Напряжение под подошвой фундамента

Обновлено: 13.05.2024

РАСЧЕТЫ ПРОЧНОСТИ И УСТОЙЧИВОСТИ

При проектировании фундаментов в ряде случаев они оказываются внецентренно нагруженными. У таких фундаментов эпюра давления на естественное основание имеет вид треугольника или трапеции. При этом если длина эпюры давления оказывается меньше основания фундамента, то происходит частичный отрыв подошвы фундамента (т.н. краевой отрыв). Для установления данного факта (с целью разработки мероприятий по предотвращению недопустимого эксцентриситета) необходимо выполнить расчет краевых давлений под подошвой фундамента.

Напряжение под подошвой фундамента

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

Проектирование и устройство оснований и фундаментов зданий и сооружений

Design and construction of soil bases and foundations for buildings and structures

1 РАЗРАБОТАН Научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений им. Н.М.Герсеванова (НИИОСП) - филиалом ФГУП "НИЦ "Строительство"

ВНЕСЕН Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России

3 ВВЕДЕН ВПЕРВЫЕ

ВНЕСЕНЫ опечатка, опубликованная в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 8, 2008 г. и опечатка, опубликованная в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 8, 2010 г.

Опечатки внесены изготовителем базы данных.

Введение

Свод правил по проектированию и устройству оснований и фундаментов зданий и сооружений разработан в развитие обязательных положений и требований СНиП 2.02.01-83* и СНиП 3.02.01-87.

Свод правил содержит рекомендации по проектированию и устройству оснований и фундаментов зданий и сооружений, в том числе подземных и заглубленных, возводимых в различных инженерно-геологических условиях, для различных видов строительства.

Разработан НИИОСП им. Н.М.Герсеванова - филиалом ФГУП НИЦ "Строительство" (доктора техн. наук В.А.Ильичев и Е.А.Сорочан - руководители темы; доктора техн. наук: Б.В.Бахолдин, А.А.Григорян, П.А.Коновалов, В.И.Крутов, В.О.Орлов, В.П.Петрухин, Л.Р.Ставницер, В.И.Шейнин; кандидаты техн. наук: Ю.А.Багдасаров, Г.И.Бондаренко, В.Г.Буданов, Ю.А.Грачев, Ф.Ф.Зехниев, М.Н.Ибрагимов, О.И.Игнатова, И.В.Колыбин, Н.С.Никифорова, B.C.Поляков, В.Г.Федоровский, М.Л.Холмянский; инженеры: Я.М.Бобровский, Б.Ф.Кисин, А.Б.Мещанский); ГУП Мосгипронисельстрой (д-р техн. наук B.C.Сажин).

1 Область применения

Настоящий Свод правил (далее - СП) распространяется на основания и фундаменты вновь строящихся и реконструируемых зданий и сооружений*, возводимых в открытых котлованах.

* Далее вместо термина "здания и сооружения" используется термин "сооружения", в число которых входят также подземные сооружения.

Настоящий СП не распространяется на проектирование и устройство оснований и фундаментов гидротехнических сооружений, опор мостов и труб под насыпями дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов, а также оснований глубоких опор и фундаментов машин с динамическими нагрузками.

2 Нормативные ссылки

В настоящем Своде правил приведены ссылки на следующие нормативные документы:

СНиП II-7-81* Строительство в сейсмических районах

СНиП II-22-81* Каменные и армокаменные конструкции

СНиП 2.01.07-85* Нагрузки и воздействия

СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах

СНиП 2.02.01-83* Основания зданий и сооружений

СНиП 2.02.02-85* Основания гидротехнических сооружений

СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах

СНиП 2.03.11-85 Защита строительных конструкций от коррозии

СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения

СНиП 2.04.03-85 Канализация. Наружные сети и сооружения

СНиП 2.06.03-85 Мелиоративные системы и сооружения

СНиП 2.06.14-85 Защита горных выработок от подземных и поверхностных вод

СНиП 2.06.15-85 Инженерная защита территории от затопления и подтопления

СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты

СНиП 3.03.01-87 Несущие и ограждающие конструкции

СНиП 3.04.01-87 Изоляционные и отделочные покрытия

СНиП 3.05.05-84 Технологическое оборудование и технологические трубопроводы

СНиП 3.07.03-85* Мелиоративные системы и сооружения

СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения

СНиП 12-01-2004 Организация строительства

СНиП 23-01-99* Строительная климатология

СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения

СП 11-102-97 Инженерно-экологические изыскания для строительства

СП 11-104-97 Инженерно-геодезические изыскания для строительства

СП 11-105-97 Инженерно-геологические изыскания для строительства (ч.I-III)

ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 12536-79 Грунты. Методы лабораторного определения гранулометрического (зернового) состава

ГОСТ 19912-2001 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-99 Грунты. Методы полевого определения характеристик прочности и деформируемости

ГОСТ 20522-96 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 22733-2002 Грунты. Метод лабораторного определения максимальной плотности

ГОСТ 23061-90 Грунты. Методы радиоизотопных измерений плотности и влажности

ГОСТ 23161-78 Грунты. Метод лабораторного определения характеристик просадочности

ГОСТ 24143-80 Грунты. Методы лабораторного определения характеристик набухания и усадки

ГОСТ 24846-81 Грунты. Методы измерения деформаций оснований зданий и сооружений

ГОСТ 25100-95 Грунты. Классификация

ГОСТ 25192-82 Бетоны. Классификация и общие технические требования

ГОСТ 27751-88 Надежность строительных конструкций и оснований. Основные положения по расчету

ГОСТ 30416-96 Грунты. Лабораторные испытания. Общие положения

ГОСТ 30672-99 Грунты. Полевые испытания. Общие положения

3 Определения

Определения основных терминов приведены в приложении А.

4 Общие положения

4.1 Основания и фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия его эксплуатации;

г) нагрузок, действующих на фундаменты;

д) окружающей застройки и влияния на нее вновь строящихся сооружений;

е) экологических требований (раздел 15);

ж) технико-экономического сравнения возможных вариантов проектных решений для выбора наиболее экономичного и надежного проектного решения, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов и других подземных конструкций.

4.2 При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации.

При разработке проектов производства работ и организации строительства должны выполняться требования по обеспечению надежности конструкций на всех стадиях их возведения.

4.3 Работы по проектированию следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (4.1). Порядок разработки проектной документации изложен в приложении Б.

4.4 При проектировании следует учитывать уровень ответственности сооружения в соответствии с ГОСТ 27751: I - повышенный, II - нормальный, III - пониженный.

4.5 Инженерные изыскания для строительства, проектирование оснований и фундаментов и их устройство должны выполняться организациями, имеющими лицензии на эти виды работ.

4.6 Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП 11-02, СП 11-102, СП 11-104, СП 11-105, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

Наименование грунтов оснований в описаниях результатов изысканий и в проектной документации следует принимать по ГОСТ 25100.

4.7 Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа основания, фундаментов и подземных сооружений и проведения их расчетов по предельным состояниям с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических условий площадки строительства и свойств грунтов, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование без соответствующего инженерно-геологического, а также инженерно-экологического обоснований или при их недостаточности не допускается.

Примечание - При строительстве в условиях существующей застройки инженерные изыскания следует предусматривать не только для вновь строящихся сооружений, но и для окружающей застройки, попадающей в зону их влияния.

4.8 Конструктивное решение проектируемого сооружения и условия последующей его эксплуатации необходимы для выбора типа фундамента, учета влияния конструкций на работу основания, а также на окружающую застройку, для уточнения требований к допускаемым деформациям и т.д.

Распределение напряжения под подошвой фундамента

Чтобы рассчитать осадку фундамента и проверить прочность (несущую способность) основания, нужно знать распределение напряжений в основании, т. е. его напряженное состояние. Необходимо иметь сведения о распределении напряжений не только по подошве фундамента, но и ниже нее, так как осадка фундамента является следствием деформации толщи грунта, расположенной под ним. Для расчета несущей способности основания также приходится определять напряжения в грунте ниже подошвы фундамента. Без этого нельзя установить наличие и размеры областей сдвигов, проверить прочность прослойки слабого грунта и т. д.

Для теоретического определения напряжений в основании используют, как правило, решения теории упругости, полученные для линейно деформируемого однородного тела. В действительности грунт не является ни линейно деформируемым, телом, так как деформации его не прямо пропорциональны давлению, ни однородным телом, так как плотность его меняется с глубиной. Однако эти два обстоятельства не сказываются существенно на распределении напряжений в основании.

В данной главе рассматриваются не все вопросы напряженного состояния оснований, а только методика определения нормальных напряжений, действующих в грунте по горизонтальным площадкам.

§ 12. Распределение напряжений по подошве фундамента

В мостовом и гидротехническом строительстве, как правило, применяют жесткие фундаменты, деформациями которых можно пренебречь, поскольку они малы по сравнению с перемещениями, связанными с осадкой.

Измерения нормальных напряжений (давлений) по подошве фундамента, выполненные с помощью специальных приборов, вмонтированных на уровне подошвы, показали, что эти напряжения распределены по криволинейному закону, зависящему от формы и размеров фундамента в плане, свойств грунта, среднего давления на основание и других факторов.



Рис. 2.1. Фактическая и теоретическая эпюры нормальных напряжений по подошве фундамента

В качестве примера на рис. 2.1 сплошной линией показано фактическое распределение нормальных напряжений (эпюра нормальных напряжений) по подошве фундамента, когда нагрузка (сила N) значительно меньше несущей способности основания, а пунктиром — распределение напряжений, полученное на основе решений теории упругости.

В настоящее время, несмотря на накопленный экспериментальный материал и теоретические исследования, не представляется возможным устанавливать в каждом конкретном случае действительное распределение давлений по подошве фундамента. В связи с этим в практических расчетах исходят из прямолинейных эпюр давлений.



Рис. 2.2. Прямолинейные эпюры нормальных напряжений по подошве фундамента а — при центральном сжатии; б— при внецентренном сжатии и e W/A

При центральном сжатии (рис. 2.2, а) напряжения Pm, кПа, по подошве принимают равномерно распределенными и равными:
Pm = N/A, (2.1)
где N — нормальная сила в сечении по подошве фундамента, кН; А — площадь подошвы фундамента, м 2 .

Формулы (2.2) справедливы в случаях, когда изгибающий момент действует в вертикальной плоскости, проходящей через главную центральную ось инерции подошвы фундамента.

При подошве фундамента в виде прямоугольника с размером, перпендикулярным плоскости действия момента М, b и другим размером a имеем A = ab и W = ba2/6. Подставляя выражения A и W в формулы (2.2) и учитывая, что M = Ne, получаем:
Pmax =N/ba(1+6e/a)
Pmin=N/ba(1-6e/a) (2.3)
Напряжение Pmin, кПа, вычисленное по формуле (2.2) или (2.3) при эксцентриситете e> W/A, получается отрицательным (растягивающим). Между тем в сечении по подошве фундамента таких напряжений практически быть не может. При е> W/A край подошвы фундамента, более удаленный от силы N, поднимается под действием этой силы над грунтом. На некотором участке подошвы фундамента (со стороны этого края) контакт между фундаментом и грунтом нарушается (происходит так называемое отлипание фундамента от грунта), а потому эпюра напряжений P имеет вид треугольника (см. рис. 2.2, в). Этого обстоятельства формулы (2.2) и (2.3) не учитывают, поэтому ими нельзя пользоваться при е> W/A.

Формулы для определения размера а1, м, части подошвы, по которой сохраняется контакт фундамента с грунтом, и наибольшего напряжения Pmax, кПа (см. рис. 2.2, в), можно получить, если учесть, что напряжения P должны уравновесить силу N, кН, действующую на расстоянии с от ближайшего к этой силе края подошвы фундамента.
Отсюда вытекают два условия: 1) центр тяжести эпюры напряжений P расположен на линии действия силы N; 2) объем эпюры равен величине этой силы. Из первого условия при прямоугольной подошве фундамента следует
А1=3с, (2.4)
а из второго
(Pmax а1/2)b = N. (2.5)
Из формул (2.4) и (2.5) получаем
Pmax =2N/(3cb). (2.6)
Итак, при эксцентриситете е> W/A = a/6 наибольшее давление по прямоугольной подошве фундамента Pmax следует определять по формуле (2.6).

Распределение напряжений по подошве фундаментов

Фундамент, воспринимая нагрузку от сооружения, распределяет приложенное к нему давление по поверхности грунта основания. В плоскости его подошвы возникают нормальные и касательные напряжения, которые называют контактными. При вертикальной, нагрузке на основание наибольшее значение имеют нормальные напряжения. Роль касательных напряжений здесь невелика, и ими, как правило, пренебрегают.

Характер распределения нормальных напряжений по подошве фундамента зависит от его жесткости, формы и размеров в плане, а также от свойств грунта основания и степени развития в нем об­ластей предельного равновесия.

В случае абсолютно гибкого фундамента возникающие по его подошве напряжения имеют такой же характер распределения, как и приложенная нагрузка. Однако осадка этого фундамента даже при равномерном давлении на основание будет происходить неравно­мерно. Она, как это нетрудно убедиться из рассмотрения напряжен­ного состояния в толще основания, будет в средней части фунда­мента больше, чем у его краев. Такой фундамент, точки подошвы которого беспрепятственно следуют за деформацией грунта, приобре­тает криволинейную форму очертания, обращенную выпуклостью вниз.

В действительности фундаменты, обладая достаточно большой жесткостью, получают при ocaдкe на сжимаемых грунтах весьма малое искривление, влиянием которого по сравнению с деформациями грунта можно пренебречь. Следовательно, осадку жесткого фундамента при центральной нагрузке на основание можно считать практически равномерной, одинаковой для всех точек его подошвы. При внецентренном нагружении осадка будет сопровождаться еще и некоторым креном в сторону действия момента.

В сравнении с гибким жесткий фундамент как бы выравнивает осадку грунта основания, которая становится меньше в средней его части и увеличивается у краев. Это вызывает соответствующие изменения и в распределении нормальных напряжений по его подошве, которые в пределах средней части жесткого фундамента снижаются, а у его краев они возрастают.

Определение контактных напряжений по подошве сооружения

Определение контактных напряжений по подошве сооружения

При взаимодействии фундаментов и сооружений с грунтами основания на поверхности контакта возникают контактные напряжения.

Характер распределения контактных напряжений зависит от жесткости, формы и размеров фундамента или сооружения и от жесткости (податливости) грунтов основания.

Классификация фундаментов и сооружений по жесткости

Различают три случая, отражающие способность сооружения и основания к совместной деформации:

Критерием оценки жесткости сооружения может служить показатель гибкости по М. И. Горбунову-Посадову

Модель местных упругих деформаций и упругого полупространства

При определении контактных напряжений важную роль играет выбор расчетной модели основания и метода решения контактной задачи. Наибольшее распространение в инженерной практике получили следующие модели основания:

Модель местных упругих деформаций.

Согласно этой модели, реактивное напряжение в каждой точке поверхности контакта прямо пропорционально осадке поверхности основания в той же точке, а осадки поверхности основания за пределами габаритов фундамента отсутствуют (рис. 3.1.а.):

где – коэффициент пропорциональности¸ часто называемый коэффициентом постели, Па/м.

Модель упругого полупространства.

В этом случае поверхность грунта оседает как в пределах площади загрузки, так и за её пределами, причём кривизна прогиба зависит от механических свойств грунтов и мощности сжимаемой толщи в основании (рис. 3.1.б.):

Влияние жесткости фундаментов на распределение контактных напряжений

Теоретически эпюра контактных напряжений под жестким фундаментом имеет седлообразный вид с бесконечно большими значениями напряжений по краям. Однако вследствие пластических деформаций грунта в действительности контактные напряжения характеризуется более пологой кривой и у края фундамента достигает значений, соответствующих предельной несущей способности грунта (пунктирная кривая на рис. 3.2.а.)

Изменение показателя гибкости существенно сказывается на изменении характера эпюры контактных напряжений. На рис. 3.2.б. приведены контактные эпюры для случая плоской задачи при изменении показателя гибкости t от 0 (абсолютно жесткий фундамент) до 5.

Определение напряжений в грунтовом массиве от действия местной нагрузки на его поверхности

Распределение напряжений в основании зависит от формы фундамента в плане. В строительстве наибольшее распространение получили ленточные, прямоугольные и круглые фундаменты. Таким образом, основное практическое значение имеет расчет напряжений для случаев плоской, пространственной и осесимметричной задач.

Напряжения в основании определяется методами теории упругости. Основание при этом рассматривается как упругое полупространство, бесконечно простирающееся во все стороны от горизонтальной поверхности загружения.

Метод угловых точек

Метод угловых точек позволяют определить сжимающие напряжения в основании по вертикали, проходящей через любую точку поверхности. Возможны три варианта решения (рис.3.9.).

Пусть вертикаль проходит через точку , лежащую на контуре прямоугольника. Разделив этот прямоугольник на два так, чтобы точка М являлась угловой для каждого из них, можно представить напряжения как сумму угловых напряжений I и II прямоугольников, т.е.

Если точка лежит внутри контура прямоугольника, то его следует разделить на четыре части так, чтобы эта точка являлась угловой для каждого составляющего прямоугольника. Тогда:

Наконец, если точка лежит вне контура загруженного прямоугольника, то его нужно достроить так, чтобы эта точка вновь оказалась угловой.

3.3.5. Влияние формы и площади фундамента в плане

На рис. 3.10. построены эпюры нормальных напряжений по вертикальной оси, проходящей через центр квадратного фундамента при (кривая 1), ленточного фундамента (кривая 2), и тоже, шириной (кривая 3).

В случае пространственной задачи (кривая 1) напряжения с глубиной затухают значительно быстрее, чем для плоской задачи (кривая 2). Увеличение ширины, а, следовательно, и площади фундамента (кривая 3) приводит к ещё более медленному затуханию напряжений с глубиной.

3. Выбор глубины заложения фундаментов.

Глубина заложения фундаментов зависит от множества факторов, большая часть которых либо не требует особых пояснений (например, наличие или отсутствие подвалов, большие уклоны рельефа), либо играет определяющую роль только в особых случаях (например, очень большие нагрузки на основание, наличие в непосредственной близости других заглубленных сооружений, сложные инженерно-геологические условия, в том числе наличие «карманов выветривания», слоев, склонных к скольжению и т.д.). Тем не менее, имеется один фактор, над которым проектировщик вынужден задумываться практически всегда и в 90…95% принимать решение на основе именно его оценки – это глубина сезонного промерзания грунтов. Такой вопрос может не рассматриваться лишь применительно к фундаментам внутренних стен отапливаемых помещений, где глубина заложения фундаментов может приниматься без каких-либо расчетов равной 0,5м (для тонких перегородок еще меньше, например, 0,2…0,3м). В остальных случаях выбор глубины заложения фундамента начинается с установления глубины промерзания грунта.

Отечественные нормы проектирования (СНиП 2.02.01-83*, СП 50-101-2004) требуют закладывать фундаменты наружных стен не ниже расчетной глубины промерзания грунта во всех случаях, где возможно пучение грунта. Исключается такая опасность в скальных, крупнообломочных грунтах, а также в песках гравелистых, крупных и средних. В таких (непучинистых) грунтах глубина заложения фундаментов может приниматься независимо от глубины промерзания грунтов.

В мелких и пылеватых песках, в твердых супесях необходимо дополнительно учитывать наличие подземных вод: если уровень подземных вод (УПВ) ниже глубины промерзания грунта более чем на 2м, пучения можно не опасаться и закладывать фундамент, не обращая внимания на глубину промерзания. Если же УПВ выше, то глубина заложения фундамента должна быть не менее глубины промерзания грунта.

В глинах, суглинках, пластичных супесях (за исключением упоминаемого ниже случая), закладка фундаментов на глубину промерзания грунтов обязательна. Исключением являются твердые и полутвердые глинистые грунты при отсутствии подземных вод (от УПВ до нижней границы промерзания грунта более 2м), в которых глубину заложения фундамента следует принимать не менее половины глубины промерзания. Если же УПВ выше, то фундамент закладывается на полную глубину промерзания, как в остальных разновидностях глинистых грунтов. Таким образом, в большинстве случаев (70…80%) фундаменты должны закладываться на глубину, не меньшую глубины промерзания грунта.

Во всех упомянутых случаях имеется в виду расчетная глубина промерзания грунта, которая устанавливается для каждого конкретного объекта в зависимости от нормативной глубины промерзания грунтов данного района и от теплового режима здания. Нормативная глубина промерзания грунта устанавливается на основе данных гидрометеорологических служб.

Расчетная глубина промерзания грунта устанавливается путем умножения упомянутой нормативной величины на коэффициент, учитывающий влияние теплового режима сооружения. В нормах по проектированию оснований и фундаментов (СНиП 2.02.01-83*, СП 50-101-2004) приводится таблица, в которой этот коэффициент определяется в зависимости от ожидаемой температуры внутри помещения и от особенностей сооружения (вида полов, наличия подвала и т.д.). Например, при отсутствии подвала, при полах, устроенных непосредственно по грунту, при температуре внутри помещения +200С упомянутый коэффициент принимается равным 0,5, т.е. расчетная глубина промерзания будет в два раза меньше нормативной. Если полы – деревянные на лагах, то коэффициент теплового режима (в тех же условиях) будет равен 0,6.

4. Нормативная и расчетная глубина промерзания.

Расчетная

Согласно СНиП 2.02.01-83* нормативную глубину сезонного промерзания грунта dfn, м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле:

Нормативная

Уровень подземных, грунтовых вод оказывает существенное влияние на поведение многих грунтов. Более хорошими условиями для будущего фундамента будут условия, при которых глубина промерзания меньше глубины грунтовых вод.



5. Влияние конструктивных особенностей сооружения на глубину заложения фундамента.

Определение контактных напряжений по подошве сооружения

При взаимодействии фундаментов и сооружений с грунтами основания на поверхности контакта возникают контактные напряжения.

Характер распределения контактных напряжений зависит от жесткости, формы и размеров фундамента или сооружения и от жесткости (податливости) грунтов основания.

Напряжение под подошвой ленточного фундамента

Как распределяется напряжение в основании. Определение несущей способности основания

Чтобы рассчитать осадку фундамента и проверить прочность (несущую способность) основания, нужно знать распределение напряжений в основании, т. е. его напряженное состояние. Необходимо иметь сведения о распределении напряжений не только по подошве фундамента, но и ниже нее, так как осадка фундамента является следствием деформации толщи грунта, расположенной под ним. Для расчета несущей способности основания также приходится определять напряжения в грунте ниже подошвы фундамента. Без этого нельзя установить наличие и размеры областей сдвигов, проверить прочность прослойки слабого грунта и т. д.

Для теоретического определения напряжений в основании используют, как правило, решения теории упругости, полученные для линейно деформируемого однородного тела. В действительности грунт не является ни линейно деформируемым, телом, так как деформации его не прямо пропорциональны давлению, ни однородным телом, так как плотность его меняется с глубиной. Однако эти два обстоятельства не сказываются существенно на распределении напряжений в основании.

В данной главе рассматриваются не все вопросы напряженного состояния оснований, а только методика определения нормальных напряжений, действующих в грунте по горизонтальным площадкам.

Распределение напряжений по подошве фундамента

В мостовом и гидротехническом строительстве, как правило, применяют жесткие фундаменты, деформациями которых можно пренебречь, поскольку они малы по сравнению с перемещениями, связанными с осадкой.

Измерения нормальных напряжений (давлений) по подошве фундамента, выполненные с помощью специальных приборов, вмонтированных на уровне подошвы, показали, что эти напряжения распределены по криволинейному закону, зависящему от формы и размеров фундамента в плане, свойств грунта, среднего давления на основание и других факторов.


Рис. 2.1. Фактическая и теоретическая эпюры нормальных напряжений по подошве фундамента

В качестве примера на рис. 2.1 сплошной линией показано фактическое распределение нормальных напряжений (эпюра нормальных напряжений) по подошве фундамента, когда нагрузка (сила N) значительно меньше несущей способности основания, а пунктиром — распределение напряжений, полученное на основе решений теории упругости.

В настоящее время, несмотря на накопленный экспериментальный материал и теоретические исследования, не представляется возможным устанавливать в каждом конкретном случае действительное распределение давлений по подошве фундамента. В связи с этим в практических расчетах исходят из прямолинейных эпюр давлений.


Рис. 2.2. Прямолинейные эпюры нормальных напряжений по подошве фундамента а — при центральном сжатии; б— при внецентренном сжатии и e W/A

Рис. 2.2. Прямолинейные эпюры нормальных напряжений по подошве фундамента а — при центральном сжатии; б— при внецентренном сжатии и e W/AПри центральном сжатии (рис. 2.2, а) напряжения Pm, кПа, по подошве принимают равномерно распределенными и равными:
Pm = N/A, (2.1)
где N — нормальная сила в сечении по подошве фундамента, кН; А — площадь подошвы фундамента, м 2 .

При внецентренном сжатии эпюру напряжений принимают в виде трапеции (рис. 2.2, б) или треугольника (рис. 2.2, в). В первом из этих случаев наибольшее ртах и наименьшее Pmin напряжения определяются выражениями:
Pmax = N/A + M/W;
Pmin = N/A – M/W (2.2)
где M — Ne — изгибающий момент в сечении по подошве фундамента, кН·м (здесь е — эксцентриситет приложения силы N, м); W — момент сопротивления площади подошвы фундамента, м 3 .

Формулы (2.2) справедливы в случаях, когда изгибающий момент действует в вертикальной плоскости, проходящей через главную центральную ось инерции подошвы фундамента.

При подошве фундамента в виде прямоугольника с размером, перпендикулярным плоскости действия момента М, b и другим размером a имеем A = ab и W = ba2/6. Подставляя выражения A и W в формулы (2.2) и учитывая, что M = Ne, получаем:
Pmax =N/ba(1+6e/a)
Pmin=N/ba(1-6e/a) (2.3)
Напряжение Pmin, кПа, вычисленное по формуле (2.2) или (2.3) при эксцентриситете e> W/A, получается отрицательным (растягивающим). Между тем в сечении по подошве фундамента таких напряжений практически быть не может. При е> W/A край подошвы фундамента, более удаленный от силы N, поднимается под действием этой силы над грунтом. На некотором участке подошвы фундамента (со стороны этого края) контакт между фундаментом и грунтом нарушается (происходит так называемое отлипание фундамента от грунта), а потому эпюра напряжений P имеет вид треугольника (см. рис. 2.2, в). Этого обстоятельства формулы (2.2) и (2.3) не учитывают, поэтому ими нельзя пользоваться при е> W/A.

Формулы для определения размера а1, м, части подошвы, по которой сохраняется контакт фундамента с грунтом, и наибольшего напряжения Pmax, кПа (см. рис. 2.2, в), можно получить, если учесть, что напряжения P должны уравновесить силу N, кН, действующую на расстоянии с от ближайшего к этой силе края подошвы фундамента.
Отсюда вытекают два условия: 1) центр тяжести эпюры напряжений P расположен на линии действия силы N; 2) объем эпюры равен величине этой силы. Из первого условия при прямоугольной подошве фундамента следует
А1=3с, (2.4)
а из второго
(Pmax а1/2)b = N. (2.5)
Из формул (2.4) и (2.5) получаем
Pmax =2N/(3cb). (2.6)
Итак, при эксцентриситете е> W/A = a/6 наибольшее давление по прямоугольной подошве фундамента Pmax следует определять по формуле (2.6).

5.5.3. Определение основных размеров фундаментов (ч. 1)

Основные размеры фундаментов мелкого заложения (глубина и размеры подошвы) в большинстве случаев определяются исходя из расчета оснований по деформациям, который включает:

  • – подсчет нагрузок на фундамент;
  • – оценку инженерно-геологических и гидрогеологических условий площадки строительства; определение нормативных и расчетных значений характеристик грунтов;
  • – выбор глубины заложения фундамента;
  • – назначение предварительных размеров подошвы по конструктивным соображениям или исходя из условия, чтобы среднее давление на основание равнялось расчетному сопротивлению грунта, приведенному в табл. 5.13;
  • – вычисление расчетного сопротивления грунта основания R по формуле (5.29), изменение в случае необходимости размеров фундамента с тем, чтобы обеспечивалось условие pR ; в случае внецентренной нагрузки на фундамент, кроме того, проверку краевых давлений;
  • – при наличии слабого подстилающего слоя проверку соблюдения условия (5.35);
  • – вычисление осадок основания и проверку соблюдения неравенства (5.28); при необходимости корректировку размеров фундаментов.

В случаях, оговоренных в п. 5.1, выполняется расчет основания по несущей способности. После этого производятся расчет и конструирование самого фундамента.

А. ЦЕНТРАЛЬНО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ

Определение размеров подошвы фундамента по заданному значению расчетного сопротивления грунта основания. Обычно вертикальная нагрузка на фундамент N задается на уровне его обреза, который чаще всего практически совпадает с отметкой планировки. Тогда суммарное давление на основание на уровне подошвы фундамента будет:


где — среднее значение удельного веса фундамента и грунта на его обрезах, принимаемое обычно равным 20 кН/м 3 ; d и А — глубина заложения и площадь подошвы фундамента.

Если принять p = R , получим следующую формулу для определения необходимой площади подошвы фундамента:

Задавшись соотношением сторон подошвы фундамента η = l/b , получим:

Зная размеры фундамента, вычисляют его объем и вес Nf , а также вес грунта на его обрезах Ng и проверяют давление по подошве:

Определение размеров подошвы фундамента при неизвестном значении расчетного сопротивления грунта основания. Как видно из формулы (5.29), расчетное сопротивление грунта основания зависит от неизвестных при проектировании размеров фундамента (глубины его заложения d и размеров в плане b×l ), поэтому обычно эти размеры определяются методом последовательных приближений. В качестве первого приближения принимают размеры фундамента по конструктивным соображениям или из условия (5.41), т.е. принимая R = R .

Однако необходимые размеры подошвы фундамента можно определить за один прием. Из формулы (5.41)


ηb 2 (R – d) – N = 0 ,

а с учетом формулы (5.29) при b kz = 1)

Уравнение (5.43) приводится к виду:

для ленточного фундамента

для прямоугольного фундамента


;


;

Решение квадратного уравнения (5.44) производится обычным способом, а уравнения (5.45) — методом последовательного приближения или по стандартной программе.

После вычисления значения b с учетом модульности и унификации конструкций принимают размеры фундамента и проверяют давление по его подошве по формуле (5.42).

Пример 5.7. Определить ширину ленточного фундамента здания жесткой конструктивной схемы без подвала ( db = 0). Отношение L/H = 1,5. Глубина заложения фундамента d = 2 м. Нагрузка на фундамент на уровне планировки n = 900 кН/м. Грунт — глина с характеристиками, полученными при непосредственных испытаниях: φII = 18°, cII = 40 кПа, γII = γ´II = 18 кН/м 3 , IL = 0,45.

Решение. по табл. 5.10 имеем: γс1 = 1,2 и γс2 = 1,1; по табл. 5.11 при φII = 18°; Мγ = 0,43; Мq = 2,73; Мc = 5,31. Поскольку характеристики грунта приняты по испытаниям, k = 1.

Для определения ширины фундамента b предварительно вычисляем:


;

a1 = 1,2·1,1(2,73 · 2 · 18 + 5,31 · 40) – 20 · 2 = 370,1.

Подставляя эти значения в формулу (5.44), получаем 10,22 b 2 + 370,1 b – 900 = 0, откуда


м.

Принимаем b = 2,4 м.

Пример 5.8. Определить размеры столбчатого фундамента здания гибкой конструктивной схемы ( γс2 = 1). Соотношение сторон фундамента η = l/b = 1,5, нагрузка на него составляет: N = 4 МН = 4000 кН. Грунтовые условия и глубина заложения те же, что и в предыдущем примере.

a η = 1,2 · 1 · 0,43 · 18 · 1,5 = 13,93;

a1η = [1,2 · 1(2,73 · 2 · 18 + 5,31 · 40) – 20 · 2] 1,5 = 499,22.

Затем, подставляя в уравнение (5.45) полученные величины (13,93 b 3 + 499,22 b 2 – 4000 = 0) и решая его по стандартной программе, находим b = 2,46 м, тогда l = 1,5 b = 3,7 м.

Принимаем фундамент с размерами подошвы 2,5×3,7 м.

Определение размеров подошвы фундамента при наличии слабого подстилающего слоя. При наличии в пределах сжимаемой толщи основания (на глубине z от подошвы фундамента) слоя грунта с худшими прочностными свойствами, чем у лежащего выше грунта, размеры фундамента необходимо назначать такими, чтобы обеспечивалось условие (5.35). Это условие сводится к определению суммарного вертикального напряжения от внешней нагрузки и от собственного веса лежащих выше слоев грунта ( σz = σzp + σzg ) и сравнению этого напряжения с расчетным сопротивлением слабого подстилающего грунта R применительно к условному фундаменту, подошва которого расположена на кровле слабого грунта.

Пример 5.9. Определить размеры столбчатого фундамента при следующих инженерно-геологических условиях (см. рис. 5.24). На площадке от поверхности до глубины 3,8 м залегают песни крупные средней плотности маловлажные, подстилаемые суглинками. Характеристики грунтов по данным испытаний: для песка φII = 38°, сII = 0, γII = γ´II = 18 кН/м 3 , E = 40 МПа; для суглинков φII = 19°, сII = 11 кПа, γII = 17 кН/м 3 , E = 17 МПа. Здание — с гибкой конструктивной схемой без подвала ( db = 0). Вертикальная нагрузка на фундамент на уровне поверхности грунта N = 4,7 MH. Глубина заложения фундамента d = 2 м. Предварительные размеры подошвы фундамента примяты исходя из R = 300 кПа (табл. 5.13) равными 3×3 м.

Решение. по формуле (5.29) с учетом табл. 5.11 и 5.12 получаем;


кПа.

Для определения дополнительного вертикального напряжения от внешней нагрузки на кровле слабого грунта предварительно находим:

среднее давление под подошвой


p = N /b 2 + d = 4,7 · 10 3 /3 2 + 20 · 2 = 520 + 40 = 560 кПа;

дополнительное давление на уровне подошвы

По табл. 5.4 при ζ = 2z/b = 2 · 1,8/3 = 1,2 коэффициент α = 0,606. Тогда дополнительное вертикальное напряжение па кровле слабого слоя от нагрузки на фундамент будет:

Ширина условного фундамента составит:


м.

Для условного фундамента на глубине z = 1,8 м при γc1 = γc2 = k = 1 расчетное сопротивление суглинков по формуле (5.29) будет:

Rz = 0,47 · 4 · 17 + 2,88 · 3,8 · 18 + 5,48 · 11 = 30 + 196 + 60 = 286 кПа.

Вертикальное нормальное напряжение от собственного веса грунта на глубине z = 3,8 м

Проверяем условие (5.35):

315 + 62 = 377 > Rz = 286 кПа,

т.е. условие (5.35) не удовлетворяется и требуется увеличить размеры фундамента. Расчет показал, что в данном случае необходимо принять b = 3,9 м.

Как распределяется напряжение в основании. Определение несущей способности основания

Чтобы рассчитать осадку фундамента и проверить прочность (несущую способность) основания, нужно знать распределение напряжений в основании, т. е. его напряженное состояние. Необходимо иметь сведения о распределении напряжений не только по подошве фундамента, но и ниже нее, так как осадка фундамента является следствием деформации толщи грунта, расположенной под ним. Для расчета несущей способности основания также приходится определять напряжения в грунте ниже подошвы фундамента. Без этого нельзя установить наличие и размеры областей сдвигов, проверить прочность прослойки слабого грунта и т. д.

Для теоретического определения напряжений в основании используют, как правило, решения теории упругости, полученные для линейно деформируемого однородного тела. В действительности грунт не является ни линейно деформируемым, телом, так как деформации его не прямо пропорциональны давлению, ни однородным телом, так как плотность его меняется с глубиной. Однако эти два обстоятельства не сказываются существенно на распределении напряжений в основании.

В данной главе рассматриваются не все вопросы напряженного состояния оснований, а только методика определения нормальных напряжений, действующих в грунте по горизонтальным площадкам.

Распределение напряжений по подошве фундамента

В мостовом и гидротехническом строительстве, как правило, применяют жесткие фундаменты, деформациями которых можно пренебречь, поскольку они малы по сравнению с перемещениями, связанными с осадкой.

Измерения нормальных напряжений (давлений) по подошве фундамента, выполненные с помощью специальных приборов, вмонтированных на уровне подошвы, показали, что эти напряжения распределены по криволинейному закону, зависящему от формы и размеров фундамента в плане, свойств грунта, среднего давления на основание и других факторов.

В качестве примера на рис. 2.1 сплошной линией показано фактическое распределение нормальных напряжений (эпюра нормальных напряжений) по подошве фундамента, когда нагрузка (сила N) значительно меньше несущей способности основания, а пунктиром — распределение напряжений, полученное на основе решений теории упругости.

В настоящее время, несмотря на накопленный экспериментальный материал и теоретические исследования, не представляется возможным устанавливать в каждом конкретном случае действительное распределение давлений по подошве фундамента. В связи с этим в практических расчетах исходят из прямолинейных эпюр давлений.

Рис. 2.2. Прямолинейные эпюры нормальных напряжений по подошве фундамента а — при центральном сжатии; б— при внецентренном сжатии и e< W/A; в — при внецентренном сжатии и е> W/AПри центральном сжатии (рис. 2.2, а) напряжения Pm, кПа, по подошве принимают равномерно распределенными и равными:
Pm = N/A, (2.1)
где N — нормальная сила в сечении по подошве фундамента, кН; А — площадь подошвы фундамента, м 2 .

Формулы (2.2) справедливы в случаях, когда изгибающий момент действует в вертикальной плоскости, проходящей через главную центральную ось инерции подошвы фундамента.

При подошве фундамента в виде прямоугольника с размером, перпендикулярным плоскости действия момента М, b и другим размером a имеем A = ab и W = ba2/6. Подставляя выражения A и W в формулы (2.2) и учитывая, что M = Ne, получаем:
Pmax =N/ba(1+6e/a)
Pmin=N/ba(1-6e/a) (2.3)
Напряжение Pmin, кПа, вычисленное по формуле (2.2) или (2.3) при эксцентриситете e> W/A, получается отрицательным (растягивающим). Между тем в сечении по подошве фундамента таких напряжений практически быть не может. При е> W/A край подошвы фундамента, более удаленный от силы N, поднимается под действием этой силы над грунтом. На некотором участке подошвы фундамента (со стороны этого края) контакт между фундаментом и грунтом нарушается (происходит так называемое отлипание фундамента от грунта), а потому эпюра напряжений P имеет вид треугольника (см. рис. 2.2, в). Этого обстоятельства формулы (2.2) и (2.3) не учитывают, поэтому ими нельзя пользоваться при е> W/A.

Формулы для определения размера а1, м, части подошвы, по которой сохраняется контакт фундамента с грунтом, и наибольшего напряжения Pmax, кПа (см. рис. 2.2, в), можно получить, если учесть, что напряжения P должны уравновесить силу N, кН, действующую на расстоянии с от ближайшего к этой силе края подошвы фундамента.
Отсюда вытекают два условия: 1) центр тяжести эпюры напряжений P расположен на линии действия силы N; 2) объем эпюры равен величине этой силы. Из первого условия при прямоугольной подошве фундамента следует
А1=3с, (2.4)
а из второго
(Pmax а1/2)b = N. (2.5)
Из формул (2.4) и (2.5) получаем
Pmax =2N/(3cb). (2.6)
Итак, при эксцентриситете е> W/A = a/6 наибольшее давление по прямоугольной подошве фундамента Pmax следует определять по формуле (2.6).

Читайте также: