Обвалование фундаментов опор вл

Обновлено: 01.05.2024

Обвалование фундаментов опор вл

СТАНДАРТ ОРГАНИЗАЦИИ ОАО "ФСК ЕЭС"

НОРМЫ
проектирования поверхностных фундаментов для опор ВЛ и ПС

Дата введения 2010-06-18

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", объекты стандартизации и общие положения при разработке и применении стандартов организаций Российской Федерации - ГОСТ Р 1.4-2004 "Стандартизация в Российской Федерации. Стандарты организаций. Общие положения", общие требования к построению, изложению, оформлению, содержанию и обозначению межгосударственных стандартов, правил и рекомендаций по межгосударственной стандартизации и изменений к ним - ГОСТ 1.5-2001, правила построения, изложения, оформления и обозначения национальных стандартов Российской Федерации, общие требования к их содержанию, а также правила оформления и изложения изменений к национальным стандартам Российской Федерации - ГОСТ Р 1.5-2004.

Сведения о стандарте организации

РАЗРАБОТАН: Филиалом Открытого акционерного общества "Инженерный центр ЕЭС" - "Фирма ОРГРЭС"

ИСПОЛНИТЕЛИ: Каверина Р.С., Сенькин Н.А.

ВНЕСЕН: Департаментом систем передачи и преобразования электроэнергии, Дирекцией технического регулирования и экологии ОАО "ФСК ЕЭС"

УТВЕРЖДЕН: приказом ОАО "ФСК ЕЭС" от 18.06.2010 N 429

ВВЕДЕН В ДЕЙСТВИЕ: с 18.06.2010

Введение

Стандарт организации ОАО "ФСК ЕЭС" "Нормы проектирования поверхностных фундаментов для опор ВЛ и ПС" (далее Стандарт) разработан в соответствии с требованиями Федерального закона N184-ФЗ "О техническом регулировании".

Стандарт разработан в развитие обязательных положений и требований СНиП 2.02.01-83*, СНиП 2.02.04-88, СП 50-101-2004.

Стандарт устанавливает требования к проектированию поверхностных фундаментов воздушных линий электропередачи (ВЛ) и подстанций (ПС) в различных инженерно-геологических и климатических условиях.

Стандарт должен быть пересмотрен в случаях ввода в действие новых технических регламентов и национальных стандартов, содержащих не учтенные в Стандарте требования, а также при необходимости введения новых требований и рекомендаций.

1 Область применения

Стандарт устанавливает требования к проектированию поверхностных фундаментов ВЛ и ПС в различных климатических и инженерно-геологических условиях, включая обводненные торфяные и вечномерзлые грунтовые основания.

В Стандарте даются указания по расчету, выбору материалов и конструированию поверхностных фундаментов и фундаментов мелкого заложения при строительстве и реконструкции ВЛ и ПС для опирания основного и вспомогательного оборудования (опоры, стойки и порталы ВЛ и ПС, трансформаторы напряжений, ограничители перенапряжений, элегазовые и вакуумные выключатели, шинные опоры, опоры под конденсаторы связи, стойки под 1- и 3-х полюсные разъединители и т.п.) и как опорные конструкции других зданий и сооружений ПС (здания ОПУ и ЗРУ, башни связи и освещения, молниеотводы и т.п.).

Настоящие технические требования являются обязательными для проектировщиков и строителей, эксплуатирующих организаций, а также изготовителей, поставщиков, потребителей и заказчиков оборудования воздушных линий электропередачи и подстанций напряжением выше 1 кВ.

2 Нормативные ссылки

В настоящем стандарте организации использованы ссылки на следующие стандарты и нормативные документы:

Правила устройства электроустановок (ПУЭ). Глава 4.2. Распределительные устройства и подстанции напряжением выше 1 кВ. - 7-е изд. (п.4.2.4-4.2.6, 4.2.20, 4.2.25, 4.2.32, 4.2.35, 4.2.206-4.2.207).

ГОСТ 20276-99. Грунты. Методы полевого определения характеристик прочности и деформируемости.

ГОСТ 25192-82 Бетоны. Классификация и общие технические требования.

ГОСТ 27751-88*. Надежность строительных конструкций и оснований. Основные положения по расчету (с Изменением N 1).

* На территории Российской Федерации документ не действует. Действует ГОСТ Р 54257-2010, здесь и далее по тексту. - Примечание изготовителя базы данных.

СНиП 2.01.07-85*. Нагрузки и воздействия.

СНиП 2.02.01-83*. Основания зданий и сооружений.

СНиП 2.02.04-88. Основания и фундаменты на вечномерзлых грунтах.

СНиП 2.06.15-85. Инженерная защита территорий от затопления и подтопления.

СНиП 2.03.11-85. Защита строительных конструкций от коррозии.

СНиП II-7-81*. Строительство в сейсмических районах.

СНиП 11-02-96. Инженерные изыскания для строительства.

СНиП 22-02-2003. Инженерная защита территорий, зданий и сооружений от опасных геологических процессов.

СНиП 52-01-2003. Бетонные и железобетонные конструкции. Основные положения.

СП 11-104-97. Инженерно-геодезические изыскания для строительства.

СП 11-105-97. Инженерно-геологические изыскания для строительства. Часть 1. Общие правила производства работ.

СП 50-101-2004. Проектирование и устройство оснований и фундаментов зданий и сооружений.

СП 53-102-2004. Общие правила проектирования стальных конструкций.

ТСН 50-302-2004. Территориальные строительные нормы. Проектирование фундаментов зданий и сооружений в Санкт-Петербурге.

ТСН МФ-97 МО*. Территориальные строительные нормы. Проектирование, расчет и устройство мелкозаглубленных фундаментов малоэтажных жилых зданий в Московской области.

IEC 60826:2003*. International Standard. Design criteria of overhead transmission lines. - Geneva, 2003.

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

Руководство по проектированию опор и фундаментов линий электропередачи и распределительных устройств подстанций напряжением выше 1 кВ. Раздел 6. Основания. N 3041тм-т2*. - М.: ВГПИиНИИ "Энергосетьпроект", 1976.

* Документ в информационных продуктах не содержится. За информацией о документе Вы можете обратиться в Службу поддержки пользователей. - Примечание изготовителя базы данных.

При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования - на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте организации применяются следующие термины с соответствующими определениями:

Грунтовое основание - часть грунтового массива, непосредственно воспринимающая нагрузку от опоры или ее фундамента (фундаментов).

Фундамент - строительная конструкция, предназначенная для передачи механических нагрузок от элементов оборудования на грунтовое основание.

Малозаглубленный фундамент (МФ) - фундамент с глубиной заложения подошвы в грунтовом основании выше расчетной глубины сезонного промерзания грунта.

Мелкозаглубленный фундамент (МЗФ) или фундамент мелкого заложения - плитный или балочный фундамент с глубиной заложения в грунтовом основании, не превышающей толщину (высоту) нижней плиты или балки.

Поверхностный фундамент (ПФ) - металлическая или железобетонная конструкция, укладываемая непосредственно на грунт без заглубления либо на насыпную подготовку, воспринимающая вырывающие нагрузки за счёт своей массы, а сжимающие - за счёт площади опирания.

Инженерная подготовка территории - комплекс мероприятий, направленных на предупреждение отрицательного воздействия опасных геологических, экологических и других процессов на территорию, здания и оборудование ПС при их строительстве и реконструкции.

Критический уровень грунтовых вод (УГВ) - предельное значение положения УГВ, при превышении которого действие инженерно-геологических процессов начинает угрожать объекту ВЛ или ПС.

4 Общие положения

4.1 Требования настоящего раздела должны соблюдаться при проектировании как поверхностных, так и мелкозаглубленных фундаментов ВЛ и оборудования подстанций напряжением от 1 кВ и выше, а также их грунтовых оснований.

4.2 ПФ и их основания должны проектироваться на основании СНиП 2.01.07-85*, СНиП 2.02.01-83*, СНиП 2.02.04-88, СНиП II-7-81*, СП 50-101-2004 и с учетом:

а) данных, характеризующих назначение, конструктивные и технологические особенности принятого оборудования ВЛ и ПС и условий его эксплуатации (по паспортам и сертификатам на оборудование);

б) результатов инженерных изысканий для строительства, выполняемых согласно требованиям СНиП 11-02-96 и СП 11-105-97;

в) нагрузок и воздействий на оборудование и фундаменты, определяемых в соответствии с п.4.2 ПУЭ-7-го издания и СНиП 23-01-99, сведений о сейсмичности района строительства;

г) экологических требований и результатов инженерно-экологических изысканий, выполненных согласно требованиям СП 11-102-97;

д) технико-экономического сравнения возможных вариантов проектных решений для выбора наиболее экономичного и надежного проектного решения, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов, в соответствии с требованиями СП 11-101-95.

4.3 В соответствии с требованиями СНиП 12-01-2004 и СП 50-101-2004 работы по проектированию следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными. При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации. При проектировании следует учитывать уровень ответственности сооружений ПС в соответствии с ГОСТ 27751: I - повышенный, II - нормальный, III - пониженный. Опоры ВЛ и сооружения ПС напряжением выше 1 кВ относятся ко II (нормальному) уровню ответственности.

4.4 При проектировании ПФ выполняется обоснованный расчетом выбор:

- типа конструкции, материала и размеров поверхностных фундаментов;

- типа основания (естественное или искусственное);

- мероприятий по защите основания от внешних воздействий (паводка, обводнения, морозного пучения и т.п.);

- мероприятий по снижению влияния деформаций оснований на эксплуатационную пригодность сооружений.

4.5 При изысканиях для ПФ должны быть определены физические, прочностные и деформационные характеристики грунтов, необходимые для расчетов по предельным состояниям, включая расчет устойчивости на воздействие сил морозного пучения:

Как правильно выполнить (применить) обвалование фундаментов под опоры ВЛ?

Вижу пока два смысла обвалования:
1) Сток воды от фундаментов, аналог плохенькой обмостки. Раньше в 1950-1960 года был плохой бетон и он боялся движения воды, по слухам.
2) Недоуплотнённый грунт будет доуплотняться сам. Будет ямка, если не сделать горку. В ямке опять же будет вода.

Наши электрики всегда делают обсыпку.
Обвалование это немного другое слово. Это когда валами ограждают территорию. У нас просто делают конус к опоре.

__________________
"Безвыходных ситуаций не бывает" барон Мюнгхаузен

инженер-проектировщик ВЛ 110кВ и выше

Tyhig согласен с тобой полностью, в моем понятии она служит для защиты от временного затопления во время паводков, ветрового нагона воды и т.д. А для того, чтобы грунт доуплотнялся делается обсыпка. Получается следующим образом, под опоры где есть возможность возникновения поверхностных вод, делаем обвалование, а под все опоры делаем обсыпку.

Для справки высоту конуса не приведешь. И получается, что этот досыпной грунт будет прямо до наголовников (металлоконструкции фундамента), которые установлены на 200 мм от ур.земли.

расчет фундамента опоры ЛЭП

Электрики Вам дали задание на проектирование свайных фундаментов под опоры (по серии) ЛЭП. В серии даются нагрузки на фундамент для опоры. В общих данных указывается ветровой район, например, III район по СНиП.
Карты районирования ветровых давлений по СНиП и ПУЭ различны.
Возмите район по ПУЭ. Найдите переводной коэффициент. Умножте на переводнеой коэффициент нагрузки на фундамент. Учтите 20кН на аварийный порыв провода (рядовая опора при аварийном порыве должна быть анкерной, учтите горизонтальную силу и момент). Свайный фундамент расчитывайте по SCAD с учетом горизонтальной нагрузки. Программа выдает несущую способность сваи с учетом выдергивающей нагрузки. Подобный расчет выполняют и другие программы.

В одной из первых серий Ленинградского отделения проектного института "Энергосеть" (я могу ошибиться) была разработана методика расчета фундаментов опрор ВЛ. Все более поздние серии на нее ссылаются. Расчеты по ней очень сложные. (Вероятно, эта методика не для Вашего случая)
Надеюсь, что оказал некую помощь

Последний раз редактировалось diek, 01.12.2010 в 13:39 .

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

ну нагрузка очевидно на опору. Она же не делится на ноги, она ж цельнометаллическая

А на ноги вы сами делите. Если захотите таракана - будет 6 ног и т.п. Они не знают точно тип опоры, это вы им его подтверждаете.

Вы не можете считать сами без электриков, т.к. у них там гололёд, ветер, обрыв проводов и т.п.
Если ж хотите геморрой, то можно наверное всё учесть. Но получите в итоге наверное то же что и программа.

Вообще обычно программы верифицируют и на предприятии. Вдруг у вас плохая и считает с ошибкой ?
Думаю надо выбить у начальства время на такой расчёт вручную, подтвердить качество так сказать.

в итоге вы получите силы с проводов.
А как они распределяются по опоре скажет вам скад.
Без него даже страшно подумать сколько и как это считать.
Ну или с большим запасом. Полагаю у вас даже типовая опора не пройдёт таким расчётом.
1. однозначно усилия будут разные на все ноги, но стоит ли это учитывать ?
2. так вы опору считаете, а не ноги ? Что за вопросы ? У меня чувство, что вы таким макаром ничего не посчитаете. Тут надо 3д учитывать, а не каждую ногу отдельно считать.

Сразу оговорюсь, что я КМ знаю плохо и опоры несчитал. Это я всё предполагаю.

__________________
"Безвыходных ситуаций не бывает" барон Мюнгхаузен Если опора ЛЭП имеет имеет четыре точки под свайные фундаменты, то два фундамента работают на вдавливание и два на выдергивание. Количество свай подбирается расчетом таким образом, чтобы их несущая способность была выше рачетных нагрузок на фундамент.
Если Вы сомниваетесь в предоставленных нагрузках на фундамент, то в этом случае необходим ручной счет. Быстрый грубый сбор нагрузок на вертикальный консольный жесткозакрепленный стержень (предполагается знание строительной механики). Момент в заделке стержня деленный на длину базы опоры ЛЭП дает нагрузки (вдавливающие и выдергивающие с учетом веса опоры) на фундамент. Если первая цифра и порядок полученных усилий на фундамент совпали с расчетом по программе, то предоставленным данным можно доверять.
Особо Ваше внимание хочу обратить при использовании ПУЭ. В нем приводятся повышающие коэффициенты, применяемые для районах с отсутствием метеоданных.
Если расчеты сильно разнятся, то в ПУЭ сбор нагрузок очень подробно прописан. В этом случае все надо делать в ручную. Бояться этой работы не надо. Специалистами становяться только через ручной счет и не однократный.
Успехов Вам. Момент в заделке стержня деленный на длину базы опоры ЛЭП дает нагрузки (вдавливающие и выдергивающие с учетом веса опоры) на фундамент. может половина длинны базы.
а как же быть с продольными и поперечными усилиями?? или они не значительны по сравнению с моментом ??

Инженер-недоучка на производстве

город Йошкар-Ола необходимо применять как можно больше повышающих коэффициентов. Например, коэффициент по нагрузке -1,1; Маленькая поправка: при расчёте на опрокидывание (соответственно на выдёргивания одной из опор) нагрузку от собственного веса брать с понижающим коэффициентом 0,9 - прим. 1 таблицы 1 СНиП "Нагрузки и воздействия".
Ну а ветровые по-прежнему, с наибольшими повышающими коэффициентами.

Проблема у меня следующая. Больше года уже висит надо мной и я уже решила с ней покончить.
Разбираюсь в расчете опоры ЛЭП. Цель - подбор столбчатых типовых фундаментов под опору.

Считала в программе ЛЭП-2009 и вручную.
В программе все сделала, ввела все климатические данные, геометрию опоры и т.д. - посчитались нагрузки на сжатие, на вырывание. Затем, по ним (по нагрузкам) как-то нужно используя типовой проект подобрать фундамент.
Сразу говорю, что обычный фундамент, где нужно определять площадь подошвы, я знаю, мы это проходили на 4 курсе, но здесь по-другому как-то подбирают фундаменты.

В ручном расчете я дошла до опрокидывающих моментов и тоже не знаю, что с ними да куда. Есть много вариантов у меня, но я не знаю, какой из них верный. Использовала учебник Крюкова, там приведен расчет промежуточной опоры и усилия в элементах, как там подбираются фундаменты, Крюков не написал.

Если, кто сможет посоветовать какую-нибудь литературу, где это объясняется, буду очень рада. Также могу сбросить свои расчеты отсканированные в ЛС, может у кого-то есть свободное время и он может проверить на наличие ошибок, куда уж без них

Здравствуйте Саразан!
Мы с вами коллеги в этом вопросе! Я вот уже неделю тоже пытаюсь посчитать опору ЛЭП. Создал модель в Лире и получил нагрузки на фундамент, вот только с пульсацией никак не могу разобраться!
1.Как вы считали пульсацию, если вручную, то как определяли первую частоту собственных колебаний?
2. На какие режимы нужно считать промежуточные опоры?
С подбором фундаментов я пока не занимался, считаю что это следующая фаза. Пытаюсь правильно собрать нагрузки. Думаю что там можно разобраться. Мне дали несколько альбомов типовых фундаментов под опоры и сказали, что там как то все по графикам подбирается) Если что могу подсказать альбом по которому подбирать, только скажите название вашей опоры.

Как вы в Лире задавали модель? Опору нарисовали по монтажной схеме, а потом жесткость стержням задавали? У меня была такая идея, но как-то решила я не связываться.
и ветровую нагрузку тоже надо прикладывать к опорам, там же. Хотя. может я тоже попробую как-нибудь тоже в Лире посчитать)

1) Я пульсацию не учитывала, у меня опора ниже 40 м - 24,7м
2) Вообще на самый опасный режим рассчитывается.
Можно, наверно и на все попробовать и сравнить. Я считала по учебнику Крюкова, он почему-то показал пример для нормального режима (ветер без гололеда, направленный перпендикулярно оси линии).

Наверно голодед зависит от района строительства, его может быть очень мало, чтоб его учитывать, знаю, что некоторые опытные инженеры с ним вообще не связываются))

Аварийный режим не может быть, по моему мнению, самым опасным, т.к если это обрыв провода, то вес провода не учитывается и давление ветра на провод, если обрыв троса, то аналогично. И к тому же продолжительность действия нагрузок аварийного режима невелика.

6.6.2 Устройство котлованов и фундаментов под опоры

6.6.2.1 Устройство котлованов под фундаменты следует выполнять согласно правилам производства работ, изложенным в СП 45.13330.

6.6.2.2 Котлованы под стойки опор следует разрабатывать механизированным способом, как правило, буровыми машинами. Разработку котлованов необходимо производить до проектной отметки.

6.6.2.3 Разработку котлованов в скальных, мерзлых, вечномерзлых грунтах допускается производить взрывами на "выброс" или "рыхление" в соответствии с требованиями, приведенными в [18].

При этом должна производиться недоработка котлованов до проектной отметки на 100-200 мм с последующей доработкой отбойными молотками,

6.6.2.4 Котлованы следует осушать откачиванием воды перед устройством фундаментов.

6.6.2.5 В зимнее время разработку котлованов, а также устройство в них фундаментов следует выполнять в предельно сжатые сроки, исключающие промерзание дна котлованов.

6.6.2.6 Сооружение фундаментов на вечномерзлых грунтах осуществляется с сохранением естественного мерзлого состояния грунта в соответствии с СП 45.13330.

6.6.2.7 Сборные железобетонные фундаменты и сваи должны отвечать требованиям СП 22.13330, СП 24.13330, СП 28.13330 и проекта типовых конструкций.

При монтаже сборных железобетонных фундаментов и погружении свай следует руководствоваться правилами производства работ, изложенными в СП 45.1330.

При устройстве монолитных железобетонных фундаментов следует руководствоваться СП 70.13330.

6.6.2.8 Сварные или болтовые соединения и стыки стоек с плитами фундаментов должны быть защищены от коррозии. Перед сваркой детали стыков должны быть очищены от ржавчины. Железобетонные фундаменты с толщиной защитного слоя бетона менее 30 мм, а также фундаменты, устанавливаемые в агрессивных грунтах, должны быть защищены гидроизоляцией.

Пикеты с агрессивной средой должны быть указаны в проекте.

6.6.2.9 Обратную засыпку котлованов грунтом надлежит выполнять непосредственно после устройства и выверки фундаментов. Грунт должен быть тщательно уплотнен путем послойного трамбования.

Шаблоны, используемые для устройства фундаментов, следует снимать после засыпки не менее чем на половину глубины котлованов.

Высота засыпки котлованов должна приниматься с учетом возможной осадки грунта. При устройстве обвалования фундаментов откос должен иметь крутизну не более 1:1,5 (отношение высоты откоса к основанию) в зависимости от вида грунта.

Грунт для обратной засыпки котлованов следует предохранять от промерзания.

6.6.2.10 Допуски при монтаже сборных железобетонных фундаментов даны в таблице 4.

Обвалование фундаментов опор вл


Василий Боровицкий, заместитель главного инженера ОАО «Тюменьэнерго» г. Тюмень

Массовое строительство ВЛ в 1980–1990 годы в малоизученном в тот момент северном регионе, когда в работу вводилось зачастую более тысячи километров линий в год, создало ряд проблем их эксплуатации из-за неполного учета геологических и климатических условий территории при проектировании и сооружении ВЛ. Эти проблемы приходится решать специалистам компании «Тюменьэнерго», в хозяйстве которой протяженность воздушных линий напряжением 35–220 кВ составляет более 17 тыс. км по трассе и около 24,5 тыс. км по цепям. В 1992–2000 гг. институт «Энергосетьпроект» (Москва) проводил научно-исследовательские работы, направленные на выявление основных причин аварийного состояния ВЛ в районах Ноябрьских электрических сетей «Тюменьэнерго». Результаты исследований показали, что аварийное состояние опор ВЛ вызвано комплексным воздействием различных природных факторов (обводнением грунтов, деградацией мерзлоты в месте установки опор, морозным пучением, ветровыми нагрузками на элементы конструкций опор) и эксплуатационных нагрузок, как статических (от веса проводов, горизонтального тяжения на анкерно-угловых опорах), так и динамических, возникающих при ветровых нагрузках и приводящих к низкочастотным колебаниям системы «провод – гирлянда изоляторов – конструкция опоры – свайный фундамент».
Наиболее серьезный ущерб ВЛ тюменского региона наносит повреждение фундаментов опор из-за морозного пучения, а также разрушение бетона свай из-за резких перепадов температур и воздействия агрессивной среды в местах разлива нефти, обводнения с примесями химических компонентов, используемых в процессе нефтедобычи.


РАЗРУШЕНИЕ БЕТОНА СВАЙ

Бетон фундаментных свай разрушается под воздействием окружающей среды, например, в местах разлива нефти, обводнения с примесями химических компонентов и т.п., влагонасыщенной почвы и резких перепадов температур.

Фото 1. Ремонт фундаментов опор


Для ремонта, который проводится по методике, предложенной институтом «Уралэнергосетьпроект», применяется труба диаметром 720 мм с толщиной стенки 8 мм, разрезанная вдоль пополам. Длина трубы определяется длиной разрушенной части плюс 0,5 м. Перед производством работ поверхность сваи очищается от земли, половинки труб соединяются с помощью болтового или сварного соединения и планок. Труба бетонируется, для чего используется бетон марки М400, смесь уплотняется вибрированием. Наружную поверхность трубы покрывают битумом в два слоя.
Многолетнее применение данного метода ремонта показывает его эффективность и небольшую стоимость.

МОРОЗНОЕ ПУЧЕНИЕ СВАЙНЫХ ФУНДАМЕНТОВ

Для погружения свай в грунт до заданной глубины применяется буроопускной способ погружения с использованием лидерных скважин и дозабивкой последнего метра сваи в ненарушенный грунт. При этом между стенкой скважины и поверхностью сваи возникает зона неуплотненного грунта. Под воздействием смерзания-оттаивания грунт на глубину его промерзания уплотняется в зоне от границы сезонного промерзания и выше. По мере увеличения площади соприкосновения уплотненных грунтов в зоне промерзания, усиливается действие касательных сил морозного пучения, и, как показывает опыт эксплуатации, через 5–6 лет в пучинистых грунтах начинается выход сваи – до 5 см за сезон (рис. 1).

При выдавливании сваи из ненарушенного грунта (из зоны дозабивки) величина ее ежегодного выхода растет за счет сил, приложенных к торцу сваи и возникающих при расширении замерзающей жидкости в водонасыщенных грунтах, которые заполняют пространство лидерной скважины. Величина этих сил во много раз превышает вертикальную составляющую касательных сил морозного пучения и может превышать 50 тс на сваю. В результате ежегодный выход свай увеличивается до 20–25 см и более, фундамент теряет несущую способность, что может привести к падению опор под воздействием ветровых нагрузок.
На протяжении целого ряда лет сотрудники «Тюменьэнерго», институтов «Энергосетьпроект» (Москва) и «Уралэнергосетьпроект» (Екатеринбург) совместно работают над проблемой морозного пучения фундаментов опор, и в настоящее время применяются опробованные методы и технологии для ее решения.

Обваловка грунтом фундаментов опор

Фото 2. Обваловка грунтом фундаментов опор


Метод обваловки фундаментов опор на высоту, исключающую оттаивание зоны сезонного промерзания грунта, применяется на ВЛ, находящихся вблизи карьеров, в которых ведется разработка и намыв грунта.

Установка термостабилизаторов – сезонно-охлаждающих устройств (СОУ) вблизи свай фундамента

Фото 3. Установка термостабилизаторов – сезонно-охлаждающих устройств (СОУ) вблизи свай фундамента


Стабилизация температурного режима вечномерзлых грунтов обеспечивает устойчивость грунтовых и свайных оснований объектов. Использование СОУ, в которых в качестве хладагента используется газообразный аммиак, позволяет остановить процесс морозного пучения свайных фундаментов, однако акты вандализма ограничивают применение этой технологии на неподконтрольных территориях в отсутствие надзора.

Усиление фундаментов крестовыми сваями

Фото 4. Усиление фундаментов крестовыми сваями


  • выбуривается лидерная скважина на глубину три метра;
  • свая опускается в лидерную скважину и забивается до отметки плиты сваи 1 метр над уровнем поверхности;
  • производится сборка тяги анкерного устройства (допускается применение звеньев промежуточных регулируемых типа ПРР 30-1 с разрушающей нагрузкой 30,0 тс);
  • на плиту сваи устанавливается кондуктор-удлинитель, внутрь которого пропускается тяга анкерного устройства, свая дозабивается на глубину три метра в ненарушенный грунт (плита сваи находится на дне пробуренной скважины);
  • после отсоединения кондуктора-удлинителя монтируется узел крепления анкерного устройства на фундаменте укрепляемой опоры и соединяется с тягой анкерного устройства через регулируемое устройство;
  • после регулировки устройства в сборе лидерная скважина засыпается выбуренным грунтом.

Применение винтовых свай

Фото 5. Применение винтовых свай


Винтовые сваи, выпускаемые ООО «Завод винтовых свай» (г. Алапаевск), заслуживают внимания после устранения замечаний по их доработке – герметизации. В «Тюменьэнерго» планируется при реконструкции ВЛ в качестве эксперимента выполнить единичные фундаменты с применением винтовых свай для дальнейшего наблюдения и определения их эффективности.

Сооружение поверхностных (лежневых) фундаментов и перестановка опор

Фото 6. Сооружение поверхностных (лежневых) фундаментов и перестановка опор

В настоящее время существуют проекты и технические решения для поверхностных фундаментов всех используемых типов опор и оттяжек, разработанные институтом «Уралэнергосетьпроект» (г. Екатеринбург).
Поверхностные фундаменты применяются на местности с ровным рельефом (без косогоров, склонов и т.п.). Монтаж такого фундамента не требует применения сваебоя и может быть выполнен даже в летнее время, но требует большего количества материалов по сравнению с монтажом типовых фундаментов.
В настоящее время в энергокомпании действует долгосрочная программа перевода фундаментов опор воздушных линий электропередачи, подверженных морозному пучению, на поверхностный тип установки на лежнях.

Экстремальные климатические условия заставляют тюменских энергетиков пересматривать традиционные методы эксплуатации и обслуживания воздушных линий. В ОАО «Тюменьэнерго» постоянно ведутся экспериментальные исследования инновационных технологий, испытания современной техники и оборудования, опробование новых методов работы, чтобы в итоге обеспечить стабильное энергоснабжение потребителей.

Обвалование фундаментов опор вл


Дмитрий Шаманов, генеральный директор ООО «Комплексные Энергетические Решения», г. Санкт-Петербург

В последние годы стала популярной тема самонесущих изолированных проводов и их новой разновидности – высоковольтного универсального кабеля, конструкция которого позволяет как прокладывать его под землей, так и подвешивать на опорах, применяя технологию подвеса низковольтного СИП с использованием всех габаритных параметров линии 0,4 кВ. К сожалению, нормативных документов по проектированию и эксплуатации линий с применением универсального кабеля в России пока нет.
В многочисленных публикациях уделяется большое внимание самому проводу и линейно-сцепной арматуре, однако практически не рассматриваются способы закрепления опор на поверхности земли. Можно объяснить это тем, что технология закрепления опор имеет достаточно давнюю историю, разработано огромное количество типовых решений и, казалось бы, нет никаких предпосылок для дальнейшего развития в этом направлении.
Но это далеко не так, что показывает пример строительства кабельновоздушной линии, проложенной в рамках реализации проекта «Внешнее электроснабжение острова Валаам». То, что объект окажется достаточно неординарным и довольно сложным в воплощении, было ясно с самого начала проектирования. И действительно, в процессе реализации проекта пришлось принимать нестандартные и в чем-то даже инновационные для России решения. Их описывает в своем материале Дмитрий Георгиевич Шаманов.

ОСОБЕННОСТИ ЛИНИИ

Помимо реконструкции ПС-92 «Ляскеля» (обустройство двух ячеек 110 кВ и организация класса напряжения 35 кВ) и строительства новой ПС «Валаам» 35/6 кВ, необходимо было построить две цепи 35 кВ и две цепи оптоволоконного кабеля между этими двумя подстанциями.
Общая длина линии составила около 50 км, из которых 21 км воздушно-кабельной линии (ВКЛ) проходил от ПС-92 «Ляскеля» до берега Ладоги, 25 км кабельной линии проходили под водой и 4 км ВКЛ соединяли берег Ладоги на острове с ПС «Валаам».
Сложность строительства участка ВКЛ с применением универсального кабеля (в данном случае использовался кабель MULTI-WISKI финского производства) определялась не только длиной, но и разнородностью грунтов по всей длине трассы, а также перепадами высот. Кроме того, пришлось учитывать и значительный вес кабеля (около 5000 кг/км). Даже при том, что кабель располагался близко к стойке, уменьшая тем самым изгибающий момент, нагрузка на опору всё равно оставалась значительной.

ВЫБОР МАТЕРИАЛА ОПОР

Высоким сопротивлением изгибающему моменту и отсутствием остаточной деформации отличаются деревянные стойки. При этом их стоимость соизмерима со стоимостью железобетонных стоек и ниже, чем у металлических опор. В результате они и были использованы для строительства ВЛ. Расстояние между опорами в среднем определили в 40 м. Предполагалось строить линию на спаренных стальными оцинкованными стяжками двухстоечных опорах. На каждой стойке верхним уровнем крепилась линия 35 кВ (универсальный кабель), а нижним – самонесущий оптоволоконный кабель связи.
Таким образом, для обустройства воздушной линии потребовалось около 1200 усиленных деревянных стоек длиной 9,5 м (в особых случаях – на переходах через дороги, другие ВЛ и т.п. – применялись стойки длиной 11, 12 и 13 м).
После исследования трассы линии было определено, что более 50% трассы проходит по местам со скальными грунтами, остальная часть трассы приходится на простые грунты и болота. Встречались также ситуации, когда на месте установки опор наблюдались сразу два разных типа грунта. В итоге было применено около 20 различных вариантов основания опор.

НЕДОСТАТКИ ТРАДИЦИОННЫХ РЕШЕНИЙ

Сегодня для закрепления опор в скальном грунте обычно применяют такие способы, как установка опор в ряжах (рис. 1) или в бетонных пирамидальных основаниях (рис. 2), причем чаще используется второй вариант. Однако при всей своей простоте такой способ закрепления опор в данном проекте повлек бы за собой сразу несколько проблем.

Рис. 1. Установка опор в ряжах


Рис. 2. Установка опор в бетонных основаниях


Во-первых, доставка на место строительства бетонных оснований весом около 3 тонн каждое даже на материке является достаточно тяжелой процедурой. Что же говорить об острове?
Во-вторых, остров Валаам – историко-архитектурный памятник и бетонные основания с габаритами (Д x Ш x В) 2 x 2 x 1 м могли изменить облик острова в худшую сторону.
В-третьих, надежность такого закрепления также оставляет желать лучшего, особенно в случае установки анкерных опор, для которых потребовались бы более массивные основания.

ФИНСКИЙ ОПЫТ В РОССИЙСКИХ УСЛОВИЯХ

Поэтому при рассмотрении способов закрепления опор в скальном грунте был внимательно изучен как российский, так и зарубежный опыт. Наиболее интересной оказалась практика ближайших соседей – финских строителей, ведь, как известно, Финляндия располагается на древней (возрастом свыше 5 млн лет) монолитной плите. Глубина мягкого грунта до скального основания часто составляет не более 1 м. Именно поэтому сначала в Финляндии, а затем и во всей Скандинавии начали применять достаточно простую, но очень эффективную конструкцию закрепления опор на скальном грунте, которую стоит описать подробнее.
Комплект скальной заделки представляет собой металлические элементы горячей оцинковки: ригели, анкерные шпильки и нагели.
Процесс строительства происходит следующим образом: на первом этапе очищается скальное основание от мягких слоев почвы (рис. 3), далее на поверхности скалы размечаются места заделки (рис. 4) стальных оцинкованных анкерных шпилек (рис. 5) и ригелей (рис. 6).

Рис. 3. Расчистка скального основания от мягких слоев почвы


Рис. 4. Разметка мест заделки анкерных шпилек


Рис. 5. Анкерная шпилька

Рис. 6. Ригель

В этих местах в скале бурятся отверстия (рис. 7) на небольшую глубину, определенную работой шпилек только на срез. В нашем случае она составляла не более 200 мм.

Рис. 7. Бурение отверстий в скале


Деревянная стойка закрепляется у основания в комле между анкерными шпильками нагелями (по три штуки на каждой анкерной шпильке) (рис. 8) и на высоте 1345 мм для опоры высотой 11 м тремя ригелями под углом 120° между ними.

Рис. 8. Закрепление стойки нагелями


Для Финляндии такое закрепление является типовым. Нами был проведен проверочный механический расчет данного решения применительно к проекту электроснабжения острова Валаам, который полностью подтвердил надежность такой скальной заделки.
Точно таким же образом было организованно крепление анкерных опор. В этом случае опора дополнительно оснащалась тросами оттяжек или подкосами. Крепление троса оттяжек к скале осуществлялось анкерными болтами, а подкосы закреплялись упорами специальной конструкции.

ПЛАВАЮЩИЙ ФУНДАМЕНТ

После опробования такого типа крепления на скальном грунте стала понятна возможность дальнейшего расширения области его применения.
Как было отмечено выше, трасса проходила и по болотам.
Стойки в болоте закреплялись на так называемой плавающей основе. Сама стойка заглублялась в болото на глубину 2 м, у комля закреплялся деревянный ригель (перпендикулярно стойке). Ближе к поверхности (на глубине не более 0,5 м) горизонтально и перпендикулярно друг другу укладывались две деревянные балки так, чтобы длина лучей составляла не менее 2,5 метров. Эти две балки и играли роль плавающей основы и крепились к стойке в заглублении шпильками, а на поверхности – металлическими ригелями, применяемыми в скальной заделке (рис. 9).

Рис. 9. Установленные в болоте опоры


Финские специалисты предлагают и другой вариант плавающего фундамента, когда вместо деревянных горизонтальных ригелей устанавливаются стальные оцинкованные «лапы» в виде полутрубы также длиной 2,5 м.
Такая конструкция, скорее всего, является не менее надежной и более легкой в монтаже, но, к сожалению, ввиду сжатых сроков строительства и отсутствия подобных фундаментов на складах производителя, в проекте электроснабжения острова Валаам пришлось отказаться от этого варианта крепления опор в болотных грунтах.

ВОПРЕКИ НЕНАСТЬЮ

За прошедшее время эксплуатации все варианты закрепления опор линии показали себя очень хорошо. Несмотря на большое количество деревьев, упавших на линию из-за сильнейших снегопадов, все опоры выдержали испытание зимним сезоном. После расчистки от упавших деревьев и нависавших веток линия вернулась в исходное состояние: деревянные стойки не имели остаточной деформации, не деформировались и фундаментные закрепления, в итоге электроснабжение острова Валааам не прекращалось ни на минуту.

ВЫВОДЫ

В линиях с универсальным кабелем предпочтительнее применять деревянные стойки.
Закреплять деревянные опоры в скальных грунтах надежнее и, что немаловажно, дешевле (как минимум за счет транспортировки и монтажа) с помощью стальных оцинкованных ригелей с анкерами.
Болотные грунты не являются препятствием для строительства воздушных линий электропередачи при использовании плавающих фундаментов.
Для монтажа ригельных скальных закреплений не требуется тяжелая техника и сложное специализированное оборудование.
Тросы оттяжек решают проблему установки анкерных и угловых опор в стесненных условиях.
Большое количество опор, примененных в процессе реализации проекта, может стать важным источником статистических данных для анализа надежности подобных линий.
Необходимо разработать типовые решения скальных закреплений и плавающих фундаментов, включая вариант с использованием стальных оцинкованных «лап».

Обвалование фундаментов опор вл

Электролаборатория » Учебник электромонтажника » Устройство котлованов и фундаментов под опоры воздушных линий электропередач

Устройство котлованов и фундаментов под опоры воздушных линий электропередач

Устройство котлованов под опоры производится с применением буровой машины. Выработка котлована ведется до достижения проектной отметки. Электромонтажные работы являются работами с повышенной опасностью, и проводятся с соблюдением определенных норм и правил.

Устройство котлованов и фундаментов под опоры воздушных линий электропередач

В некоторых случаях электромонтажные работы в Москве или в других регионах, работы по устройству опор могут проводиться в скальных и мерзлых грунтах. Разработку таких котлованов можно производить, используя взрывы. Проведение взрывных работ осуществляется в соответствии с требованиями по безопасности таких работ. Производится неполная доработка котлована, не доходя до отмеченного в проекте уровня примерно 100-200 миллиметров. Окончательная доработка и достижение проектной отметки достигается применением отбойных молотков.

Перед устройством фундамента в готовом котловане его следует осушить, использую откачку воды.

При проведении работ в условиях, когда окружающий воздух низкой температуры, все работы выполняются как можно быстрее, чтобы не допустить промерзания дна котлована. Фундаменты в вечномерзлых грунтах устраиваются, сохраняя естественное замерзшее состояние грунта.

Проводимые электромонтажные работы подразумевают наличие на всех сварных и болтовых стыках стоек с плитами фундамента антикоррозийного покрытия. Перед началом сварочных работ все детали очищаются от ржавчины.

На фундаментах, которые устраиваются в агрессивных грунтах, а также на фундаментах с защитным слоем бетона менее 30 миллиметров применяется гидроизоляция. Места, где возможно воздействие агрессивной среды, должны быть указаны в проекте.

После того как фундамент выверен, производится обратная засыпка с послойным трамбованием.

Применяемые для устройства фундаментов шаблоны снимаются только после засыпки не менее половины глубины котлована. Высота, на которую следует выполнять засыпку, определяется с учетом естественной просадки грунта. Если устраивается обвалование фундамента, отношение высоты откоса к его основанию не должно превышать соотношения 1:1.5, в зависимости от состава и вида грунта. Грунт, который планируется использовать для обратной засыпки, требуется предохранять от возможного промерзания.

Как и все электромонтажные работы в Москве, устройство и монтаж сборных железобетонных фундаментов осуществляется с соблюдением предельных допусков отклонений. Для опор, на которых будут монтироваться линии электропередач, такие допуски составляют:

Для свободно стоящих опор:

Допускается отклониться от уровня, предусмотренного для дна котлована, не более чем на 10 миллиметров. Расстояние между осями фундаментов должно быть в пределах плюс-минус 20 миллиметров. Отклонение от отметки верха фундамента – не более 20 миллиметров. Отклонение угла продольной оси фундамента может составлять 0°30’.

Для опор с оттяжками:

Допускается отклониться от уровня, предусмотренного для дна котлована, не более чем на 10 миллиметров. Расстояние между осями фундаментов должно быть в пределах плюс-минус 50 миллиметров. Отклонение от отметки верха фундамента – не более 20 миллиметров. Отклонение угла продольной оси фундамента может составлять 1°30’. Угол наклона оси V-образного анкерного болта может составлять плюс-минус 2°30’.

Для компенсации разности отметок верха фундаментов во время монтажа опор применяются стальные прокладки.

Читайте также: