламента Таможенного союза "О безопасности инфраструктуры железнодорожного транспорта" и технического регламента Таможенного союза "О безопасности высокоскоростного железнодорожного транспорта":

- пункты 5.2.1.1-5.2.1.3, 5.2.1.5, 5.2.1.12 содержат минимально необходимые требования безопасности;

- пункт 5.4 устанавливает правила отбора образцов для подтверждения соответствия;

- пункты 5.5.5, 5.5.6, 5.5.8, 5.5.9 устанавливают методы проверки минимально необходимых требований безопасности

6 Стандарт подготовлен на основе применения ГОСТ Р 54272-2010

7 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 1, 2019 год

1 Область применения

Настоящий стандарт распространяется на фундаменты железобетонные и бетонные с композитной арматурой, предназначенные для установки стоек опор контактной сети электрифицированных железных дорог по ГОСТ 19330 в любых климатических условиях.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.3.009-76 Система стандартов безопасности труда. Работы погрузочно-разгрузочные. Общие требования безопасности

ГОСТ 535-2005 Прокат сортовой и фасонный из стали углеродистой обыкновенного качества. Общие технические условия

ГОСТ 6727-80 Проволока из низкоуглеродистой стали холоднотянутая для армирования железобетонных конструкций. Технические условия

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 8735-88 Песок для строительных работ. Методы испытаний

ГОСТ 8829-94 Изделия строительные железобетонные и бетонные заводского изготовления. Методы испытаний нагружением. Правила оценки прочности, жесткости и трещиностойкости

ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2014 Смеси бетонные. Методы испытаний

ГОСТ 10922-2012 Арматурные и закладные изделия, их сварные, вязаные и механические соединения для железобетонных конструкций. Общие технические условия

На территории Российской Федерации действует ГОСТ Р 57997-2017 "Арматурные и закладные изделия сварные, соединения сварные арматуры и закладных изделий железобетонных конструкций. Общие технические условия".

ГОСТ 12730.0-78 Бетоны. Общие требования к методам определения плотности, влажности, водопоглощения, пористости и водонепроницаемости

ГОСТ 12730.5-84 Бетоны. Методы определения водонепроницаемости

ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 13837-79 Динамометры общего назначения. Технические условия

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 17625-83 Конструкции и изделия железобетонные. Радиационный метод определения толщины защитного слоя бетона, размеров и расположения арматуры

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 19281-2014 Прокат повышенной прочности. Общие технические условия

ГОСТ 22266-2013 Цементы сульфатостойкие. Технические условия.

ГОСТ 22690-2015 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 22904-93 Конструкции железобетонные. Магнитный метод определения толщины защитного слоя бетона и расположения арматуры

ГОСТ 23009-2016 Конструкции и изделия бетонные и железобетонные сборные. Условные обозначения (марки)

ГОСТ 23279-2012 Сетки арматурные сварные для железобетонных конструкций и изделий. Общие технические условия

ГОСТ 23706-93 (МЭК 51-6-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 6. Особые требования к омметрам (приборам для измерения полного сопротивления) и приборам для измерения активной проводимости

ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия

ГОСТ 24211-2008 Добавки для бетонов и строительных растворов. Общие технические условия

ГОСТ 24379.0-2012 Болты фундаментные. Общие технические условия

ГОСТ 24379.1-2012 Болты фундаментные. Конструкция и размеры

ГОСТ 26134-2016 Бетоны. Ультразвуковой метод определения морозостойкости

ГОСТ 26433.0-85 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Общие положения

ГОСТ 26433.1-89 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Элементы заводского изготовления

ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 19330-2013 Стойки для опор контактной сети железных дорог. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 анкерное крепление: Крепление, при котором опору закрепляют на фундаменте с помощью закладных (анкерных) болтов.

3.2 защитный слой: Слой бетона, противодействующий доступу воздуха и агрессивных сред непосредственно к стальной арматуре фундамента.

Руководство по проектированию опор и фундаментов линий электропередачи и распределительных устройств подстанций напряжением выше 1кВ


Спасибо stroj, полезная штука. Сам собирался сканировать да руки не доходили. Ты проектёр ВЛ?

Dart_W , 15 ноября 2009 в 12:06

Есть ещё на эту тему СНиП 2.02.01-83*
"Основания зданий и сооружений"
(утв. постановлением Госстроя СССР от 5 декабря 1983 г. N 311)
(с изменениями от 9 декабря 1985 г., 1 июля 1987 г.)

расчет фундамента опоры ЛЭП

Электрики Вам дали задание на проектирование свайных фундаментов под опоры (по серии) ЛЭП. В серии даются нагрузки на фундамент для опоры. В общих данных указывается ветровой район, например, III район по СНиП.
Карты районирования ветровых давлений по СНиП и ПУЭ различны.
Возмите район по ПУЭ. Найдите переводной коэффициент. Умножте на переводнеой коэффициент нагрузки на фундамент. Учтите 20кН на аварийный порыв провода (рядовая опора при аварийном порыве должна быть анкерной, учтите горизонтальную силу и момент). Свайный фундамент расчитывайте по SCAD с учетом горизонтальной нагрузки. Программа выдает несущую способность сваи с учетом выдергивающей нагрузки. Подобный расчет выполняют и другие программы.

В одной из первых серий Ленинградского отделения проектного института "Энергосеть" (я могу ошибиться) была разработана методика расчета фундаментов опрор ВЛ. Все более поздние серии на нее ссылаются. Расчеты по ней очень сложные. (Вероятно, эта методика не для Вашего случая)
Надеюсь, что оказал некую помощь

Последний раз редактировалось diek, 01.12.2010 в 13:39 .

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

ну нагрузка очевидно на опору. Она же не делится на ноги, она ж цельнометаллическая

А на ноги вы сами делите. Если захотите таракана - будет 6 ног и т.п. Они не знают точно тип опоры, это вы им его подтверждаете.

Вы не можете считать сами без электриков, т.к. у них там гололёд, ветер, обрыв проводов и т.п.
Если ж хотите геморрой, то можно наверное всё учесть. Но получите в итоге наверное то же что и программа.

Вообще обычно программы верифицируют и на предприятии. Вдруг у вас плохая и считает с ошибкой ?
Думаю надо выбить у начальства время на такой расчёт вручную, подтвердить качество так сказать.

в итоге вы получите силы с проводов.
А как они распределяются по опоре скажет вам скад.
Без него даже страшно подумать сколько и как это считать.
Ну или с большим запасом. Полагаю у вас даже типовая опора не пройдёт таким расчётом.
1. однозначно усилия будут разные на все ноги, но стоит ли это учитывать ?
2. так вы опору считаете, а не ноги ? Что за вопросы ? У меня чувство, что вы таким макаром ничего не посчитаете. Тут надо 3д учитывать, а не каждую ногу отдельно считать.

Сразу оговорюсь, что я КМ знаю плохо и опоры несчитал. Это я всё предполагаю.

__________________
"Безвыходных ситуаций не бывает" барон Мюнгхаузен Если опора ЛЭП имеет имеет четыре точки под свайные фундаменты, то два фундамента работают на вдавливание и два на выдергивание. Количество свай подбирается расчетом таким образом, чтобы их несущая способность была выше рачетных нагрузок на фундамент.
Если Вы сомниваетесь в предоставленных нагрузках на фундамент, то в этом случае необходим ручной счет. Быстрый грубый сбор нагрузок на вертикальный консольный жесткозакрепленный стержень (предполагается знание строительной механики). Момент в заделке стержня деленный на длину базы опоры ЛЭП дает нагрузки (вдавливающие и выдергивающие с учетом веса опоры) на фундамент. Если первая цифра и порядок полученных усилий на фундамент совпали с расчетом по программе, то предоставленным данным можно доверять.
Особо Ваше внимание хочу обратить при использовании ПУЭ. В нем приводятся повышающие коэффициенты, применяемые для районах с отсутствием метеоданных.
Если расчеты сильно разнятся, то в ПУЭ сбор нагрузок очень подробно прописан. В этом случае все надо делать в ручную. Бояться этой работы не надо. Специалистами становяться только через ручной счет и не однократный.
Успехов Вам. Момент в заделке стержня деленный на длину базы опоры ЛЭП дает нагрузки (вдавливающие и выдергивающие с учетом веса опоры) на фундамент. может половина длинны базы.
а как же быть с продольными и поперечными усилиями?? или они не значительны по сравнению с моментом ??

Инженер-недоучка на производстве

город Йошкар-Ола необходимо применять как можно больше повышающих коэффициентов. Например, коэффициент по нагрузке -1,1; Маленькая поправка: при расчёте на опрокидывание (соответственно на выдёргивания одной из опор) нагрузку от собственного веса брать с понижающим коэффициентом 0,9 - прим. 1 таблицы 1 СНиП "Нагрузки и воздействия".
Ну а ветровые по-прежнему, с наибольшими повышающими коэффициентами.

Проблема у меня следующая. Больше года уже висит надо мной и я уже решила с ней покончить.
Разбираюсь в расчете опоры ЛЭП. Цель - подбор столбчатых типовых фундаментов под опору.

Считала в программе ЛЭП-2009 и вручную.
В программе все сделала, ввела все климатические данные, геометрию опоры и т.д. - посчитались нагрузки на сжатие, на вырывание. Затем, по ним (по нагрузкам) как-то нужно используя типовой проект подобрать фундамент.
Сразу говорю, что обычный фундамент, где нужно определять площадь подошвы, я знаю, мы это проходили на 4 курсе, но здесь по-другому как-то подбирают фундаменты.

В ручном расчете я дошла до опрокидывающих моментов и тоже не знаю, что с ними да куда. Есть много вариантов у меня, но я не знаю, какой из них верный. Использовала учебник Крюкова, там приведен расчет промежуточной опоры и усилия в элементах, как там подбираются фундаменты, Крюков не написал.

Если, кто сможет посоветовать какую-нибудь литературу, где это объясняется, буду очень рада. Также могу сбросить свои расчеты отсканированные в ЛС, может у кого-то есть свободное время и он может проверить на наличие ошибок, куда уж без них

Здравствуйте Саразан!
Мы с вами коллеги в этом вопросе! Я вот уже неделю тоже пытаюсь посчитать опору ЛЭП. Создал модель в Лире и получил нагрузки на фундамент, вот только с пульсацией никак не могу разобраться!
1.Как вы считали пульсацию, если вручную, то как определяли первую частоту собственных колебаний?
2. На какие режимы нужно считать промежуточные опоры?
С подбором фундаментов я пока не занимался, считаю что это следующая фаза. Пытаюсь правильно собрать нагрузки. Думаю что там можно разобраться. Мне дали несколько альбомов типовых фундаментов под опоры и сказали, что там как то все по графикам подбирается) Если что могу подсказать альбом по которому подбирать, только скажите название вашей опоры.

Как вы в Лире задавали модель? Опору нарисовали по монтажной схеме, а потом жесткость стержням задавали? У меня была такая идея, но как-то решила я не связываться.
и ветровую нагрузку тоже надо прикладывать к опорам, там же. Хотя. может я тоже попробую как-нибудь тоже в Лире посчитать)

1) Я пульсацию не учитывала, у меня опора ниже 40 м - 24,7м
2) Вообще на самый опасный режим рассчитывается.
Можно, наверно и на все попробовать и сравнить. Я считала по учебнику Крюкова, он почему-то показал пример для нормального режима (ветер без гололеда, направленный перпендикулярно оси линии).

Наверно голодед зависит от района строительства, его может быть очень мало, чтоб его учитывать, знаю, что некоторые опытные инженеры с ним вообще не связываются))

Аварийный режим не может быть, по моему мнению, самым опасным, т.к если это обрыв провода, то вес провода не учитывается и давление ветра на провод, если обрыв троса, то аналогично. И к тому же продолжительность действия нагрузок аварийного режима невелика.

Фундаменты опор ВЛ

«Справочник по строительству и реконструкции линий электропередачи напряжением 0,4–750 кВ / под ред. Е. Г. Гологорского.» считаю одним из лучших пособий для сметчика, т.к. в нем дано очень много нужной для сметчика информации.

Представлю несколько фрагментов из этой книги со своими комментариями.

Конструкция фундаментов выбирается в соответствии с типом опоры, действующей на фундамент нагрузкой, а также характеристикой грунта, в который будет заделан фундамент.

В качестве фундаментов опор применяются монолитный бетон, сборный железобетон, сваи и в некоторых случаях – металлические фундаменты. У железобетонных опор, нижний конец стойки которых заделывается в грунт, фундаментом служит низ стойки, иногда усиленный ригелями.

Деревянные опоры всех типов устанавливаются без фундаментов.

Для стальных и некоторых видов железобетонных опор на оттяжках наибольшее распространение получили железобетонные сборные фундаменты, устанавливаемые в котлованы. При изготовлении на заводе фундаменты поступают на линию или в виде готовых к установке конструкций (подножников, свай, плит, ригелей, ростверков), или в виде отдельных деталей (рис. 1.1).

Широкое применение железобетонных подножников заводского изготовления возможно в грунтах почти всех категорий, что резко снижает трудоемкость устройства фундаментов, а также объемы земляных работ, расход бетона и в конечном счете стоимость сооружения. Применение железобетонных подножников заводского изготовления позволяет выполнять сооружение фундаментов под опоры ВЛ практически в любое время года.

Рис. 1. Детали сборных железобетонных фундаментов опор ВЛ: а – прямой подножник; б – наклонный подножник; в – пригрузочная плита; г – ригель; д – свая; е – ростверк; ж – анкерная плита для крепления оттяжек Рис. 1. Детали сборных железобетонных фундаментов опор ВЛ: а – прямой подножник; б – наклонный подножник; в – пригрузочная плита; г – ригель; д – свая; е – ростверк; ж – анкерная плита для крепления оттяжек

С целью ограничения числа типов железобетонных подножников и свай, предназначенных для массового изготовления на заводе, они унифицированы. Шифровка фундаментов основной номенклатуры определяется буквой Ф – фундамент и цифрой, которая указывает типоразмер фундамента. Специальные фундаменты имеют после первой буквы в шифре дополнительную букву С, укороченные – К, повышенные – П. После цифры, обозначающей типоразмер фундамента, через дефис проставляется буква или цифра, указывающая на его применение:

А – под анкерно‑угловые опоры; О – под стойки опор с оттяжками; 2 – под опоры с башмаками, имеющими два отверстия; 4 – под опоры с опорными башмаками, имеющими четыре отверстия. В случае установки на фундаментах неосновных вариантов наголовников (с болтами диаметром 48 мм или болтами длиной 350 мм) после буквы А основного шифра через дефис проставляются цифры соответственно 48 или 350.

Ф4‑А – фундамент 4‑го типоразмера под анкерно‑угловую опору;

ФС 2–4 – фундамент специальный 2‑го типоразмера под опору с башмаками, имеющими четыре отверстия, т. е. фундамент с четырьмя болтами;

ФК 1–О – фундамент укороченный 1‑го типоразмера под стойку опоры на оттяжках.

Для шифровки фундаментов дополнительной номенклатуры к шифру основного фундамента добавляют букву:

в шифре вариантов фундаментов с модернизированным оголовком после буквы А добавляется буква М – модернизированный, например Ф3‑АМ, Ф5‑АМ;

в шифре вариантов фундаментов со сварным или болтовым соединением стойки с нижней частью после букв ФП и ФС добавляется буква С, обозначающая сварной, или буква Б – болтовой вариант.

Например, ФПС5‑А – вариант повышенного фундамента ФП5‑А со сварным соединением стойки и нижней части; ФСБ2‑4 – вариант специального фундамента ФС‑4 с болтовым соединением стойки и нижней части.

Для изготовления железобетонных фундаментов применяется бетон марок 200, 300 и 400 (по прочности на сжатие), приготовленный на портландцементе. При наличии на трассе агрессивных к бетону грунтовых вод для приготовления бетона применяется цемент, стойкий к конкретному виду агрессии.

Для армирования железобетонных фундаментов применяется арматура из горячекатаной углеродистой или низколегированной стали. Для линий электропередачи, строящихся в районах с расчетной наружной температурой воздуха до –30 °C, разрешается применять арматуру из кипящих сталей; для линий, строящихся в районах с расчетной температурой воздуха от –30 до –40 °C, разрешается применение арматуры из полуспокойной стали, а для районов с температурой ниже –40 °C – только из стали спокойной плавки.

Для промежуточных и анкерно‑угловых стальных опор основным конструктивным элементом фундаментов принят подножник грибовидной формы, а для анкерно‑угловых опор и опор с оттяжками применяются подножники с наклонными стойками, ось которых является продолжением пояса опоры и оси оттяжки. Это резко снижает горизонтальные нагрузки на фундамент. Для крепления оттяжек вантовых опор применяются также составные фундаменты с навесными плитами прямоугольного сечения. Эти фундаменты получаются сочетанием грибообразного подножника и навесных плит.

Выбор типов фундаментов производится на основании установочных чертежей, разработанных для каждого типа опоры. На установочных чертежах приводятся: план расположения фундаментов; привязка ригелей, пригрузочных плит; район по гололеду и скоростной напор ветра, а для анкерно‑угловых опор – угол поворота на линии. На чертежах фундаментов указывается степень уплотнения грунта засыпки.

Под анкерно‑угловые опоры разработано семь типов фундаментов: Ф1‑А; Ф2‑А; Ф3‑А; Ф4‑А; Ф5‑А; Ф6‑А и ФС. Под промежуточные и промежуточно‑угловые опоры разработаны шесть типов фундаментов: Ф1; Ф2; Ф3; Ф4; Ф5; Ф6 и фундамент типа ФС.

При прохождении трассы ВЛ в районах рек, болот, по косогорам применяются повышенные составные подножники типа ФП со сварным – С или болтовым – Б соединениями стойки с нижней частью. Основные типы, характеристики сборных железобетонных фундаментов и подножников для ВЛ 35–500 кВ приведены в табл. 1-4.

Фундаменты опор ЛЭП

Ф219.1.XXXX

Для закрепления в грунте опор ЛЭП производства ГК ЭЛСИ применятся фундаменты из стальных труб или стальных винтовых свай. Крепление опор к фундаментам осуществляется с помощью фланцевого соединения или стальными скобами.

Наряду со свайными фундаментами разработаны и производятся поверхностные и приповерхностные фундаменты, позволяющие осуществлять закрепление опор в сложных грунтах: глыбово-щебенистых и скальных.

Опоры и фундаменты ЛЭП, поставляемые ГК ЭЛСИ, отвечают всем необходимым требованиям для применения в сложных климатических и грунтовых условиях и могут эксплуатироваться при экстремально низких температурах.

Для проектирования ЛЭП с использованием фундаментов опор ВЛ конструкции ГК ЭЛСИ проектным и строительно-монтажным организациям высылается альбом строительных конструкций - ЭЛ-ТП.10-220.01.04 «Фундаменты опор из гнутого стального профиля для воздушных линий электропередачи 10, 35, 110 и 220 кВ», Том 4, содержащий информацию по проектированию различных фундаментных решений.

Фундаменты под опоры ВЛ 6-10 кВ

  • В «нормальных» грунтах для закрепления опор применяется фундамент из стальной трубы либо стальной винтовой сваи диаметром 219 или 325 мм. Фундамент опоры устанавливается в сверленый котлован, выполненный с помощью бурильной машины. Глубина котлована и диаметр трубы выбираются в зависимости от расчетных нагрузок на опору и физико-механических характеристик грунта. Толщина стенки труб свайных фундаментов выбирается исходя из воздействующего на трубу максимального расчетного опрокидывающего момента и марки стали, из которой изготовлена труба.
  • В болотистых грунтах строительство ВЛ выполняется в зимнее время, закрепление свайного фундамента из стальной трубы или стальной винтовой сваи осуществляется забиванием (либо вдавливанием) фундаментной трубы с открытым или конусным концом (либо, в случае винтовой сваи – ввинчиванием) с достижением подстилающих болото грунтов и заглублением в подстилающие грунты для обеспечения необходимой несущей способности фундамента опоры на опрокидывание.
  • В многолетнемерзлых грунтах закрепление опор достигается необходимым заглублением сваи из стальной трубы или стальной винтовой сваи, как правило, на глубину 5-9 метров. Закрепление в многолетнемерзлых грунтах рассчитывается как жесткое.

Фундаменты под опоры ВЛ 35-110 и 220 кВ

  • В «нормальных» грунтах фундаменты из стальных труб диаметром 530 или 720 мм или стальных винтовых свай устанавливаются в сверленый котлован, глубина которого определяется расчетным опрокидывающим моментом, действующим на фундамент опоры ВЛ на уровне поверхности грунта, и физико-механическими характеристиками (несущей способностью) грунта. Различные типы фундаментов рассчитаны на закрепление опор с несущим изгибающим моментом на 400, 480 и 600 кН-м.
  • В болотистых грунтах закрепление опор осуществляется так же, как и для опор ВЛ 6-10 кВ, но при этом для свай используются трубы большего диаметра - 530 или 720 мм.
  • В многолетнемерзлых грунтах закрепление опор может осуществляться так же, как и для опор ВЛ 6-10 кВ, но на сваях из труб большего диаметра - 530 или 720 мм, либо на поверхностном фундаменте, представляющем собой выложенные на поверхности грунта железобетонные сваи, скрепленные между собой скобами. Установка опор на такие фундаменты производится при помощи специального переходного узла.

Фундаменты для закрепления опор ВЛ в твердых и скальных грунтах

Используются следующие виды специально разработанных фундаментов опор ВЛ:

  • Фундамент поверхностный предназначен для закрепления опор в относительно твердых грунтах, когда технически невозможно осуществить сверление котлована в грунте. Конструктивно каркас фундамента представляет собой раму из швеллеров, к которой крепится через специальный переходной узел опора. Поверхностный фундамент засыпается глыбово-щебенистым грунтом на высоту не менее 1,0-1,5 метра или придавливается по периметру соответствующим по весу пригрузом (например, бетонными блоками) с учетом несущей способности фундамента на опрокидывание.
  • Фундамент поверхностный заглубленный предназначен для закрепления опор в глыбово-щебенистых грунтах, когда возможно каким-либо способом (экскаватором, взрывным способом и т.д.) углубиться в грунт и сделать в нем необходимый котлован для установки фундамента. Фундамент опоры, представляющий собой рамочную конструкцию из швеллеров, заглубляется на 1,5 метра с последующей засыпкой вынутым грунтом.
  • Фундамент скальный предназначен для закрепления опор на скалах за счет скальной анкерной заделки, которая использует прочность скалы. Для этого в крепкую скалу с помощью мотоперфораторов анкеруются болты, прикрепляющие основание фундамента через бетонную подложку к скале.

Закрепление оттяжек опор

Закрепление оттяжек анкерных концевых и анкерных угловых опор выполняется при помощи следующих типов фундаментов:

ФО.1-00 – используется при закреплении опоры в сверленный котлован;

ФО.2-00 – используется при закреплении опоры на скалах.

Защита фундаментов опор ЛЭП от коррозии. Заземление опор

В зависимости от коррозионной агрессивности грунта предусматривается защита приземной части фундамента из стальной трубы от коррозии с использованием современных гидроизолирующих полимерно-битумных покрытий газопламенного нанесения или антикоррозионных грунт-эмалей. При этом нижняя часть фундамента, в которой коррозия отсутствует, выполняется неизолированной и служит в качестве естественного заземлителя опоры.

Читайте также: