Нагрузки на фундамент от двухветвевой колонны

Обновлено: 15.05.2024

СП 355.1325800.2017 Конструкции каркасные железобетонные сборные одноэтажных зданий производственного назначения Правила проектирования стр. 11

При сочетаниях нагрузок, которым соответствует Nmax или Mmax, определяется (при заданном сечении колонны) марка бетона и сечение сжатой арматуры, а при сочетаниях, соответствующих Nmin или Mmax, – сечение растянутой арматуры.

7.3.22 Для двухветвевых сечений проверяются сочетания нагрузок, при которых в рассматриваемом сечении колонны действуют:

минимальная продольная сила Nmin и соответствующие ей наибольший момент и поперечная сила;

максимальная продольная сила Nmax и соответствующие ей наибольший момент и поперечная сила;

максимальный момент Mmax и соответствующие ему продольная и поперечная силы;

максимальная поперечная сила Qmax и соответствующие ей продольная сила и момент.


Если при Nmax обе ветви сжаты, а при Nmin одна сжата, а другая растянута, что выражается условием , то опасным для более сжатой ветви может оказаться промежуточное граничное состояние, соответствующее отсутствию продольного усилия в одной ветви; при этом вся поперечная сила передается на сжатую ветвь, вследствие чего моменты в ней резко возрастают.


Этому состоянию соответствует продольная сила в сечении колонны продольное усилие в сжатой ветви будет таким же. Здесь момент Мпр принимают соответствующим Nmax, а момент в сжатой ветви определяют, принимая Q также соответствующим Nmax.

7.3.23 При расчете распорок проверяют сочетание нагрузок, вызывающее в сечении колонны максимальную поперечную силу и растяжение (если оно может быть) в одной ветви.

7.3.24 При сочетаниях нагрузок, вызывающих Nmax, Mmax или Qmax, определяются (при заданном сечении двухветвевой колонны) марка бетона и сечение сжатой арматуры, а при сочетаниях, вызывающих Nmin, Mmax или Qmax, – сечение растянутой арматуры.

Особенности расчета двухветвевых колонн

7.3.25 Двухветвевые колонны – это сложные рамные системы. Учитывая свойственные двухветвевым колоннам геометрические параметры и характер основных нагрузок, их следует рассчитывать как рамные стержни с учетом продольных деформаций ветвей, принимая ряд допущений:

а) продольная (вертикальная) сила в двухветвевом сечении колонны распределяется между ветвями по закону рычага;

б) изгибающие моменты в ветвях определяются из условия, что нулевые точки моментов расположены посередине высоты панели. При расчете в упругой стадии нулевая точка располагается не посередине высоты панели. Однако при образовании трещин и неупругих деформациях бетона и арматуры происходит перераспределение усилий с выравниванием моментов по верху и низу панели и с соответствующим перемещением нулевой точки к середине высоты панели;

в) верхняя распорка колонны принимается бесконечно жесткой, так как ее погонная жесткость во много раз превышает жесткость ветвей и рядовых распорок;

г) при наличии растяжения в ветви в пределах какой-либо панели жесткость на изгиб ветви на этом участке при расчете по предельному состоянию первой группы принимается равной нулю. В этом случае моменты в сжатой ветви и в распорке определяются из условия передачи всей поперечной силы в сечении колонны на сжатую ветвь. Растянутая ветвь при усилиях от нормативных значений нагрузок обладает некоторой жесткостью, поэтому при расчете трещиностойкости по предельному состоянию второй группы считается, что в этой ветви действует момент, значение которого определяется из условия передачи на нее 1/6 поперечной силы в сечении колонны. При расчете по деформированной схеме в этом случае жесткость растянутой ветви принимается равной жесткости на изгиб ее арматурного каркаса.

Расчетная схема двухветвевой колонны приведена на рисунке 7.15.

а– конструктивная схема; б – расчетная схема; 1 – обе ветви сжаты; 2 – левая ветвь растянута

Рисунок 7.15 – Схема двухветвевой колонны

Особенности расчета фахверковых колонн

7.3.26 Фахверковые колонны рассчитываются как опертые понизу на фундаменты, а поверху – на диск покрытия. Возможно опирание в промежуточном сечении на специальную ветровую ферму, на связи по нижним поясам стропильных конструкций и на тормозные конструкции подкрановых балок.

Опирание фахверковых колонн на фундаменты обычно принимается шарнирным даже при заделке колонны в стакан фундамента, так как ввиду малых вертикальных нагрузок фундаменты получаются небольшими и могут поворачиваться. Однако при заделке фахверковой колонны в стакан фундамента из-за наличия бетонного основания под полы и отпора грунта на боковых поверхностях фундамента в нижнем сечении колонны могут возникать значительные моменты. Допуская образование в этом сечении пластического шарнира, при проверке прочности эти моменты можно не учитывать. При проверке трещиностойкости фахверковые колонны рассчитываются как защемленные в фундаменте. Предпочтительно осуществлять шарнирное соединение фахверковых колонн с фундаментами в упрощенном исполнении – по типу сопряжений стальных фахверковых колонн.

При расчете фундаментов фахверковых колонн считается, что на фундамент в уровне его верха действуют только продольные и поперечные силы.

Учет продольного изгиба колонны

7.3.27 При расчете по недеформированной схеме неблагоприятное влияние продольного изгиба колонны на значение момента в сечениях учитывается при гибкости колонны λ ≥ 14 с помощью коэффициента продольного изгиба η. Гибкость колонны определяется как отношение приведенной длины колонны или ее участка к радиусу инерции сечения в проверяемой плоскости λ = l0/i.

В таблице 7.1 и [2] приведены расчетные длины колонн или их участков. Высоту подкрановой части колонны следует определять от верха фундамента до низа подкрановой балки, а высоту надкрановой части колонны – от верха ступени фундамента до низа стропильной конструкции.

7.3.28 Коэффициент η представляет собой отношение момента в однопролетном шарнирно опертом стержне при продольно-поперечном изгибе к моменту при поперечном изгибе и определяется по формуле


(7.11)

Нагрузки на фундамент от двухветвевой колонны

ТИПОВЫЕ КОНСТРУКЦИИ И ДЕТАЛИ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ 1.412-2

МОНОЛИТНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ФУНДАМЕНТЫ ПОД ТИПОВЫЕ КОЛОННЫ ДВУХВЕТВЕВОГО СЕЧЕНИЯ ОДНОЭТАЖНЫХ ПРОМЫШЛЕННЫХ ЗДАНИЙ

Материалы для проектирования. Указания по выбору фундаментов

Материалы для проектирования. Чертежи фундаментов

Материалы для проектирования. Указания по выбору фундаментов, располагаемых в температурных швах

Материалы для проектирования. Чертежи фундаментов, располагаемых в температурных швах

Арматурные изделия. Рабочие чертежи

Арматурные изделия для фундаментов, располагаемых в температурных швах. Рабочие чертежи

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Пособие по проектированию железобетонных ростверков свайных фундаментов под колонны зданий и сооружений составлено к СНиП 2.03.01-84 „Бетонные и железобетонные конструкции” и распространяется на проектирование монолитных ростверков квадратной и прямоугольной формы в плане, с кустами из двух, четырех и более свай, под сборные и монолитные железобетонные колонны и под стальные колонны.

Примечание. Свайные фундаменты с кустами из двух свай рекомендуется применять только в каркасных бескрановых зданиях при условии расположения свай в створе пролета здания и величине эксцентриситета приложения нагрузки в перпендикулярном направлении не превышающей 5 см.

При проектировании ростверков, предназначенных для эксплуатации в сейсмических районах, а также в агрессивных средах должны соблюдаться дополнительные требования, регламентированные соответствующими нормативными документами.

1.2. Ростверк является элементом свайного фундамента, опирающимся на куст свай (черт. 1.). Проектировать куст свай следует в соответствии со СНиП II-17-77 „Свайные фундаменты”.

Сопряжение ростверков со сборными железобетонными колоннами предусматривается стаканным (с подколонником или без него) с монолитными железобетонными колоннами - монолитным, со стальными колоннами - с помощью анкерных болтов.

Черт. 1. Схема образования пирамиды продавливания под сборной железобетонной колонной прямоугольного сечения

1.3. Расчет ростверков производится по предельным состояниям первой группы (по прочности) и по предельным состояниям второй группы (по раскрытию трещин).

Величины нагрузок и воздействий, значения коэффициентов надежности по нагрузке и коэффициентов сочетаний, а также подразделения нагрузок на постоянные и временные - длительные, кратковременные, особые - должны приниматься в соответствии с требованиями СНиП 2.01.07-85 "Нагрузки и воздействия" и СНиП 2.03.01-84 "Бетонные и железобетонные конструкции", а значения коэффициентов надежности по назначению - согласно „Правилам учета степени ответственности зданий и сооружений при проектировании конструкций”.

При определении нагрузок от колонн на ростверки следует учитывать увеличение моментов в месте заделки колонн от действия вертикальных нагрузок при прогибе колонн.

При расчете ростверков расчетные сопротивления бетона следует умножать на коэффициент условий работы бетона g b2, принимаемый равным 1,1 или 0,9 в зависимости от длительности действия нагрузок. Коэффициент условий работы бетона g b2 принимается равным 1.

1.4. Расчет ростверков на сваях сплошного круглого сечения производится так же, как и на сваях квадратного сечения. При этом в расчете ростверка сечения круглых свай условно приводятся к сваям квадратного сечения, эквивалентного круглым сваям по площади, т.е. с размером стороны сечения, равным 0,89 dsv, где dsv - диаметр свай.

2. РАСЧЕТ РОСТВЕРКОВ ПО ПРОЧНОСТИ

А. РАСЧЕТ ПО ПРОЧНОСТИ РОСТВЕРКОВ ПОД СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ

2.1. Расчет по прочности плитной части ростверков под сборные железобетонные колонны производится: на продавливание колонной; продавливание угловой сваей; по прочности наклонных сечений на действие поперечной силы; на изгиб по нормальному и наклонному сечениям; на местное сжатие (смятие) под торцами колонн. Помимо этого проверяется прочность стакана ростверка.

Расчет ростверков на продавливание колонной

2.2. Расчет на продавливание колонной центрально-нагруженных ростверков свайных фундаментов с кустами из четырех и более свай производится по формуле (1) из условия, что продавливание происходит по боковой поверхности пирамиды, высота которой равна расстоянию по вертикали от рабочей арматуры плиты до низа колонны, меньшим основанием служит площадь сечения колонны, а боковые грани, проходящие от наружных граней колонны до внутренних граней свай, наклонены к горизонтали под углом не менее 45° и не более угла, соответствующего пирамиде с c=0,4h0 (см. черт. 1):

где Fper - расчетная продавливающая сила, равная сумме реакций всех свай, расположенных за пределами нижнего основания пирамиды продавливания, определяемая из условия

При этом реакции свай подсчитываются только от продольной силы N, действующей в сечении колонны у верхней горизонтальной грани ростверка;

здесь n - число свай в ростверке;

n1 - число свай, расположенных за пределами нижнего основания пирамиды продавливания;

Rbt - расчетное сопротивление бетона растяжению для железобетонных конструкций с учетом коэффициента условий работы бетона;

h0 - рабочая высота сечения ростверка на проверяемом участке, равная расстоянию от рабочей арматуры плиты до низа колонны, условно расположенного на 5 см выше дна стакана;

иi - полусумма оснований i-й боковой грани фигуры продавливания с числом граней m;

сi - расстояние от грани колонны до боковой грани сваи, расположенной за пределами фигуры продавливания;

a - коэффициент, учитывающий частичную передачу продольной силы на плитную часть через стенки стакана, определяемый по формуле

здесь Af - площадь боковой поверхности колонны, заделанной в стакан фундамента, определяемая по формуле

здесь bcol, hcol - размеры сечения колонны;

hапс - длина заделки колонны в стакан фундамента.

При расчете на продавливание центрально-нагруженных ростверков колонной прямоугольного сечения формула (1) приобретает следующий вид:

c1 - расстояние от грани колонны с размером bcol до параллельной ей плоскости, проходящей по внутренней грани ближайшего ряда свай, расположенных за пределами нижнего основания пирамиды продавливания;

c2 - расстояние от грани колонны с размером hcol до параллельной ей плоскости, проходящей по внутренней грани ближайшего ряда свай, расположенных за пределами нижнего основания пирамиды продавливания.

Отношение принимается не менее 1 и не более 2,5.

При сi>h0 ci принимается равным h0; при сi<0,4h0 сi принимается равным 0,4h0.

При расчете на продавливание колонной квадратного сечения центрально нагруженных ростверков при c1=с2 формула (4) будет иметь следующий вид:

При установке в пределах пирамиды продавливания поперечной арматуры расчет должен производиться из условия

но не более 2Fb. Сила Fb принимается равной правой части условия (1).

Сила Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани пирамиды продавливания, по формуле

где Rsw - расчетное сопротивление поперечной арматуры растяжению при расчете наклонных сечений на действие поперечной силы;

Asw - суммарная площадь сечения поперечной арматуры, пересекающей боковые грани пирамиды продавливания.

В этом случае реакции свай подсчитываются от продольной силы и момента, действующих в сечении колонны у верхней горизонтальной грани ростверка.

При моментах, действующих в поперечном и продольном направлениях, величина , определяется в каждом направлении отдельно; в расчет принимается большая из этих величин.

Примечание. При стаканном сопряжении колонны с ростверком и эксцентриситете продольной силы в колонне величину , допускается определять, принимая величину момента, передающегося на ростверк от колонны, равной Если при этом дно стакана располагается выше плитной части ростверка, должна быть дополнительно выполнена проверка ростверка на продавливание при полном моменте и соответствующей ему сумме реакций свай из условия, что меньшим основанием пирамиды продавливания служит площадь подколонника.

2.4. При сборных железобетонных двухветвевых колоннах, имеющих общий стакан, расчет ростверка на продавливание выполняется как при колонне со сплошным прямоугольным сечением, соответствующим внешним габаритам двухветвевой колонны (черт. 2).

Черт. 2. Схема образования пирамиды продавливания под сборной железобетонной двухветвевой колонной

2.5. При многорядном расположении свай (черт. 3) помимо расчета на продавливание колонной по пирамиде продавливания, боковые стороны которой проходят от наружной грани колонны до ближайших граней свай, должна быть проведена проверка на продавливание ростверка колонной в предположении, что продавливание происходит по поверхности пирамиды, две или все четыре боковые стороны которой наклонены под углом 45°; при этом реакции свай, находящихся в пределах площади нижнего основания пирамиды продавливания, не учитываются.

Черт. 3. Схема образования пирамид продавливания под сборной железобетонной колонной при многорядном расположении свай за наружными гранями колонны

2.6. Расчет на продавливание колонной центрально-нагруженных ростверков свайных фундаментов с кустами из двух свай (черт. 4) производится из условия

где Fper - расчетная продавливающая сила, равная сумме реакций обеих свай от продольной силы N, действующей в колонне;

Rbt, h0; c1; bcol, hcol, a - обозначения те же, что в формулах (1) и (3);

с2 - расстояние от плоскости грани колонны с размером hcol до наружной грани штатной части ростверка.

Черт. 4. Схема образования пирамиды продавливания под сборной железобетонной колонной в двухсвайном фундаменте

2.7. Расчет на продавливание колонной внецентренно нагруженных ростверков свайных фундаментов с кустами из двух свай также производится по формуле (8), но при этом расчетная величина продавливающей силы принимается равной Fper=2Fi, где Fi - реакция наиболее нагруженной сваи от продольной силы N и момента М, действующих в колонне.

2.8. При стаканном сопряжении колонны с ростверком, когда стенки стакана подколонника имеют большую толщину (ds>0,75hp), или в штатных ростверках (черт. 5) при заглублении колонны в штатную часть ростверка не менее чем на 1/3 ее высоты, помимо расчета ростверка на продавливание в соответствии с пп. 2.2 - 2.7 следует производить расчет ростверка на раскалывание колонной от силы N по формуле

где N - продольная сила, действующая в сечении колонны у верхней горизонтальной грани ростверка;

m - коэффициент, вычисляемый по формуле

здесь s sid - напряжение бокового обжатия, МПа, определяемое по формуле

здесь Ab - наименьшая площадь вертикального сечения ростверка по оси колонны за вычетом вертикальной площади сечения стакана и площади трапеции, расположенной под колонной, с наклоненными под углом 45° сторонами (на черт. 5 площадь трапеции показана пунктирными линиями);

Rbt, a - обозначения те же, что в формуле (1);

а - условное обозначение вводимой в расчет стороны сечения колонны (bcol или hcol);

Допускается принимать m =0,75.

Найденная по формуле (9) несущая способность ростверка по раскалыванию сравнивается с его несущей способностью на продавливание ( ) и принимается большая из этих величин.

Черт. 5. Схема свайного фундамента с плитным ростверком

При этом несущая способность ростверка, определенная по формуле (9), должна приниматься не более его несущей способности на продавливание колонной от верха ростверка от продольной силы и момента, действующих в этом сечении. Расчет на продавливание от верха ростверка производится по пп. 2.2 - 2.7 с введением в правую часть формул (1); (4); (5); (8) коэффициента 0,75 и принимая h0 равным расстоянию от рабочей арматуры плиты до верхней горизонтальной грани ростверка.

Расчет ростверков на продавливание угловой сваей

где Fai - расчетная нагрузка на угловую сваю с учетом моментов в двух направлениях, включая влияние местной нагрузки (например, от стенового заполнения);

h01 - рабочая высота сечения на проверяемом участке, равная расстоянию от верха свай до верхней горизонтальной грани плиты ростверка или его нижней ступени.

иi - полусумма оснований i-й боковой грани фигуры продавливания высотой h01, образующейся при продавливании плиты-ростверка угловой сваей;

b i - коэффициент, определяемый по формуле

здесь k - коэффициент, учитывающий снижение несущей способности плиты ростверка в угловой зоне.

В преобразованном виде формула (12) будет иметь вид

b01; b02 - расстояния от внутренних граней угловых свай до наружных граней плиты ростверка (черт. 6);

c01; c02 - расстояния от внутренних граней угловых свай до ближайших граней подколонника ростверка или до ближайших граней ступени при ступенчатом ростверке;

b 1 и b 2 - значения этих коэффициентов принимаются по табл. 1.

Бондаренко расчет фундамента под двухветвевую колонну

Основным типом фундаментов, устраиваемых под колонны, являются монолитные железобетонные фундаменты, включающие плитную часть ступенчатой формы и подколонник. Сопряжение сборных колонн с фундаментом осуществляется с помощью стакана (см. рис. 4.1, а), монолитных — соединением арматуры колонн с выпусками из фундамента (рис. 4.8, а), стальных — креплением башмака колонны к анкерным болтам, забетонированным в фундаменте (рис. 4.8, б).


Размеры в плане подошвы ( b, l ), ступеней ( b1, l1 ), подколонника ( luc, buc ) принимаются кратными 300 мм; высота ступеней ( h1, h2 ) — кратной 150 мм; высота фундамента ( hf ) — кратной 300 мм, высота плитной части ( h ) — кратной 150 мм.

ТАБЛИЦА 4.22. ВЫСОТА СТУПЕНЕЙ ФУНДАМЕНТОВ, мм
Высота плитной части
фундамента h , мм
h1 h2 h3
300 300
450 450
600 300 300
750 300 450
900 300 300 300
1050 300 300 450
1200 300 450 450
1500 450 450 600
Модульные размеры фундамента следующие:
hf 1500—12000
h 300, 450, 600, 750, 900, 1050, 1200, 1500, 1800
h1, h2, h3 300, 450, 600
b 1500—6600
l 1500—8400
b1, b2 1500—6000
buc 900—2400
luc 900—3600
l1, l2 1500—7500

Высота ступеней принимается по табл. 4.22 в зависимости от высоты плитной части фундамента [1]. Вынос нижней ступени вычисляется по формуле c1 = kh1 , где k — коэффициент, принимаемый по табл. 4.23.

Форма фундамента и подколонника в плане принимается: при центральной нагрузке — квадратной, размерами b×b и buc×buc ; при внецентренной нагрузке — прямоугольной, размерами b×l и buc×luc , отношение b/l составляет 0,6–0,85.

Габариты фундаментов под типовые колонны прямоугольного сечения, например по сериям КЭ-01-49 и КЭ-01-55, для одноэтажных промышленных зданий принимаются по серии 1.412-1/77. Буквы в марках фундаментов обозначают: Ф — фундамент; А, Б, В и AT, БТ и ВТ — тип подколонников для рядовых фундаментов и под температурные швы (табл. 4.24), а числа характеризуют типоразмер подошвы плитной части фундамента и его типоразмер по высоте.

ТАБЛИЦА 4.23. КОЭФФИЦИЕНТ k
Давление на грунт, МПа Значения k при классе бетона
В10 В15 В20 В10 В15 В20 В10 В15 В20 В10 В15 В20




0,15 3 3 3 3 3 3 3 3 3 3 3 3
0,2 3 3 3 3 3 3 3 3 3 2,9 3 3
3
0,25 3 3 3 3 3 3 3 3 3 2,5 2,8 3
2,6 3
0,3 3 3 3 3 3 3 2,7 3 3 2,3 2,5 3
2,8 2,4 2,6
0,35 2,8 3 3 2,7 3 3 2,4 2,7 3 2,1 2,3 2,7
3 2,9 2,6 2,9 2,2 2,4 2,9
0,4 2,6 2,9 3 2,5 2,8 3 2,3 2,5 3 2 2,1 2,5
2,7 3 2,7 3 2,4 2,7 2,2 2,6
0,45 2,4 2,7 3 2,3 2,6 3 2,1 2,3 2,8 1,9 2 2,3
2,5 2,8 2,5 2,7 2,2 2,5 3 2,1 2,5
0,5 2,3 2,5 3 2,2 2,4 3 2 2,2 2,6 1,8 1,9 2,2
2,4 2,7 2,3 2,6 2,1 2,3 2,8 2 2,3
0,55 2,2 2,4 2,8 2,1 2,3 2,7 1,9 2,1 2,5 1,7 1,8 2,1
2,3 2,5 3,8 2,2 2,4 2,9 2 2,2 2,6 1,9 2,2

Примечание. Над чертой указано значение без учета крановых и ветровых нагрузок, под чертой — с учетом этих нагрузок.

ТАБЛИЦА 4.24. РАЗМЕРЫ ПОДКОЛОННОЙ ЧАСТИ ФУНДАМЕНТОВ


Размеры колонн, мм Рядовой фундамент Фундамент под температурный шов Размеры стаканов, мм Объем стакана, м 3
lc bc тип подколон-
ника
размеры, мм тип подколон-
ника
размеры, им hg lg bg
luc buc luc buc
400 400 А 900 300 AT 900 2100 800
900
500 500 0,22
0,25
500
600
600
500
400
600
Б 1200 1200 БТ 1200 2100 800
900
800
600
700
700
600
500
600
0,31
0,34
0,41
800
800
400
500
В 1200 1200 ВТ 1500 2100 900
900
900
900
500
600
0,44
0,52

По высоте приняты следующие размеры: тип 1 — 1,5 м; тип 2 — 1,8 м; тип 3 — 2,4 м; тип 4 — 3 м; тип 5 — 3,6 м и тип 6 — 4,2 м. В табл. 4.25 и 4.26 приводятся в качестве примера эскизы и размеры рядовых фундаментов и фундаментов под температурные швы. Эти фундаменты могут применяться при расчетном сопротивлении основания 0,15—0,6 МПа.

Все размеры фундаментов приняты кратными 300 мм. Применяется бетон класс В10 и В15. Армирование осуществляется плоскими сварными сетками из арматуры классов A-I, А-II и А-III. Защитный слой бетона принят толщиной 35 мм с одновременным устройством подготовки толщиной 100 мм из бетона В3,5.

ТАБЛИЦА 4.25. РАЗМЕРЫ РЯДОВЫХ ФУНДАМЕНТОВ
ТАБЛИЦА 4.26. РАЗМЕРЫ ФУНДАМЕНТОВ ПОД ТЕМПЕРАТУРНЫЕ ШВЫ
Эскиз Марка фундамента Размеры, мм Объем бетона, м 3
b l b1 h1 h1 hf

ФАТ3-1
ФАТ3-2
ФАТ3-3
ФАТ3-4
ФАТ3-5
ФАТ3-6
1800 2100 300 1500
1800
2400
3000
3600
4200
3,4
4,0
5,1
6,2
7,4
8,5

ФАТ6-1
ФАТ6-2
ФАТ6-3
ФАТ6-4
ФАТ6-5
ФАТ6-6
2400 2100 1500 300 300 1500
1800
2400
3000
3600
4200
4,2
4,7
5,9
7,0
8,1
9,3
ФАТ7-1
ФАТ7-2
ФАТ7-3
ФАТ7-4
ФАТ7-5
ФАТ7-6
2700 2100 1800 300 300 1500
1800
2400
3000
3600
4200
4,5
5,1
6,2
7,4
8,5
9,6


Для опирания фундаментных балок предусмотрена подбетонка (рис. 4.9). Пример конструктивного решения фундамента приведен на рис. 4.10.

Габариты монолитных фундаментов под типовые колонны двухветвевого сечения, в частности для серии КЭ-01-52 одноэтажных промышленных зданий, принимаются по серии 1.412-2/77. Размеры подколонной части таких фундаментов приведены в табл. 4.27. Габариты плитной части имеют типоразмеры от 1 до 18, а также типоразмер 19, при котором размер подошвы составляет 6×5 м. По высоте фундаменты могут быть 1—6-го типа. Остальные параметры такие же, как и в серии 1.412-1/77.


Железобетонные фундаменты под типовые колонны прямоугольного сечения, например по сериям ИИ-04, ИИ-20 и 1.420-6 для многоэтажных производственных зданий, принимаются по серии 1.412-3/79.

ТАБЛИЦА 4.27. ТИПЫ И РАЗМЕРЫ ПОДКОЛОННИКОВ


Размеры колонн, мм Рядовой фундамент Фундамент под температурный шов Размеры стаканов, мм Объем стакана, м 3
lc bc тип подколон-
ников
размеры, мм тип подколон-
ников
размеры, мм hg lg bg
luc buc luc buc
300 300 А 900 900 AT 900 2100 450
450
400 400 0,08
0,12
400 400 650
1050
500 500 0,18
0,29
600 400 Б 1200 1200 БТ 1200 2100 650
1050
700 500 0,25
0,40

Отличие в маркировке фундаментов по сравнению с другими сериями заключается в том, что после цифры, обозначающей типоразмер подошвы, приводится высота плитной части. Размеры подколонной части фундамента приведены в табл. 4.27. Габариты плитной части включают типоразмеры от 1 до 18 и типоразмер 19 (с размером подошвы 5,4×6 м). по высоте фундаменты могут быть 1—6-го типа. Остальные параметры такие же, как и в серии 1.412-1/77. Монолитные железобетонные фундаменты под железобетонные типовые фахверковые колонны прямоугольного сечения, в частности по шифрам 460-75, 13-74 и 1142-77, принимаются по серии 1.412.1-4. Размеры фундаментов приведены в табл. 4.28. Сопряжение колонны с фундаментом шарнирное. Фундаменты разработаны для давления 0,15- 0,6 МПа. Применяется бетон класса В10. Армирование осуществляется сварными сетками из арматуры классов A-I, А-II и А-III. Пример узла опирания колонны на фундамент дан на рис. 4.11.

Под колонны зданий применяются сборные фундаменты из одного или нескольких элементов. на рис. 4.12 приведены решения сборных фундаментов под колонны каркаса для многоэтажных общественных и производственных зданий из элементов серии 1.020-1. Элементы фундамента типа Ф применяются на естественном основании, типа ФС — для составных фундаментов (табл. 4.29). Толщина защитного слоя бетона нижней рабочей арматуры принимается 35 мм, а остальной арматуры — 30 мм. Глубина заделки колонны в фундамент должна быть не менее величин, приведенных в табл. 4.30.

Пример сбора нагрузок на колонну (две ветви)

Сбор нагрузок на колонны.

Рассмотрим двухветвевую колонну одноэтажного здания.

СКАЧАТЬ ФАЙЛ НА GOOGLE.ДИСК

СКАЧАТЬ ФАЙЛ НА ЯНДЕКС.ДИСК

Сначала начинаем собирать постоянные нагрузки, т.к. от собственного веса.

Нагрузки от собственного веса делим на три типа.

Тип 1. Собственный вес колонны.

Нагрузки от собственного веса колонны считаем раздельно для верхней и нижней частей.

Нагрузку от собственного веса каждой части колонны принимаем как сосредоточенную продольную силу, приложенную к центру тяжести.

1_ris_sbor_nagr_koll_2_252

Следует отметить, что положение верхней части в расчетной схеме колонны совпадает с фактической осью колонны, эксцентриситет приложения нагрузки от собственного веса колонны равен нулю. Центр тяжести нижней части не совпадает с разбивочной осью колонны. Нагрузки прикладываются с учетом эксцентриситета е1.

Тип 2. Вес от ограждающих конструкций стен.

Если стены являются несущими или самонесущими, то их вес не учитывается.

Если стены навесные, например, сэндвич панели, то их вес необходимо учесть.

Нагрузку от навесных стен прикладываем как сосредоточенную силу, приложенную к центру тяжести стенового ограждения с учетом эксцентриситета е1.

2_ris_sbor_nagr_koll_2_873

Численное значение этой сосредоточенной силы зависит от шага колонн, высоты колонн и веса стенового ограждения:

Gогр.кон. = вес ограждающих конструкций(кг/м 2 ) ´ высота колонны (м.) ´ шаг колонн (м.)

Вес ограждающих конструкций стен учитываем только в пределах высоты колонны, т.к. ограждающие конструкции выше колонн крепятся к фермам или ригелям.

Шаг колонн определяет ширину грузовой площади. Рассмотрим пример. Если шаг колонн три метра, то ширина грузовой площади будет равна трем метрам.

3_ris_sbor_nagr_koll_832

Если шаг колонн разный, то ширина грузовой площади подсчитывается путем сложения грузовых участков с каждой стороны колонны. Рассмотрим пример. Допустим шаг колонн слева четыре метра, а шаг колонн справа два метра. Ширина грузового участка слева колонны получается три метра, а справа один метр. Следовательно, ширина грузовой площади этой колонны равняется четырем метрам.

4_ris_sbor_nagr_koll_725

Тип 3. Вес от конструкций покрытия.

Вес от конструкции включает себя вес фермы (ригеля), прогонов кровли, кровли, стенового ограждения в уровне ферм. Как правило, все эти нагрузки принимаются на стадии расчета фермы или ригеля и на основе этих расчетов принимается нагрузка на колонну. Стоит отметить, что всегда следует обращать внимание на узел опирания фермы или ригеля на колонну, т.к. опирание может быть без эксцентриситета, а может иметь эксцентриситет, который создает момент в колонне. Этот момент также необходимо учитывать.

База металлической колонны

База колонны – нижняя часть колонны, передающая нагрузку на фундамент.

Базы колонн должны выполнять следующие задачи: 1) Надежно фиксировать нижнюю часть стержня колонны на фундаменте, 2) Воспринимать нагрузки от стержня колонны и распределять ее по площади фундамента. Фундаменты, как правило, выполнены из монолитного или сборного железобетона.

База колонны. Тип 1.

Рис. 1. Условно шарнирная база.

Используется для центрально-сжатых колонн. Состоит из опорной плиты, на которую устанавливается фрезерованный торец стержня.

База колонны. Тип 2.

Рис. 2. Жесткая база

Жесткая база в плоскости анкерных болтов и шарнирная из плоскости анкерных болтов. Используется для стоек фахверка и т.п. Состоит из опорной плиты, которая крепится к фундаменту анкерными болтами.

База колонны. Тип 3.

Рис. 3. Жесткая база

Используется для сжато-изгибаемых колонн. Состоит из опорной плиты, которая крепится к фундаменту анкерными болтами.

База колонны. Тип 4.

Рис. 4. Шарнирная база.

Используется для центрально-сжатых колонн. Состоит из опорной плиты, которая крепится к фундаменту анкерными болтами.

База колонны. Тип 5.

Рис. 5. Жесткая база

Используется для сжато-изгибаемых колонн. Состоит из опорной плиты, усиленной ребрами жесткости, которая крепится к фундаменту анкерными болтами.

База колонны. Тип 6.

Рис. 6. Жесткая база

Используется для сжато-изгибаемых колонн. Состоит из опорной плиты, траверсы, которая крепится к фундаменту анкерными болтами.

База колонны. Тип 7.

Рис. 7. Жесткая база

Используется для сжато-изгибаемых колонн. Состоит из опорной плиты, усиленной ребрами жесткости, которая крепится к фундаменту анкерными болтами.

Проектирование металлических колонн

Металлические колонны промышленных и гражданских зданий

Металлические колонны промышленных и гражданских зданий

Стальные колонны являются несущими элементами металлического каркаса здания, воспринимающие основные нагрузки на здание или сооружение. Стальная колонна состоит из базы, оголовка и стержня колонны.

2. Оголовок колонны;

3. Сечение колонны.

РАСЧЕТ КОЛОНН

Проектирование колонн начинают с расчетов. Могут работать как центрально-сжатые стержни, а могут как сжато-изгибаемые элементы. Смотрите соответствующие страницы сайта:

Далее разрабатывают схему расположения колонн. Это может быть схема раздела КМ или КМД. Если объект простой, то это может быть схема в разделе АС.

ЧЕРТЕЖИ

Образец оформления схемы расположения колонн смотрим на странице:

Если мы делаем раздел КМ (Конструкции металлические), то можно ограничиться схемой расположения колонн и узлами. Узлы для схемы КМ смотрите на страницах с колоннами (Список ниже). Но если мы делаем КМД (Конструкции металлические деталировочные), то придется еще и отправочный марки разрабатывать. Без чертежей колонн тут не обойдешься, а так как колонны бывают разные, разложим их по категориям:

Ниже представлена информация для общего развития.

Классификация колонн

Колонны постоянного сечения применяют при отсутствии мостовых кранов большой грузоподъемности и высотой до 9 метров.

Колонны переменного сечения более экономичны, чем колонны постоянного сечения. Используются при наличии мостовых кранов небольшой грузоподъемности (до 50 тн.)

Колонны с ветвями (двухветвевые, трехветвевые и т.д.) используются при наличии кранов большой грузоподъемности (Более 50 тн.)

Характер работы колонн

Конструкция стальных колонн

Основные конструктивные элементы:

При проектировании колонн могут быть полезными следующие типовые серии:

№ п/п Номер Наименование Примечания
1 Серия 1.423.3-8 Стальные колонны одноэтажных производственных зданий без мостовых опорных кранов. Смотреть
2 Серия 1.424-2 Стальные колонны одноэтажных производственных зданий, оборудованных мостовыми кранами. Смотреть
3 Серия 1.424-4 Стальные колонны одноэтажных производственных зданий. Смотреть
4 Серия 1.424.3-7 Стальные колонны одноэтажных производственных зданий, оборудованных мостовыми опорными кранами. Смотреть

Металлические колонны одноэтажных зданий проектируют с постоянным или переменным сечением. Колонны переменного сечения имеют сплошное постоянное сечение надкрановой части, а подкрановая часть может быть сплошного или сквозного сечения.

Колонны сквозного сечения проектируют с ветвями, которые соединяются решеткой. Раздельные колонны проектируют из независимо работающих шатровой и подкрановой ветвями. Если колонны работают на центральное сжатие, при этом изгибающие моменты незначительны, то применяют колонны сплошного сечения, которые выполняют из широкополочных прокатных или сварные двутавров. При изготовлении сквозных колонн используют двутавры, швеллеры и уголки.

Типы стальных колонн

Колонны крепятся к фундаменту за счет нижней части в которой предусмотрена стальная база колонны (башмак). Базы колонн крепят к фундаментам анкерными болтами, которые предусматривают в фундаментах при их изготовлении.

Фундаменты промышленных зданий


Новый сервис - Строительные калькуляторы online

Фундаменты сборных железобетонных колонн

Типовые чертежи фундаментов по сериям 1.412-1, 1.412-2 разработаны для сборных железобетонных колонн любого вида и типоразмера при нормативном давле­нии на грунт 0,15-0,45 МПа.

Фундаменты вы­полняют на строительной площадке, исполь­зуя, как правило, деревянную опалубку.

Фундаменты состоят из подколонника и одно-, двух- или трехступенчатой плитной части.

Обрез фундаментов под железобетонные колонны располагается чаще всего для одно­этажных зданий на отметке минус 0,15 м, для многоэтажных зданий-на отметке минус 0,2 м.

Фундаменты выполнены с уступами, высота которых 0,3 и 0,45 м.

Все размеры их в плане унифицированы и кратны модулю 0,3 м.

Площадь подколонников принята в шести вариантах начиная от 0,9 х 0,9 м (ак х Ьк).

В последующих вариантах размер подколонника в направлении шага колонн Ьк установлен 1,2 м, а размер в направлении пролета между колоннами ак составляет 1,2; 1,5; 1,8; 2,1 и 2,7 м.


Фундаменты сборных железобетонных колонн:

(1-подколонник стаканного типа; 2-железобетонная колонна; 3-плитная часть; 4-подошва фундамента)

Размеры конкретного фундамента выбира­ют в зависимости от нагрузки, передаваемой колонной, характеристик грунта и решений конструктивной части здания ниже отметки 0.000.

Зазор между гранями колонн и стенкой стакана принят по верху стакана 75 мм и по низу 50 мм, а между низом колонны и дном стакана 50 мм. Минимальная толщина стенки поверху 175 мм.

Стакан для ветвей двухветвевой колонны устраивают об­щим.

Класс бетона фундаментов В10-В12 (М150 или М200).

После установки колонн стаканы заливают бетоном класса В20 или В25 на мелком гравии.

Под железобетонные фундаменты обычно делают подготовку толщиной 100 мм из щебня с проливкой цементным раствором или из бетона класса В7,5.

При прочных слабофильтрующих грунтах устройство подготовки не требуется.

Фундамент под спаренные колонны в температурных швах устраивают общим даже в том случае, если колонны по смежным разбивочным осям спроектированы стальными и железобетонными.

Фундаментные балки под наружные стены рассчитаны на нагрузку от сплошных стен и стен с оконными или дверными проемами, расположенными над серединой фундаментной балки.

Для опирания фундаментных балок на фундаменты колонн рекомендуется устройство приливов (бетонных столбиков), ширину которых следует принимать не менее максимальной ширины балки, а обрез на от­метке минус 0,45 или 0,6 м-в зависимости от ее высоты.

В многоэтажных каркасных зданиях с под­валами стены последних могут быть выполне­ны монолитными, из сборных железобетонных панелей (аналогично панелям наружных стен зданий) или из стеновых блоков и плит.

Отметку низа фундаментов колонн и стен подвала, расположенных между колон­нами, принимают, как правило, одинаковой.

Гидроизоляцию выполняют в соответствии с материалами, в зависимости от грунтовых вод и глубины наложения подвала.

В сухих грунтах следует учитывать возможность временного появления грунтовых вод, например весной.


Расположение фундаментных балок:

а - вид сбоку; б - план; в - сечение; 1 - фундаментная балка; 2 - прилив или бетонный столбик; 3 - колонна рядовая; 4 - колонна у температурного шва; 5 - колонна примыкающего пролета; 6 - стена; 7 - засыпка шлаком; 8 - отмостка

В многоэтажных каркасных зданиях с под­валами стены последних могут быть выполне­ны монолитными, из сборных железобетонных панелей (аналогично панелям наружных стен зданий) или из стеновых блоков и плит.

Отметку низа фундаментов колонн и стен подвала, расположенных между колон­нами, принимают, как правило, одинаковой.

Гидроизоляцию выполняют в соответствии с материалами, в зависимости от грунтовых вод и глубины наложения подвала.

В сухих грунтах следует учитывать возможность временного появления грунтовых вод, например весной.

Фундаменты стальных колонн

Фундаменты под стальные колонны принима­ют по типу фундаментов под железобетонные колонны. При этом подколонник устраивается сплошным (без стакана) и имеет анкерные болты, заделанные в бетон.

База стальной колонны крепится к фундаменту гайками, навинчивающимися на верхние выступающие из бетона концы анкерных болтов.

Размеры фундамента выбирают как для сборной железобетонной колонны, имеющей размеры сечения, близкие к размерам сечения стальной колонны.

Для заглубления развитых баз стальных колонн (с траверсами) обрезы фундаментов располагают на отметке - 0,7 или - 1,0 м.

Для стальных колонн, у которых траверсы отсутствуют, отметку верха подколонника назначают порядка - 0,25 м.

Сечение подколонников под базы сталь­ных колонн выбирают так, чтобы расстояние от оси анкерных болтов до грани подколонника было не менее 150 мм.



Монолитные железобетонные фундаменты под стальные колонны:

(1-стальная колонна; 2-анкерный болт; 3-анкерная плита; 4-опорная плита; 5-цементная подливка; 6-железобетонный фундамент)

Свайные фундаменты

Конструкции монолитных фундаментов железобетонных и стальных колонн могут при­меняться совместно со сваями.

При устройстве фундаментов использование свай целесообразно в тех случаях, когда не­посредственно под сооружением залегают сла­бые грунты, не способные выдержать нагрузку от сооружения, или когда применение свай позволяет получить экономически наиболее выгодное решение.

В отечественной практике известно более 150 видов свай, которые классифицируются по материалам (железобетонные, бетонные, дере­вянные и т. д.), конструкции (цельные, состав­ные, квадратные, круглые, с уширением и без него и т.д.), виду армирования, способу из­готовления и погружения (сборные, монолит­ные, забивные, завинчиваемые, буронабивные, виброштампованные и т. д.), характеру работы в грунте (сваи-стойки, висячие сваи).

Сваи железобетонные забивные цельные сплошного квадратного сечения по ГОСТ 19804.1-79* и ГОСТ 19804.2-79* рекоменду­ется применять для всех зданий и сооружений в любых сжимаемых грунтах (за исключением грунтов с непробиваемыми включениями).

Сваи забивают до проектных от­меток.

В том случае, если по каким-либо при­чинам отметки свай разные, осуществляют срубку свай ручными или механическими ин­струментами до заданных проектных отметок.


Свайные фундаменты:

1-железобетонная колонна; 2-подколонник; 3-плитная часть фундамента; 4-свая

Читайте также: