Определение размеров подошвы фундамента

Обновлено: 26.04.2024

Определение размера подошвы фундамента

Как известно, наибольшее давление на грунт под краем подошвы фундамента не должно превышать давление на грунт при действии изгибающего момента в одном направлении 1,2R.
Напряжение под подошвой определяем по формуле (см. миниатюру 1, формула (9) пособие к СНиП 2.09.03-85 по проектированию отдельно стоящих опор и эстакад под технологические трубопроводы) и сравниваем полученное напряжение с расчетным сопротивлением грунта основания R.
Стоит ли пытаться учесть отпор грунта сопротивляющийся повороту фундамента от момента? А пригружающий эффект на консоли фундамента?
В пособии рассчитывается, как если бы фундамент стоял на горизонтальной плоскости основания без учета влияния грунта выше отметки подошвы (формула миниатюра №1). Фундамент см. миниатюру №2.

Украина, Львов

Стоит ли пытаться учесть отпор грунта сопротивляющийся повороту фундамента от момента? А пригружающий эффект на консоли фундамента?

Вес грунта, расположенного над уступами фундамента, учитывается при расчете вертикальной нагрузки N на фундамент. Далее определяются напряжения под подошвой

Больше тот грунт никак не повлияет.
Если по результатам расчета получится некоторый отрыв подошвы от основания (его величина регламентируется нормами), то следует учесть вес грунта на уступе (т. наз. "обратный момент") - заармировать уступ также и в верхней зоне.

Определение размеров подошвы фундамента

Проектируется центрально нагруженный жесткий фундамент. Определяется равнодействующая нагрузка, проходящая через центр тяжести фундамента. В целях сокращения объемов работ при выполнении курсовой работы значения нагрузок не рассчитываются, а принимаются в соответствии с исходными данными.

Равнодействующая нагрузка , действующая на обрез фундамента равна (кН/м)

Цель проектирования тела фундамента – определение его геометрических размеров. Требуемую площадь подошвы фундамента определяют по формуле (м 2 )

где – высота тела фундамента, м; – плотность материала фундамента, г/см 3 ; – ускорение свободного падения, м/с 2 ; – коэффициент, учитывающий различие в удельных весах бетона и грунта обратной засыпки, равный 0,85; – расчетное значение сопротивления грунтов (естественных или улучшенных), кПа.

Расчетное значение сопротивления грунтов определяется по формуле

где и – коэффициенты условий работы (принимаются по СНиП 2.02.01–83, таблица 3); – коэффициент, принимаемый равным 1, если прочностные характеристики грунта (угла внутреннего трения j и удельного сцепления с) определены непосредственными испытаниями, и 1,1, если они приняты по таблице (СНиП 2.02.01–83, таблицы 1–3); , , – коэффициенты (принимаются по СНиП 2.02.01–83, таблица 4); – коэффициент, принимаемый равным при < 10 м – = 1, при ³ 10 м – = z0/ +0,2 (здесь z0 = 0,8 м); – ширина подошвы фундамента, м; – расчетное осредненное значение удельного веса грунтов, залегающих ниже подошвы фундамента (при наличии подземных вод с учетом взвешивающего действия воды), кН/м 3 ; – то же, залегающих выше подошвы фундамента; – расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа; – глубина подвала – расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом шириной В £ 20 м и глубиной свыше 2 м принимают = 2 м, при ширине подвала В > 20 м – = 0); – глубина заложения фундаментов бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала,

где – толщина слоя грунта выше подошвы фундамента со стороны подвала, м; – толщина конструкции пола подвала, м; – расчетное значение удельного веса конструкции пола подвала, кН/м 3 .

Предварительно назначают ширину подошвы фундамента. Для этого по СНиП 2.02.01–83 находят расчетное сопротивление грунтов основания (СНиП 2.02.01–83, приложение 3). После чего определяют ориентировочную площадь подошвы фундамента по формуле (14). Далее, полагая, что фундамент проектируется на 1 погонный метр длины ( ), устанавливают ориентировочную ширину подошвы фундамента

Требуемую ширину подошвы фундамента определяют методом последовательных приближений. В формулу (15) подставляют найденное по формуле (17) значение . Находят значение .

Далее рассчитывают давление под подошвой фундамента (среднее контактное давление) фундамента (кН/м 2 )

где – расчетное значение нагрузки действующей на обрез фундамента, кН; – расчетное значение веса фундамента, кН, – глубина заложения фундамента, м; – вес грунта обратной засыпки на уступах фундамента, кН (согласно расчетной схеме; можно принять плотность грунта обратной засыпки 1,6 г/см 3 ).

Если выполняется условие < расчет по определению ширины фундамента заканчивается, в противном случае расчет повторяется, путем изменения ширины фундамента, а также назначением уступов (ступеней).

Для выполнения указанных расчетов рекомендуется графоаналитический метод. Возможно также использование метода итераций. Для графоаналитического метода проводят расчет до выполнения условия < . Каждый этап расчета заносят в таблицу, по данным которой строят график зависимости ширины подошвы фундамента b от значений и . Точка пересечения на графике укажет достоверную величину ширины подошвы фундамента.

Пример. По результатам расчета получены значения b, и , которые приведены в табличной форме.

b, м
, кПа 550,1 350,4 222,5 200,1
R, кПа 246,3 237,2 225,5 235,6 239,6

Рис. 6. Результаты расчета ширины фундамента




По результатам графоаналитического расчета ширина подошвы составляет 3,6 м.

Определение размеров отдельно стоящего фундамента

Определение размеров подошвы фундамента осуществляется последовательными приближениями.

Вначале по таблице 42 или 43 определяют расчетное сопротивление грунта R0 для того слоя грунта, на который опирается фундамент.

Затем вычисляются ориентировочные размеры подошвы фундамента, как центрально загруженного, по формуле

где А – площадь подошвы фундамента, м;

NII – сумма вертикальных нагрузок, действующих на основание, кроме веса фундамента и грунта на его уступах (обрезах), и определяемых для случая расчета основания по деформациям, кН;

R0 –расчетное сопротивление грунта основания, кПа;

– средний удельный вес материала фундамента и грунта на его уступах, кН/м 3 , равный 20-23 для зданий без подвалов или для зданий с подвалом с обеих сторон от фундамента и - 16-19 при наличии подвала с одной стороны от фундамента;

d – глубина заложения фундамента, м.

В сумму вертикальных нагрузок NII, действующих на основание, кроме веса фундамента и грунта на его уступах (обрезах), входят:

- вертикальная нагрузка на обрез фундамента NоII, получаемая из статического расчета надфундаментных конструкций;

- при опирании на фундамент фундаментных балок – вертикальные нагрузки от веса фундаментных балок и веса конструкций, опирающихся на фундаментные балки;

- прочие вертикальные нагрузки – от конструктивных элементов здания, опирающихся на фундамент, но не учтенных в статическом расчете, например, нагрузки от фахверковых колонн и т.п.

По полученному размеру площади назначают ширину и длину подошвы фундамента и конструируют, в первом приближении, тело фундамента в соответствии с указаниями п. 5.5. После этого, согласно принятым размерам, определяют расчетное сопротивление грунта R по формуле (15), находят вес фундамента и грунта на его уступах и вычисляют среднее давление по подошве фундамента по выражению

где NfII – расчетный, по второй группе предельных состояний, вес фундамента, кН;

NgII – то же вес грунта на уступах фундамента, кН;

l – длина подошвы фундамента, м;

b – ширина подошвы фундамента, м.

Свод правил [4] рекомендует давление по подошве фундамента вычислять по формуле

где gmt – средневзвешенное значение удельных весов тела фундамента, грунта и пола, расположенных над подошвой фундамента; принимают равным 20 кН/м 3 ;

d – глубина заложения фундамента, м.

При наличии на полах сплошной равномерно распределенной нагрузки интенсивностью q средние давления по подошве фундамента, вычисленные по формуле (59) или (60), должны быть увеличены в соответствие с п. 7.2.

Далее проверяется выполнение условия (55). С первого приближения практически никогда не удается получить выполнения требуемого условия. Поэтому делают следующие приближения – ступенями увеличивают (при pII > R) или уменьшают (при pII << R) размеры подошвы фундамента, корректируют конструкцию фундамента, повторно находят вес фундамента и грунта на его уступах, вычисляют среднее давление по подошве фундамента и расчетное сопротивление грунта основания R и проверяют выполнение условия (55).

В результате последовательных приближений необходимо добиться того, чтобы pII стало меньше R и расхождение между ними не превышало 5% (в курсовом проектировании не более 10%).

Для центрально нагруженного фундамента определение его размеров на этом можно считать законченным.

Для внецентренно нагруженного фундамента для различных сочетаний нагрузок находят краевые давления по подошве и, корректируя размеры подошвы фундамента, добиваются выполнения условий по ограничению эксцентриситета равнодействующей в соответствии с п. 7.2.

Краевые давления рII, кПа, определяют по формулам:

при относительном эксцентриситете е / l £ 1/6

или по своду правил [4]

при относительном эксцентриситете е / l > 1/6

или по своду правил [4]

где NII - сумма вертикальных нагрузок, действующих на основание, кроме веса фундамента и грунта на его обрезах, и определяемых для случая расчета основания по деформациям, кН;,

NfII – расчетный, по второй группе предельных состояний, вес фундамента, кН;

NgII – то же вес грунта на уступах фундамента, кН;




A - площадь подошвы фундамента, м 2 ;

gmt - средневзвешенное значение удельных весов тела фундамента, грунта и пола, расположенных над подошвой фундамента; принимают равным 20 кН/м 3 ;

d - глубина заложения фундамента, м;

MII - момент от всех нагрузок, действующий по подошве фундамента, найденный с учетом заглубления фундамента в грунте и перераспределяющего влияния верхних конструкций или без этого учета, кН·м;

W - момент сопротивления площади подошвы фундамента, м 3 ;

C0 - расстояние от точки приложения равнодействующей до края фундамента по его оси, м, определяемое по формуле

e - эксцентриситет равнодействующей нагрузки по подошве фундамента, м, определяемый по формуле

При наличии моментов Mx и My, действующих в двух направлениях, параллельных осям х и у прямоугольного фундамента, наибольшее давление в угловой точке pmax, кПа, определяют по формуле

где NII, A, gmt, W - то же, что и в формуле (61).

Покажем на примере, как определяется расчетный момент в уровне подошвы фундамента. Нагрузки к фундаменту и точки их приложения показаны на рисунке 45. Сам фундамент условно не показан.

Расчетный момент MIIx относительно главной оси x подошвы фундамента, действующий в плоскости подошвы фундамента (рисунок 45), определяется по формуле

где МoxII – расчетный момент относительно главной оси x сечения конструкции, опирающейся на фундамент, действующий по обрезу фундамента, кН×м;

QоyII – расчетное значение горизонтальной силы на обрезе фундамента по направлению оси y, кН (может обозначаться Fоhy);

hp – высота фундамента, м;

NoII – расчетная, по второй группе предельных состояний, нагрузка по обрезу фундамента, кН, проходящая через центр тяжести сечения конструкции, опирающейся на фундамент;

NfII – вес фундамента, кН, представленный в виде сосредоточенной силы, направленной вертикально вниз, проходящей через центр тяжести фундамента;

еfу(х) – эксцентриситет силы NfII относительно главной оси x(y) подошвы фундамента;

NgII – вес грунта на уступах фундамента, кН, представленный в виде сосредоточенной силы, направленной вертикально вниз, проходящей через центр тяжести грунта, расположенного на уступах фундамента;

еgу(х) – эксцентриситет силы NgII относительно главной оси x(y) подошвы фундамента.

Если на фундамент опираются фундаментные балки или другие конструкции, не показанные на рисунке 45, то необходимо соответствующим образом учитывать и моменты, возникающие в уровне подошвы фундамента, и от этих конструкций.

Аналогичным образом вычисляется и момент MIIу относительно главной оси у подошвы фундамента.


Если в результате расчетов при принятой глубине заложения фундамента размеры его подошвы получаются чрезмерно большими, рекомендуется увеличить глубину заложения, с учетом инженерно-геологических условий площадки, и повторить подбор размеров фундамента.

Пример 8.Для инженерно-геологических условий, представленных в примере 5 на рисунке 23 подобрать габариты и назначить конструкцию фундамента под колонну крайнего ряда производственного корпуса, грузоподъемность мостовых кранов 20 т.

Дано.Отношение длины сооружения к высоте L/H = 6. Длина пролета 24 м. Глубина заложения фундамента от планировочной отметки d1 = 2,2 м, высота фундамента hf = 2,1 м (рисунок 46). Размер подколонника в плане 1,2´1,2 м.

По обрезу фундамента действуют нагрузки (рисунок 47):

На пол в I - м и II - м квадрантах действует нагрузка q = 25 кПа.

Для опирания фундаментных балок у фундаментов крайнего ряда колонн предусматриваем две столбчатые набетонки.При шаге колонн 6 м и подколоннике размером 1,2´1,2 мпринимаем фундаментную балку 1БФ6-5. На каждую набетонку действует вертикальная нагрузка NсII = 16 кН (с учетом собственного веса фундаментных балок) для расчета по второй группе предельных состояний. Эксцентриситет данной нагрузки относительно центра тяжести сечения подколонника ес =-0,4 м.

Решение.Для супеси с коэффициентом пористости е = 0,642 и показателем текучести (показателем консистенции) IL = 0,3 по таблице 43 интерполяцией находим R0 = 234,5 кПа.

Назначаем = 22 кН/м 3 и вычисляем ориентировочные размеры подошвы фундамента, как центрально загруженного, по формуле (58) для максимальной вертикальной силы (первая комбинация нагрузок)

В первом приближении принимаем h = l / b = 1,4.

Находим ширину подошвы фундамента

2,17 м, принимаем b = 2,4 м.

По таблице 15 для супеси с IL = 0,3 при L/H = 6 gc1 = 1,2, gc2 = 1,0.

При b < 10 м kz = 1.

Осредненный удельный вес грунта под подошвой фундамента вычисляется в пределах 0,5b = 0,5·2,4 = 1,2 м. Для песка пылеватого, расположенной ниже уровня грунтовых вод, при определении удельного веса учитываем взвешивающее действие воды по формуле

= 19 кН/м 3 (для слоя №1 – супеси).

Глубина заложения от уровня планировки d1 = 2,2 м, т.к. подвала нет db = 0.

Расчетное сопротивление грунта вычисляем по формуле (15)

Корректируем ориентировочные размеры подошвы фундамента по формуле (58), заменив R0 на фактическое расчетное сопротивление грунта

Находим ширину и длину подошвы фундамента

1,7 м, принимаем b = 1,8 м;

l = h×b = 1,4×1,8 = 2,52 м, принимаем l = 2,7 м.

Осредненный удельный вес грунта под подошвой фундамента вычисляется в пределах 0,5b = 0,5·1,8 = 0,9 м.

= 19 кН/м 3 (для слоя №1 – супеси).

Расчетное сопротивление грунта при b = 1,8 м

В соответствие с п. 7.2 определяем дополнительные давления под подошвой фундамента от нагрузки приложенной на пол здания q = 25 кПа.

Равнодействующая нагрузки q = 25 кПа в пределах подошвы фундамента равна NqII = (q×l×b) / 2 = 25×2,7×1,8 / 2 = 60,8 кН, приложена с эксцентриситетом относительно центра тяжести сечения подколонника равным еq = (l/2)/2 = 2,7/4 = 0,675 м;

Дополнительное давление от полосовой нагрузки q = 25 кПа, приложенной вне пределов подошвы фундамента (рисунок 48) вычислим для трех точек подошвы фундамента:

1) для наиболее удаленной от полосовой нагрузки краевой точки, находящейся на расстоянии от оси полосы, равном y1 = L + l / 2;

2) для осевой точки y2 = L;

3) для наиболее близкой краевой точки y3 = L - l / 2.

Определим размеры b0 и L.

b0 = 24 - l = 24 – 2,7 = 21,3 м (здесь 24 м – пролет здания).

L = 24 / 2 = 12 м.

Таким образом, y1 = L + l / 2 = =12 + 2,7 / 2 = 13,35 м; y2 =L =12 м; y3 = L - l / 2 = 12 - 2,7 / 2 = 10,65 м.

Давление в указанных точках находим для глубины z = d = 2,25 м, равной глубине заложения фундамента от отметки ±0,000.

Давления определяются через коэффициент kq, найденный по таблице 40.

Подсчет дополнительных давлений приведен в таблице 44. Анализ величин kq×q в таблице 44 показывает, что форма эпюры дополнительных давлений для рассматриваемого случая близка к трапеции, поэтому среднее дополнительное давление по подошве фундамента от полосовой нагрузки q = 25 кПа вычисляем по формуле

точки y, м y / b0 При z / b0=0,106
kq kq×q, кПа
L + l / 2=13,35 0,627 0,257 6,43
L =12 0,564 0,377 9,43
L - l / 2=10,65 0,5 0,5 12,5

Находим сумму вертикальных нагрузок, действующих на основание с учетом нагрузки на пол, кроме веса фундамента и грунта на его обрезах

Вычисляем по формуле (60) средние давления по подошве фундамента

Проверяем выполнение условия (55).

рII = 319,47 кПа < R = 348 кПа,

расхождение составляет 8,93 %.

Проверку краевых давлений для первой комбинации выполняем для двух расчетных ситуаций – с нагрузкой на полу и без нагрузки.

Первая расчетная ситуация – на полу нагрузка q = 25 кПа.

Вычисляем момент MII в уровне подошвы фундамента

Эксцентриситет равнодействующей нагрузки по подошве фундамента определяем по формуле

Таким образом, е = 0,134 м < l / 6 = 2,7 / 6 = 0,45 м.

Вторая расчетная ситуация – на полу нагрузки нет.

Вычисляем момент MII в уровне подошвы фундамента

Эксцентриситет равнодействующей нагрузки по подошве фундамента определяем по формуле

Таким образом, е = 0,136 м < l / 6 = 2,7 / 6 = 0,45 м.

В обоих случаях е < l / 6, следовательно, требование по форме эпюры давлений по подошве фундамента для здания с мостовыми кранами грузоподъемностью 20 т удовлетворено – отрыва подошвы фундамента от основания не происходит и давления по подошве фундамента можно вычислять по формулам (61) и (62).

Краевые максимальные давления вычисляем по формуле (62):

для первой расчетной ситуации

= = 415 кПа < 1,2R = 418 кПа;

для второй расчетной ситуации

= = 371 кПа < 1,2R = 418 кПа.

Выполняем проверку для второй комбинации нагрузок по обрезу фундамента N0II = 800 кН, М0II = -240 кН×м, Q0II = -24 кН.

Первая расчетная ситуация – на полу нагрузка q = 25 кПа.

Вычисляем момент MII в уровне подошвы фундамента

Эксцентриситет равнодействующей нагрузки по подошве фундамента (по абсолютной величине) определяем по формуле

Таким образом, е = 0,237 м < l / 6 = 2,7 / 6 = 0,45 м.

Вторая расчетная ситуация – на полу нагрузки нет.

Вычисляем момент MII в уровне подошвы фундамента

Эксцентриситет равнодействующей нагрузки по подошве фундамента (по абсолютной величине) определяем по формуле

Таким образом, е = 0,29 м < l / 6 = 2,7 / 6 = 0,45 м.

В обоих случаях е < l / 6, следовательно, требование по форме эпюры давлений по подошве фундамента для здания с мостовыми кранами грузоподъемностью 20 т удовлетворено – отрыва подошвы фундамента от основания не происходит и давления по подошве фундамента можно вычислять по формулам (61) и (62).

Краевые максимальные давления вычисляем по формуле (62):

для первой расчетной ситуации

= = 354 кПа < 1,2R = 418 кПа;

для второй расчетной ситуации

= = 354 кПа < 1,2R = 418 кПа.

Конструкция фундамента изображена на рисунке 49, размеры набетонок на рисунке условно не показаны.

5.5.3. Определение основных размеров фундаментов (ч. 1)

Основные размеры фундаментов мелкого заложения (глубина и размеры подошвы) в большинстве случаев определяются исходя из расчета оснований по деформациям, который включает:

  • – подсчет нагрузок на фундамент;
  • – оценку инженерно-геологических и гидрогеологических условий площадки строительства; определение нормативных и расчетных значений характеристик грунтов;
  • – выбор глубины заложения фундамента;
  • – назначение предварительных размеров подошвы по конструктивным соображениям или исходя из условия, чтобы среднее давление на основание равнялось расчетному сопротивлению грунта, приведенному в табл. 5.13;
  • – вычисление расчетного сопротивления грунта основания R по формуле (5.29), изменение в случае необходимости размеров фундамента с тем, чтобы обеспечивалось условие pR ; в случае внецентренной нагрузки на фундамент, кроме того, проверку краевых давлений;
  • – при наличии слабого подстилающего слоя проверку соблюдения условия (5.35);
  • – вычисление осадок основания и проверку соблюдения неравенства (5.28); при необходимости корректировку размеров фундаментов.

В случаях, оговоренных в п. 5.1, выполняется расчет основания по несущей способности. После этого производятся расчет и конструирование самого фундамента.

А. ЦЕНТРАЛЬНО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ

Определение размеров подошвы фундамента по заданному значению расчетного сопротивления грунта основания. Обычно вертикальная нагрузка на фундамент N0 задается на уровне его обреза, который чаще всего практически совпадает с отметкой планировки. Тогда суммарное давление на основание на уровне подошвы фундамента будет:


p = N0/A + d,


(5.39)


где — среднее значение удельного веса фундамента и грунта на его обрезах, принимаемое обычно равным 20 кН/м 3 ; d и А — глубина заложения и площадь подошвы фундамента.

Если принять p = R , получим следующую формулу для определения необходимой площади подошвы фундамента:


A = N0/(Rd).


(5.40)

Задавшись соотношением сторон подошвы фундамента η = l/b , получим:


b 2 = N0/[η(Rd)].


(5.41)

Зная размеры фундамента, вычисляют его объем и вес Nf , а также вес грунта на его обрезах Ng и проверяют давление по подошве:

p = (N0 + Nf + Ng)/(bl) ≤ R.


(5.42)

Определение размеров подошвы фундамента при неизвестном значении расчетного сопротивления грунта основания. Как видно из формулы (5.29), расчетное сопротивление грунта основания зависит от неизвестных при проектировании размеров фундамента (глубины его заложения d и размеров в плане b×l ), поэтому обычно эти размеры определяются методом последовательных приближений. В качестве первого приближения принимают размеры фундамента по конструктивным соображениям или из условия (5.41), т.е. принимая R = R0 .

Однако необходимые размеры подошвы фундамента можно определить за один прием. Из формулы (5.41)


ηb 2 (R – d) – N0 = 0 ,

а с учетом формулы (5.29) при b < 10 м (когда kz = 1)


.


(5.43)

Уравнение (5.43) приводится к виду:

для ленточного фундамента

a0b 2 + a1b = n0 = 0;


(5.44)

для прямоугольного фундамента

a0ηb 3 + a1ηb 2 – N0 = 0,


(5.45)


;


;

Решение квадратного уравнения (5.44) производится обычным способом, а уравнения (5.45) — методом последовательного приближения или по стандартной программе.

После вычисления значения b с учетом модульности и унификации конструкций принимают размеры фундамента и проверяют давление по его подошве по формуле (5.42).

Пример 5.7. Определить ширину ленточного фундамента здания жесткой конструктивной схемы без подвала ( db = 0). Отношение L/H = 1,5. Глубина заложения фундамента d = 2 м. Нагрузка на фундамент на уровне планировки n0 = 900 кН/м. Грунт — глина с характеристиками, полученными при непосредственных испытаниях: φII = 18°, cII = 40 кПа, γII = γ´II = 18 кН/м 3 , IL = 0,45.

Решение. по табл. 5.10 имеем: γс1 = 1,2 и γс2 = 1,1; по табл. 5.11 при φII = 18°; Мγ = 0,43; Мq = 2,73; Мc = 5,31. Поскольку характеристики грунта приняты по испытаниям, k = 1.

Для определения ширины фундамента b предварительно вычисляем:


;

Подставляя эти значения в формулу (5.44), получаем 10,22 b 2 + 370,1 b – 900 = 0, откуда


м.

Принимаем b = 2,4 м.

Пример 5.8. Определить размеры столбчатого фундамента здания гибкой конструктивной схемы ( γс2 = 1). Соотношение сторон фундамента η = l/b = 1,5, нагрузка на него составляет: N0 = 4 МН = 4000 кН. Грунтовые условия и глубина заложения те же, что и в предыдущем примере.

Решение. Вычисляем:

Затем, подставляя в уравнение (5.45) полученные величины (13,93 b 3 + 499,22 b 2 – 4000 = 0) и решая его по стандартной программе, находим b = 2,46 м, тогда l = 1,5 b = 3,7 м.

Принимаем фундамент с размерами подошвы 2,5×3,7 м.

Определение размеров подошвы фундамента при наличии слабого подстилающего слоя. При наличии в пределах сжимаемой толщи основания (на глубине z от подошвы фундамента) слоя грунта с худшими прочностными свойствами, чем у лежащего выше грунта, размеры фундамента необходимо назначать такими, чтобы обеспечивалось условие (5.35). Это условие сводится к определению суммарного вертикального напряжения от внешней нагрузки и от собственного веса лежащих выше слоев грунта ( σz = σzp + σzg ) и сравнению этого напряжения с расчетным сопротивлением слабого подстилающего грунта R применительно к условному фундаменту, подошва которого расположена на кровле слабого грунта.

Пример 5.9. Определить размеры столбчатого фундамента при следующих инженерно-геологических условиях (см. рис. 5.24). На площадке от поверхности до глубины 3,8 м залегают песни крупные средней плотности маловлажные, подстилаемые суглинками. Характеристики грунтов по данным испытаний: для песка φII = 38°, сII = 0, γII = γ´II = 18 кН/м 3 , E = 40 МПа; для суглинков φII = 19°, сII = 11 кПа, γII = 17 кН/м 3 , E = 17 МПа. Здание — с гибкой конструктивной схемой без подвала ( db = 0). Вертикальная нагрузка на фундамент на уровне поверхности грунта N0 = 4,7 MH. Глубина заложения фундамента d = 2 м. Предварительные размеры подошвы фундамента примяты исходя из R = 300 кПа (табл. 5.13) равными 3×3 м.

Решение. по формуле (5.29) с учетом табл. 5.11 и 5.12 получаем;


кПа.

Для определения дополнительного вертикального напряжения от внешней нагрузки на кровле слабого грунта предварительно находим:

среднее давление под подошвой


p = N0/b 2 + d = 4,7 · 10 3 /3 2 + 20 · 2 = 520 + 40 = 560 кПа;

дополнительное давление на уровне подошвы

По табл. 5.4 при ζ = 2z/b = 2 · 1,8/3 = 1,2 коэффициент α = 0,606. Тогда дополнительное вертикальное напряжение па кровле слабого слоя от нагрузки на фундамент будет:

Ширина условного фундамента составит:


м.

Для условного фундамента на глубине z = 1,8 м при γc1 = γc2 = k = 1 расчетное сопротивление суглинков по формуле (5.29) будет:

Rz = 0,47 · 4 · 17 + 2,88 · 3,8 · 18 + 5,48 · 11 = 30 + 196 + 60 = 286 кПа.

Вертикальное нормальное напряжение от собственного веса грунта на глубине z = 3,8 м

Проверяем условие (5.35):

315 + 62 = 377 > Rz = 286 кПа,

т.е. условие (5.35) не удовлетворяется и требуется увеличить размеры фундамента. Расчет показал, что в данном случае необходимо принять b = 3,9 м.

5.5.3. Определение основных размеров фундаментов (ч. 3)

Размеры внецентренно нагруженных фундаментов определяются исходя из условий:

pR;


(5.50) pmax ≤ 1,2R;


(5.51) p c max ≤ 1,5R,


(5.52)

где р — среднее давление под подошвой фундамента от нагрузок для расчета оснований по деформациям; pmax — максимальное краевое давление под подошвой фундамента; р c max — то же, в угловой точке при действии моментов сил в двух направлениях; R — расчетное сопротивление грунта основания.

Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил относительно одной из главных осей инерции площади подошвы определяется по формуле

Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил

,


(5.53)

где N — суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его обрезах, кН; A — площадь подошвы фундамента, м 2 ; Мх — момент сил относительно центра подошвы фундамента, кН·м; y — расстояние от главной оси инерции, перпендикулярной плоскости действия момента сил, до наиболее удаленных точек подошвы фундамента, м; Ix — момент инерции площади подошвы фундамента относительно той же оси, м 4 .

Для прямоугольных фундаментов формула (5.53) приводится к виду

Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил

,


(5.54)

где Wx — момент сопротивления подошвы, м 3 ; ex = Mx/N — эксцентриситет равнодействующей вертикальной нагрузки относительно центра подошвы фундамента, м; l — размер подошвы фундамента в направлении действия момента, м.

При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента определяется по формуле

При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента


(5.55)

или для прямоугольной подошвы

При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента

,


(5.56)

где Мх, My, Iх, Iy, ex, ey, x, у — моменты сил, моменты инерции подошвы эксцентриситеты и координаты рассматриваемой точки относительно соответствующих осей; l и b — размеры подошвы фундамента.

Условия (5.50)—(5.52) обычно проверяются для двух сочетаний нагрузок, соответствующих максимальным значениям нормальной силы или момента.

Относительный эксцентриситет вертикальной нагрузки на фундамент ε = е/l рекомендуется ограничивать следующими значениями:

εu = 1/10 — для фундаментов под колонны производственных зданий с мостовыми кранами грузоподъемностью 75 т и выше и открытых крановых эстакад с кранами грузоподъемностью более 15 т, для высоких сооружений (трубы, здания башенного типа и т.п.), а также во всех случаях, когда расчетное сопротивление грунтов основания R < 150 кПа;

εu = 1/6 — для остальных производственных зданий с мостовыми кранами и открытых крановых эстакад;

εu = 1/4 — для бескрановых зданий, а также производственных зданий с подвесным крановым оборудованием.

Форма эпюры контактных давлений под подошвой фундамента зависит от относительного эксцентриситета (рис. 5.25): при ε < 1/6 — трапециевидная (если ε = 1/10, соотношение краевых давлений pmin/pmax = 0,25), при ε = 1/6 — треугольная с нулевой ординатой у менее загруженной грани подошвы, при ε > 1/6 — треугольная с нулевой ординатой в пределах подошвы, т.е. при этом происходит частичный отрыв подошвы.

Эпюры давлений под подошвой фундамента

Рис. 5.25. Эпюры давлений под подошвой фундамента при действии центральной и внецентренной нагрузки

В последнем случае максимальное краевое давление определяется по формуле

,


(5.57)

где b — ширина подошвы фундамента; l0 = l /2 – e — длина зоны отрыва подошвы (при ε = 1/4, l0 = 1,4).

Следует отметить, что при отрыве подошвы крен фундамента нелинейно зависит от момента.

Распределение давлений по подошве фундаментов, имеющих относительное заглубление λ = d/l > 1, рекомендуется находить с учетом бокового отпора грунта, расположенного выше подошвы фундамента. При этом допускается применять расчетную схему основания, характеризуемую коэффициентом постели (коэффициентом жесткости). В этом случае краевые давления под подошвой вычисляются по формуле

,


(5.58)

где id — крен заглубленного фундамента; ci — коэффициент неравномерного сжатия.

Пример 5.11. Определить размеры фундамента для здания гибкой конструктивной схемы без подвала, если вертикальная нагрузка на верхний обрез фундамента N = 10 МН, момент M = 8 МН·м, глубина заложения d = 2 м. Грунт — песок средней крупности со следующими характеристиками, полученными по испытаниям: е = 0,52; φII = 37°; cII = 4 кПа; γ = 19,2 кН/м 3 . Предельное значение относительного эксцентриситета εu = е/l = 1/6.

Решение. По табл. 5.13 R0 = 500 кПа. Предварительные размеры подошвы фундамента определим исходя из требуемой площади:


м 2 .

Принимаем b · l = 4,2 · 5,4 м ( A = 22,68 м 2 ).

Расчетное сопротивление грунта по формуле (5.29) R = 752 кПа. Максимальное давление под подошвой


кПа < 1,2 R = 900 кПа.

Эксцентриситет вертикальной нагрузки


м,

Таким образом, принятые размеры фундамента удовлетворяют условиям, ограничивающим краевое давление и относительный эксцентриситет нагрузки.

Подошва для фундамента: что это, особенности устройства и расчетов конструкций

Важным и неотъемлемым конструктивным элементом любого объекта капитального строительства является фундамент. От его надежности напрямую зависит безопасность и продолжительность эксплуатационного срока сооружения. Чтобы нагрузочное воздействие конструкции равномерно распределялось на почву устраивается подошва под фундамент, особенно важно создание ее при возведении здания на слабом почвенном составе.

Что такое подошва фундамента

Основание или подошва фундамента – это горизонтальная плоскость, которой конструкция опирается на грунтовую основу. Подошва принимает на себя не только нагрузку от возведенного объекта, но также от бокового давления грунта, защищая при этом здание от разрушения. В зависимости от типа фундамента и особенностей грунтовой породы подошва обустраивается по-разному, но в любом случае ширина подошвы фундамента должна быть вдвое больше от самой фундаментальной конструкции, а высота как правило не превышает 30 сантиметров.

Особенности устройства подошв фундамента

Строительство любого объекта всегда начинают с закладки фундамента. Чтобы повысить прочность и надежность фундаментальной основы выполняют устройство подошвы фундамента.

По классификации фундаментных конструкций выделяют разные виды подошв фундаментов, которые отличаются между собой конструктивными особенностями и обустраиваются по определенным технологиям.

Ленточные фундаменты

Подошва ленточного фундамента укладывается вдоль периметра стен здания в виде замкнутой железобетонной полосы. Такое основание равномерно распределяет нагрузку, предотвращает перекосы и просадку строения, отлично справляется с силами пучения.

Для ленточных фундаментов подошвы могут быть:

  • естественными, когда непосредственно на грунтовую породу передается нагрузка;
  • свайными – первоначально нагрузка оказывается на сваи, а потом на грунт.

Чтобы подошва не разрушалась от воздействия грунтовых вод, для защиты ее обустраивают гравийно-песчаную подушку.

Монолитные ленточные фундаменты отличаются расположенной максимально близко к поверхности широким основанием, образующим надежную опору. Как правило такие конструкции выполняют в условиях высоко залегающих подземных вод или при слабом грунте.

Столбчатые фундаменты

Подошва столбчатого фундамента являет собой плитную поверхность с небольшими размерами. Для более прочного и надежного соединения от фундамента в тело подошвы заводятся арматурные стержни.

При использовании естественной основы подошва устраивается на утрамбованной и залитой бетонной смесью площадке. Если основание свайное, то подошва монтируется в виде верхнего сегмента, который распределяет нагрузку на созданную из объединенных ростверком балок поверхность.

Свайные фундаменты

Подошва выполняемого на уходящих в землю сваях фундамента монтируется из бетона и может быть монолитной или кольцевой. Основание подошвы фундамента монолитного типа выступает разновидностью опирающейся на заглубленные сваи плитной фундаментной конструкции.

Кольцевая подошва по конструктивным особенностям напоминает ленточный фундамент, который может находиться на уровне почвы, быть заглубленным в землю на определенную глубину или приподнятым вверх. При этом высота подошвы фундамента составляет 20-30 сантиметров.

Плитные фундаменты

При устройстве плитного фундамента лента подошвы может заливаться одновременно с плитой или же для нее делается отдельная опалубка и заливка бетонной смеси осуществляется перед созданием фундаментной конструкции. В обеих случаях подошва должна создаваться только на материнском твердом грунте и ни в коем случае не на насыпном. Глубина и структура подошвенного основания определяется по характеристикам грунтовой породы.

Плюсы и минусы подошв под фундаменты

Устройство фундамента на опорной подошве сопровождается рядом преимуществ:

  • усиление прочности и долговечности строительного объекта;
  • нагрузка на подошву в разы повышает несущие возможности фундамента;
  • минимум ограничений по типу возводимого здания;
  • возможность проводить строительные работы в любое время года;
  • возможность выполнять строительство в местах с разными видами грунтовых пород, учитывая и слабые грунты.

В числе минусов создания фундаментов на подошвах отмечают:

  • для грунтов с сильным вспучиванием или с глубоким уровнем промерзания подошвы не подходят;
  • в случае с бетонным монолитом устройство подошв требует значительных трудозатрат и сам процесс занимает много времени, что в свою очередь увеличивает сроки строительства объекта;
  • создание подошвенного основания существенно повышает расход материалов, в частности арматурных прутьев, опалубных досок и бетонного раствора;
  • при возведении фундаментов заглубленных разновидностей устройство подошв требует наличия специализированной строительной техники и оборудования;
  • фундаменты с опорной подошвой обходятся дороже в сравнении с обычными.

Наряду с относительно большим перечнем недостатков выполненный на опорном основании фундамент гарантирует сооружению надежность и долговечность, и пользуется высокой популярностью среди большинства застройщиков.

Расчет подошвы фундамента

При проектировании фундамента с опорным основанием обязательным этапом является расчет подошвы фундамента. Основная цель такого расчета состоит в точном определении ширины, глубины и площади основания, при которых оказываемое весом здания удельное давление будет меньше нежели сопротивление грунта подошве фундамента.

Предварительно площадь подошвы фундамента можно установить по условию:

PII ≤ R, в котором

  • РII – это среднее давление под подошвой фундамента в отношении к основному сочетанию нагрузок при вычислениях по деформациям;
  • R – это расчетное сопротивление грунта основания. Показатель вычисляется по формуле СНиП.

На рисунке ниже подробно представлена расчетная схема центрально нагруженной фундаментальной подошвы.

расчетная схема центрально нагруженной фундаментальной подошвы

При расчете фундаментов с повышенной жесткостью реактивная эпюра грунта принимается прямоугольной. Уравнение равновесия в этом случае выглядит так:

В данном уравнении есть определенная сложность. Дело в том, что в обеих его частях содержатся искомые геометрические размеры фундамента. Но при выполнении предварительных вычислений вес грунта и самого фундамента в АВСD заменяют на:

  • Ɣm – средний показатель удельного веса фундаментальной конструкции и грунтовой породы на ее уступах. Как правило Ɣm составляет 20кН/м³;
  • d – это глубина заложения подошвы фундамента, вычисляется в метрах.

По указанной ниже формуле определяется необходимая площадь фундаментальной подошвы:

формула определения необходимая площадь фундаментальной подошвы

При этом расчет ширины подошвы фундамента (b) выполняется:

Когда завершено предварительное определение ширины подошвы b = f(Ro) нужно уточнить расчетную сопротивляемость грунтового основания: R = f (b, φ, c, d, γ).

Рассчитав точную сопротивляемость опять нужно вычислить ширину. Повторять действия необходимо до тех пор, пока оба показателя не будут одинаковыми.

Когда с учетом унификации и модульности конструкций размер фундамента подобран, то необходимо проверить фактическое давление на грунт и напряжение под подошвой фундамента.

напряжение под подошвой фундамента

Чем меньшая разница будет между величинами РII и R, тем экономичнее получится проектное решение.

Данным способом поверяется достоверность расчета по линейной теории деформации грунта. Когда же условие не соблюдается, то для вычислений применять следует нелинейную теорию, а это существенно осложняет расчетные мероприятия.

В зависимости от жесткости и схемы нагружения фундаментов, типа сопряжения их со зданиями возможны пространственные перемещения из-за перераспределения усилий в бетоне и арматуре. Поэтому при выполнении расчетов следует учитывать допустимый отрыв подошвы фундамента, который не окажет негативного воздействия на строительный объект.

Используемые при устройстве подошвы материалы

При обустройстве фундаментальной подошвы потребуются следующие материалы и инструменты:

  • совковые и штыковые лопаты, необходимы для выполнения земляных работ ручным методом;
  • вязальная проволока и арматурные стержни, с помощью которых осуществляется армирование подошвы фундамента дома;
  • гвозди и молоток;
  • крючок, которым выполняется вязка металлического каркаса;
  • шнур для разметки;
  • доски для монтажа опалубки;
  • скобы монтажные;
  • материалы для подошвы: песок, гравий, бетонный раствор.

Для проведения съемки местности потребуется также нивелир, который поможет с точностью установить уровень подошвы фундамента.

Технология устройства фундаментальной подошвы

Вне зависимости от того, устраиваются подошвы фундаментов мелкого заложения, ленточных, столбчатых или других типов конструкций, работы по их монтажу проводятся поэтапно:

  • подготовительный этап состоит в рытье котлована. На его дне выполняется разметка, с точностью определяющая расположение будущей конструкции;
  • устройство опалубки. Здесь обязательно учитывается толщина подошвы фундамента. Выставляется опалубка таким образом, чтобы по центру подошвы распределялись фундаментальные стенки. для формирования наружных углов пара досок соединяется между собой под прямым углом и выносится на расстояние 17,5 см от разметочного шнура. При наличии слабых участков опалубки их нужно подсыпать снаружи грунтовой смесью для предотвращения протечки бетона. Если строительство предстоит на участке в повышенным уровнем грунтовых вод, то в целях безопасности выполняется гидроизоляция подошвы фундамента;
  • следующий этап – армирование. Металлические прутья обеспечивают усиление подошвы фундамента и соответственно повышают прочностные свойства всей строительной конструкции;
  • заливка бетона. После расположения арматуры выполняется бетонирование подошвы. При этом должна контролироваться расчетная отметка основания. Для более прочного сцепления фундамента с подошвой на ней прорезается шпоночная канавка по центральной оси кромки. После застывания бетона выполняется затирка поверхности.

Если несущая способность грунтов в месте строительства недостаточная, то для достижения нужных эксплуатационных показателей выполняется уширение подошвы фундамента путем устройства двусторонних или односторонних банкет.

Заключение

В любом капитальном объекте, вне зависимости от его назначения, основой является фундамент. Именно он испытывает все оказываемые зданием нагрузки и передает их на грунт. Правильно выполненная подошва фундамента перераспределяет нагрузки на грунт, предотвращает его проседание, придает фундаментальному основанию надежности и выносливости. Бесспорно, устройство подошвы сопровождается дополнительными затратами, но они полностью окупаются долговечностью и безопасностью эксплуатации строительных объектов.

Читайте также: