Лежневый фундамент для опор

Обновлено: 11.05.2024

Фундаменты опор ВЛ

«Справочник по строительству и реконструкции линий электропередачи напряжением 0,4–750 кВ / под ред. Е. Г. Гологорского.» считаю одним из лучших пособий для сметчика, т.к. в нем дано очень много нужной для сметчика информации.

Представлю несколько фрагментов из этой книги со своими комментариями.

Конструкция фундаментов выбирается в соответствии с типом опоры, действующей на фундамент нагрузкой, а также характеристикой грунта, в который будет заделан фундамент.

В качестве фундаментов опор применяются монолитный бетон, сборный железобетон, сваи и в некоторых случаях – металлические фундаменты. У железобетонных опор, нижний конец стойки которых заделывается в грунт, фундаментом служит низ стойки, иногда усиленный ригелями.

Деревянные опоры всех типов устанавливаются без фундаментов.

Для стальных и некоторых видов железобетонных опор на оттяжках наибольшее распространение получили железобетонные сборные фундаменты, устанавливаемые в котлованы. При изготовлении на заводе фундаменты поступают на линию или в виде готовых к установке конструкций (подножников, свай, плит, ригелей, ростверков), или в виде отдельных деталей (рис. 1.1).

Широкое применение железобетонных подножников заводского изготовления возможно в грунтах почти всех категорий, что резко снижает трудоемкость устройства фундаментов, а также объемы земляных работ, расход бетона и в конечном счете стоимость сооружения. Применение железобетонных подножников заводского изготовления позволяет выполнять сооружение фундаментов под опоры ВЛ практически в любое время года.

Рис. 1. Детали сборных железобетонных фундаментов опор ВЛ: а – прямой подножник; б – наклонный подножник; в – пригрузочная плита; г – ригель; д – свая; е – ростверк; ж – анкерная плита для крепления оттяжек Рис. 1. Детали сборных железобетонных фундаментов опор ВЛ: а – прямой подножник; б – наклонный подножник; в – пригрузочная плита; г – ригель; д – свая; е – ростверк; ж – анкерная плита для крепления оттяжек

С целью ограничения числа типов железобетонных подножников и свай, предназначенных для массового изготовления на заводе, они унифицированы. Шифровка фундаментов основной номенклатуры определяется буквой Ф – фундамент и цифрой, которая указывает типоразмер фундамента. Специальные фундаменты имеют после первой буквы в шифре дополнительную букву С, укороченные – К, повышенные – П. После цифры, обозначающей типоразмер фундамента, через дефис проставляется буква или цифра, указывающая на его применение:

А – под анкерно‑угловые опоры; О – под стойки опор с оттяжками; 2 – под опоры с башмаками, имеющими два отверстия; 4 – под опоры с опорными башмаками, имеющими четыре отверстия. В случае установки на фундаментах неосновных вариантов наголовников (с болтами диаметром 48 мм или болтами длиной 350 мм) после буквы А основного шифра через дефис проставляются цифры соответственно 48 или 350.

Ф4‑А – фундамент 4‑го типоразмера под анкерно‑угловую опору;

ФС 2–4 – фундамент специальный 2‑го типоразмера под опору с башмаками, имеющими четыре отверстия, т. е. фундамент с четырьмя болтами;

ФК 1–О – фундамент укороченный 1‑го типоразмера под стойку опоры на оттяжках.

Для шифровки фундаментов дополнительной номенклатуры к шифру основного фундамента добавляют букву:

в шифре вариантов фундаментов с модернизированным оголовком после буквы А добавляется буква М – модернизированный, например Ф3‑АМ, Ф5‑АМ;

в шифре вариантов фундаментов со сварным или болтовым соединением стойки с нижней частью после букв ФП и ФС добавляется буква С, обозначающая сварной, или буква Б – болтовой вариант.

Например, ФПС5‑А – вариант повышенного фундамента ФП5‑А со сварным соединением стойки и нижней части; ФСБ2‑4 – вариант специального фундамента ФС‑4 с болтовым соединением стойки и нижней части.

Для изготовления железобетонных фундаментов применяется бетон марок 200, 300 и 400 (по прочности на сжатие), приготовленный на портландцементе. При наличии на трассе агрессивных к бетону грунтовых вод для приготовления бетона применяется цемент, стойкий к конкретному виду агрессии.

Для армирования железобетонных фундаментов применяется арматура из горячекатаной углеродистой или низколегированной стали. Для линий электропередачи, строящихся в районах с расчетной наружной температурой воздуха до –30 °C, разрешается применять арматуру из кипящих сталей; для линий, строящихся в районах с расчетной температурой воздуха от –30 до –40 °C, разрешается применение арматуры из полуспокойной стали, а для районов с температурой ниже –40 °C – только из стали спокойной плавки.

Для промежуточных и анкерно‑угловых стальных опор основным конструктивным элементом фундаментов принят подножник грибовидной формы, а для анкерно‑угловых опор и опор с оттяжками применяются подножники с наклонными стойками, ось которых является продолжением пояса опоры и оси оттяжки. Это резко снижает горизонтальные нагрузки на фундамент. Для крепления оттяжек вантовых опор применяются также составные фундаменты с навесными плитами прямоугольного сечения. Эти фундаменты получаются сочетанием грибообразного подножника и навесных плит.

Выбор типов фундаментов производится на основании установочных чертежей, разработанных для каждого типа опоры. На установочных чертежах приводятся: план расположения фундаментов; привязка ригелей, пригрузочных плит; район по гололеду и скоростной напор ветра, а для анкерно‑угловых опор – угол поворота на линии. На чертежах фундаментов указывается степень уплотнения грунта засыпки.

Под анкерно‑угловые опоры разработано семь типов фундаментов: Ф1‑А; Ф2‑А; Ф3‑А; Ф4‑А; Ф5‑А; Ф6‑А и ФС. Под промежуточные и промежуточно‑угловые опоры разработаны шесть типов фундаментов: Ф1; Ф2; Ф3; Ф4; Ф5; Ф6 и фундамент типа ФС.

При прохождении трассы ВЛ в районах рек, болот, по косогорам применяются повышенные составные подножники типа ФП со сварным – С или болтовым – Б соединениями стойки с нижней частью. Основные типы, характеристики сборных железобетонных фундаментов и подножников для ВЛ 35–500 кВ приведены в табл. 1-4.

Лежневый фундамент

Полезная модель относится к временному строительству и может быть использована для возведения поверхностных фундаментов, при строительстве или восстановлении искусственных сооружений в капитальном и военном мостостроении на слабых обводненных грунтах. Технической задачей полезной модели является увеличение несущей способности лежневого фундамента, расширение области применения в слабых грунтах и на мелководье, увеличении сроков эксплуатации конструкций устраиваемых на лежневых фундаментах, исходя из военно-технических требований временного восстановления. Техническая задача решается за счет того, что лежневый фундамент, содержащий щебеночную подготовку, на которую уложены лежни из дерева или железобетона, отличающийся тем, что дополнительно слабый грунт армируется путем сооружения параллельных пар элементов усиления, на головки которых уложена щебеночная подушка и лежни, причем лежни укладываются, только в местах, где сформированы элементы усиления. Представленная конструкция лежневого фундамента удовлетворяет военно-техническим требованиям и может использоваться в качестве фундамента опор временных мостов.

Полезная модель относится к временному строительству и может быть использована для возведения поверхностных фундаментов, при строительстве или восстановлении искусственных сооружений в капитальном и военном мостостроении на слабых обводненных грунтах.

Известен лежневый фундамент, состоящий из щебеночной подушки и деревянных лежней, принимаемый за прототип и состав работ по его сооружению, включающий подготовку площадки, отсыпку щебня, укладку лежней сплошным настилом [1].

Недостаток известного фундамента низкая несущая способность на слабых (пучинистых) и в мокрых грунтах, ограничение по применению на мелководье реки, короткий срок эксплуатации.

Технической задачей полезной модели является увеличение несущей способности лежневого фундамента, расширение области применения в слабых грунтах и на мелководье, увеличении сроков эксплуатации конструкций устраиваемых на лежневых фундаментах, исходя из военно-технических требований временного восстановления [2].

Техническая задача решается за счет того, что лежневый фундамент, содержащий щебеночную подготовку, на которую уложены лежни из дерева или железобетона, отличающийся тем, что дополнительно слабый грунт армируется путем сооружения параллельных пар элементов усиления [3], на головки которых уложена щебеночная подушка и лежни, причем лежни укладываются, только в местах, где сформированы элементы усиления.

На мелководье рек, деревянные лежни заменяют железобетонными шпалами или небольшими плитами.

Фундамент иллюстрируется на фигуре 1 и фигуре 2.

На фигуре 1 изображен лежневый фундамент, где обозначены:

несущий геомассив1;
элемент усиления грунта2;
щебеночная подушка3;

лежень4;
балка опирания надстройки опоры5.

Устройство элементов усиления грунта 2 осуществляется по схеме, приведенной на фиг.2, а подсыпка щебеночной подушки 3 и укладка лежней 4 выполнятся в местах формирования элементов усиления 2.

Представленная конструкция лежневого фундамента удовлетворяет военно-техническим требованиям и может использоваться в качестве фундамента опор временных мостов.

2. Технические условия проектирования военных железнодорожных мостов. Москва, 1986 год.

Лежневый фундамент, содержащий щебеночную подготовку, на которую уложены лежни из дерева или железобетона, отличающийся тем, что дополнительно слабый грунт армируется путем сооружения параллельных пар элементов усиления, на головки которых уложена щебеночная подушка и лежни, причем лежни укладываются только в местах, где сформированы элементы усиления.

Лежни как поверхностные фундаменты

Суть такова можно ли ЛЕЖНИ (тип ЛЖ) по СЕРИИ 3.407.1-157 заглублять в грунт на глубину до 6см.
И если нельзя то согласно какого документа.

Просто строитель не хотят копать под ЛЕЖНИ, а просят перепланировать раздел ГТ и планировку территории с 1% привести к 0,3%.

Утверждают тем что на лежень ЛЖ6.0 придется подсыпать около 6см.

Есть документ ТИ-064 САМАРА согласно которого лежни укладываются на спланированную территорию

Железобетонные лежни

Лежни в строительстве – это деревянные или железобетонные изделия с большим поперечным сечением, располагаемые горизонтально и служащие опорой для различных конструкций. Их основное назначение – распределение точечных вертикальных нагрузок на большую площадь опирания. Лежни используют при обустройстве фундамента, пола, потолка здания, стропильной системы. Если в частном строительстве обычно применяют деревянные изделия (бревна, брусья), то при сооружении многоэтажных жилых зданий, объектов промышленного и инженерного назначения используются их железобетонные аналоги.

Особенности материалов, используемых для изготовления лежней

Лежни, независимо от области их применения, изготавливаются из тяжелых бетонов, соответствующих ГОСТу 26633-2015. При производстве этих ЖБИ применяют бетонные смеси со следующими характеристиками:

  • прочность – не ниже В30;
  • водостойкость – W6;
  • морозостойкость – F200-300.

Если ЖБИ планируется эксплуатировать в агрессивных средах, то для их изготовления используют сульфатостойкие бетоны. Но даже в обычные бетонные смеси добавляют пластифицирующие и другие добавки, которые придают устойчивость изделиям к воздействию масел и других агрессивных веществ.

электротехнические лежни

Для армирования изделий применяют сварные или вязаные каркасы из прочных арматурных сталей, способные выдерживать значительные постоянные и ударные нагрузки, благодаря чему ЖБИ могут использоваться в сейсмоопасных регионах.

Классификация лежней по назначению

Различают лежни марки Л, применяемые в мостостроении, и марки ЛЖ, рассчитанные на использование в энергетическом и промышленном строительстве.

Железобетонные лежни Л – характеристики и области применения

ЖБИ данного типа, выпускаемые в соответствии с серией 3.503.1-96, имеют прямоугольное или тавровое поперечное сечение. Применяются в качестве фундаментной опоры в местах сопряжения мостовых конструкций и путепроводов с грунтом. Также они могут использоваться для строительства пешеходных переходов через автомобильные и железные дороги.

Изделия этой марки могут иметь с одной стороны выпуски арматуры, позволяющие прочно крепить лежни к другим элементам эстакад или мостов. На лежни укладывают переходные плиты, поверх которых настилают асфальтобетон.

Изделия ЛЖ – конструкционные особенности и области применения

ЖБИ марки ЛЖ – унифицированные изделия, применяемые при устройстве фундаментов блочных трансформаторных подстанций напряжением 35-500 кВ. Эта продукция, соответствующая серии 3.407-157.1, имеет Т-образную форму поперечного сечения. Высота буквы «Т» – 500 мм, ширина пяты – 400 мм.

Широкая часть тавра укладывается на грунт, а на узкую монтируют плиты, служащие фундаментом для установки силовых трансформаторов и другого энергетического оборудования. Изделия создают между землей и плитами воздушную прослойку, которая предотвращает появление конденсата на поверхности плит и повышает электробезопасность оборудования. Еще одна функция ЖБИ марки ЛЖ – поглощение вибраций, характерных для работы мощных электроустановок.

Преимущества электротехнических лежней ЛЖ:

  • высокая прочность благодаря использованию при производстве тяжелого бетона с характеристиками, которые соответствуют запланированным условиям эксплуатации;
  • стойкость к вибрациям;
  • устойчивость к образованию и развитию очагов любых видов коррозии.

Для энергооборудования с различными размерами подбирают ЖБИ подходящей длины, которые обеспечивают устойчивое опирание оборудования и эффективное распределение вертикальных нагрузок на основание. Электротехнические изделия ЛЖ также используются на производственных предприятиях для устройства прочных оснований под тяжелое промышленное оборудование.

Автор-эксперт: Рахов Юрий

Эксперт по снабжению бригад строительными материалами.

Образование:

Опыт работы:

Контроль выполнения строительно-монтажных работ, соблюдения качества и сроков. Снабжение монтажных бригад строительными материалами и оборудованием. Работа с проектной документацией, журналами работ и прочей сопроводительной документацией.

расчет фундамента опоры ЛЭП

Электрики Вам дали задание на проектирование свайных фундаментов под опоры (по серии) ЛЭП. В серии даются нагрузки на фундамент для опоры. В общих данных указывается ветровой район, например, III район по СНиП.
Карты районирования ветровых давлений по СНиП и ПУЭ различны.
Возмите район по ПУЭ. Найдите переводной коэффициент. Умножте на переводнеой коэффициент нагрузки на фундамент. Учтите 20кН на аварийный порыв провода (рядовая опора при аварийном порыве должна быть анкерной, учтите горизонтальную силу и момент). Свайный фундамент расчитывайте по SCAD с учетом горизонтальной нагрузки. Программа выдает несущую способность сваи с учетом выдергивающей нагрузки. Подобный расчет выполняют и другие программы.

В одной из первых серий Ленинградского отделения проектного института "Энергосеть" (я могу ошибиться) была разработана методика расчета фундаментов опрор ВЛ. Все более поздние серии на нее ссылаются. Расчеты по ней очень сложные. (Вероятно, эта методика не для Вашего случая)
Надеюсь, что оказал некую помощь

Последний раз редактировалось diek, 01.12.2010 в 13:39 .

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

ну нагрузка очевидно на опору. Она же не делится на ноги, она ж цельнометаллическая

А на ноги вы сами делите. Если захотите таракана - будет 6 ног и т.п. Они не знают точно тип опоры, это вы им его подтверждаете.

Вы не можете считать сами без электриков, т.к. у них там гололёд, ветер, обрыв проводов и т.п.
Если ж хотите геморрой, то можно наверное всё учесть. Но получите в итоге наверное то же что и программа.

Вообще обычно программы верифицируют и на предприятии. Вдруг у вас плохая и считает с ошибкой ?
Думаю надо выбить у начальства время на такой расчёт вручную, подтвердить качество так сказать.

в итоге вы получите силы с проводов.
А как они распределяются по опоре скажет вам скад.
Без него даже страшно подумать сколько и как это считать.
Ну или с большим запасом. Полагаю у вас даже типовая опора не пройдёт таким расчётом.
1. однозначно усилия будут разные на все ноги, но стоит ли это учитывать ?
2. так вы опору считаете, а не ноги ? Что за вопросы ? У меня чувство, что вы таким макаром ничего не посчитаете. Тут надо 3д учитывать, а не каждую ногу отдельно считать.

Сразу оговорюсь, что я КМ знаю плохо и опоры несчитал. Это я всё предполагаю.

__________________
"Безвыходных ситуаций не бывает" барон Мюнгхаузен Если опора ЛЭП имеет имеет четыре точки под свайные фундаменты, то два фундамента работают на вдавливание и два на выдергивание. Количество свай подбирается расчетом таким образом, чтобы их несущая способность была выше рачетных нагрузок на фундамент.
Если Вы сомниваетесь в предоставленных нагрузках на фундамент, то в этом случае необходим ручной счет. Быстрый грубый сбор нагрузок на вертикальный консольный жесткозакрепленный стержень (предполагается знание строительной механики). Момент в заделке стержня деленный на длину базы опоры ЛЭП дает нагрузки (вдавливающие и выдергивающие с учетом веса опоры) на фундамент. Если первая цифра и порядок полученных усилий на фундамент совпали с расчетом по программе, то предоставленным данным можно доверять.
Особо Ваше внимание хочу обратить при использовании ПУЭ. В нем приводятся повышающие коэффициенты, применяемые для районах с отсутствием метеоданных.
Если расчеты сильно разнятся, то в ПУЭ сбор нагрузок очень подробно прописан. В этом случае все надо делать в ручную. Бояться этой работы не надо. Специалистами становяться только через ручной счет и не однократный.
Успехов Вам. Момент в заделке стержня деленный на длину базы опоры ЛЭП дает нагрузки (вдавливающие и выдергивающие с учетом веса опоры) на фундамент. может половина длинны базы.
а как же быть с продольными и поперечными усилиями?? или они не значительны по сравнению с моментом ??

Инженер-недоучка на производстве

город Йошкар-Ола необходимо применять как можно больше повышающих коэффициентов. Например, коэффициент по нагрузке -1,1; Маленькая поправка: при расчёте на опрокидывание (соответственно на выдёргивания одной из опор) нагрузку от собственного веса брать с понижающим коэффициентом 0,9 - прим. 1 таблицы 1 СНиП "Нагрузки и воздействия".
Ну а ветровые по-прежнему, с наибольшими повышающими коэффициентами.

Проблема у меня следующая. Больше года уже висит надо мной и я уже решила с ней покончить.
Разбираюсь в расчете опоры ЛЭП. Цель - подбор столбчатых типовых фундаментов под опору.

Считала в программе ЛЭП-2009 и вручную.
В программе все сделала, ввела все климатические данные, геометрию опоры и т.д. - посчитались нагрузки на сжатие, на вырывание. Затем, по ним (по нагрузкам) как-то нужно используя типовой проект подобрать фундамент.
Сразу говорю, что обычный фундамент, где нужно определять площадь подошвы, я знаю, мы это проходили на 4 курсе, но здесь по-другому как-то подбирают фундаменты.

В ручном расчете я дошла до опрокидывающих моментов и тоже не знаю, что с ними да куда. Есть много вариантов у меня, но я не знаю, какой из них верный. Использовала учебник Крюкова, там приведен расчет промежуточной опоры и усилия в элементах, как там подбираются фундаменты, Крюков не написал.

Если, кто сможет посоветовать какую-нибудь литературу, где это объясняется, буду очень рада. Также могу сбросить свои расчеты отсканированные в ЛС, может у кого-то есть свободное время и он может проверить на наличие ошибок, куда уж без них

Здравствуйте Саразан!
Мы с вами коллеги в этом вопросе! Я вот уже неделю тоже пытаюсь посчитать опору ЛЭП. Создал модель в Лире и получил нагрузки на фундамент, вот только с пульсацией никак не могу разобраться!
1.Как вы считали пульсацию, если вручную, то как определяли первую частоту собственных колебаний?
2. На какие режимы нужно считать промежуточные опоры?
С подбором фундаментов я пока не занимался, считаю что это следующая фаза. Пытаюсь правильно собрать нагрузки. Думаю что там можно разобраться. Мне дали несколько альбомов типовых фундаментов под опоры и сказали, что там как то все по графикам подбирается) Если что могу подсказать альбом по которому подбирать, только скажите название вашей опоры.

Как вы в Лире задавали модель? Опору нарисовали по монтажной схеме, а потом жесткость стержням задавали? У меня была такая идея, но как-то решила я не связываться.
и ветровую нагрузку тоже надо прикладывать к опорам, там же. Хотя. может я тоже попробую как-нибудь тоже в Лире посчитать)

1) Я пульсацию не учитывала, у меня опора ниже 40 м - 24,7м
2) Вообще на самый опасный режим рассчитывается.
Можно, наверно и на все попробовать и сравнить. Я считала по учебнику Крюкова, он почему-то показал пример для нормального режима (ветер без гололеда, направленный перпендикулярно оси линии).

Наверно голодед зависит от района строительства, его может быть очень мало, чтоб его учитывать, знаю, что некоторые опытные инженеры с ним вообще не связываются))

Аварийный режим не может быть, по моему мнению, самым опасным, т.к если это обрыв провода, то вес провода не учитывается и давление ветра на провод, если обрыв троса, то аналогично. И к тому же продолжительность действия нагрузок аварийного режима невелика.

Занятие 4-5

Учебник сержанта Железнодорожных войск. Книга 3. «Постройка и восстановление искусственных сооружений». -М.: Воениздат, 1993. - с. 152-161, 169-173.

Учебник «Механика грунтов, основания и фундаменты».- М.: Воениздат, 1988. – с. 197-206.

Учебное пособие «Свайные фундаменты опор временных железнодорожных мостов». -СПб.: ВТИ ЖДВ и ВОСО, 1994. -с. 23-50.

Типовой проект «Опоры промежуточные деревянные сборные унифицированные под пролетные строения с ездой поверху пролетами до 55,0 м для временных железнодорожных мостов. Рабочие чертежи». Часть I. Свайные фундаменты опор. –Л.: Ленгипротрансмост, 1994. Шифр 736КРЧ.

Типовой проект «Опоры контурного типа под пролётные строения с ездой поверху пролётами до 56,4 м для военных железнодорожных мостов». Часть 1. Опоры на скальных грунтах. Часть 2. Опоры в условиях вечной мерзлоты. Часть 3. Опоры на обычных грунтах. Часть 4. Опоры на грунтах, требующих предварительного уплотнения. –М.: ВНПО "ЭКОСЕЙЛ", 1991. Шифр 88/107.

Типовой проект «Фундаменты опор временных железнодорожных мостов на скальных грунтах. Рабочие чертежи». Часть I. Свайные фундаменты. Часть II. Фундаменты поверхностного опирания. –Л.: Ленгипротрансмост, 1987. Шифр 403КРЧ / 742 ( примеч. – дсп ).

Типовой проект «Опоры временных железнодорожных мостов в условиях вечной мерзлоты. Рабочие чертежи». Часть I. Опоры на естественном основании. Часть II. Опоры на свайных фундаментах. –Л.: Ленгипротрансмост, 1986. Шифр 351Р.

Типовой проект «Проект ряжевых опор временных железнодорожных мостов под пролетные строения пролетами 27,0; 33,6 и 55,0 м». . –Л.: Ленгипротрансмост, 1975. Шифр 1530.

Техно-рабочий проект свайных фундаментов опор временных железнодорожных мостов под пролетные строения с ездой понизу длиной 88 м при глубине воды 20-30 м. –Л.: Ленгипротрансмост, 1975. Шифр 1658.

Опыт эксплуатации ВЛ в мерзлых грунтах и пути решения по предотвращению технологических нарушений, связанных с пучением грунтов

• Для северных регионов России характерны большая обводненность и заболоченность местности, пучинистые грунты и грунты с большими удельными сопротивлениями, резкие годовые и суточные перепады температур.

• Массовое строительство ВЛ в 1980–1990 годы в малоизученном в тот момент северном регионе, когда в работу вводилось зачастую более тысячи километров линий в год, создало ряд проблем их эксплуатации из-за неполного учета геологических и климатических условий территории при проектировании и сооружении ВЛ.

Наиболее серьезный ущерб воздушным линиям электропередачи северного региона наносит повреждение фундаментов опор из-за морозного пучения. В 1992–2000 г.г. институт

«Энергосетьпроект» (Москва) проводил научно-исследовательские работы, направленные на выявление основных причин аварийного состояния ВЛ в районах Ноябрьских электрических

сетей «Тюменьэнерго». Результаты исследований показали, что аварийное состояние опор ВЛ

вызвано комплексным воздействием различных природных факторов - обводнением грунтов,

деградацией мерзлоты в месте установки опор, морозным пучением, ветровыми нагрузками на элементы конструкций опор.

• Для погружения свай в грунт до заданной глубины применяется буроопускной способ

погружения с использованием лидерных скважин и дозабивкой последнего метра сваи в ненарушенный грунт. При этом между стенкой скважины и поверхностью сваи возникает зона неуплотненного грунта. Под воздействием смерзания-оттаивания грунт на глубину его промерзания уплотняется в зоне от границы сезонного промерзания и

выше. По мере увеличения площади соприкосновения уплотненных грунтов в зоне

промерзания, усиливается действие касательных сил морозного пучения, и, как показывает опыт эксплуатации, через 5–6 лет в пучинистых грунтах начинается выход сваи – до 5 см за сезон.

При выдавливании сваи из ненарушенного грунта (из зоны дозабивки) величина ее ежегодного выхода растет за счет сил, приложенных к торцу сваи и возникающих при расширении замерзающей жидкости в водонасыщенных грунтах, которые заполняют

пространство лидерной скважины. Величина этих сил во много раз превышает

вертикальную составляющую касательных сил морозного пучения и может превышать 50

тс на сваю. В результате ежегодный выход свай увеличивается до 20–25 см и более,

фундамент теряет несущую способность, что может привести к падению опор под

воздействием ветровых нагрузок .

На протяжении целого ряда лет специалисты «Тюменьэнерго», институтов

«Энергосетьпроект» (Москва), «Уралэнергосетьпроект» (Екатеринбург) и ОАО «Фирма ОРГРЭС» работают над проблемой морозного пучения фундаментов опор, и в настоящее время применяются опробованные методы и технологии для ее решения. .

Для уменьшения подъема фундаментов при пучении грунта проводят следующие

- обваловка фундаментов опор на высоту, исключающую оттаивание зоны сезонного

промерзания грунта (применяется на ВЛ, находящихся вблизи

карьеров, в которых

ведется ведется разработка и намыв грунта), фото 1.

- стабилизация температурного режима вечномерзлых

грунтов установкой сезонно-

охлаждающими устройствами (СОУ) . Использование СОУ, в которых в качестве хладагента используется газообразный аммиак, позволяет остановить процесс морозного пучения свайных фундаментов, однако акты вандализма ограничивают применение этой технологии на неподконтрольных территориях в отсутствие надзора (фото 2) .

- усиление фундаментов крестовыми сваями. Опыт эксплуатации показывает, что

данный метод эффективен для укрепления свай фундаментов при их выпучивании на

- сооружение поверхностных (лежневых) фундаментов и перестановка опор:

Поверхностные фундаменты применяются на местности с ровным рельефом (без косогоров, склонов и т.п.). Монтаж такого фундамента не требует применения сваебоя и может быть выполнен даже в летнее время, но требует большего

количества материалов по сравнению с монтажом типовых фундаментов.

В настоящее время существуют проекты и технические решения для поверхностных фундаментов всех используемых типов опор и оттяжек, разработанные институтом

«Уралэнергосетьпроект» (г. Екатеринбург), ОАО «Фирма ОРГРЭС» разработаны технологические карты на их монтаж.

Перестановка металлической свободностоящей промежуточной опоры ВЛ

110 кВ кВ типа «П110 -4» на лежневый фундамент с монтажом лежневого

II Технология работ :

- 1 Подготовительные работы

- 2 Монтаж вспомогательной (временной) опоры (опора ПБ110-2 на железобетонной стойке СК2,

траверсы устанавливаются с одной стороны)

- 3 Демонтаж проводов с опоры с первой отключенной цепи

- 4 Монтаж проводов на временную опору

- 5 Демонтаж проводов и грозозащитного троса второй цепи

- 6 Монтаж лежневого фундамента

- 7 Демонтаж и монтаж опоры П110-4 весом 3240 на лежневый фундамент

- 8 Демонтаж старого фундамента

- 9 Монтаж проводов и грозозащитного троса второй цепи на вновь смонтированную опору

- 10 Демонтаж проводов с временной опоры и монтаж на установленную опору

- 11 Демонтаж временной опоры

Рисунок 1. Стягивающее устройство для свай лежневого фундамента

Рисунок 2. Переходная подставка для опоры П110-4

Рисунок 3. Технические характеристики автокрана Ивановец УРАЛ КС-3574 г.п. 16 тс

Лежневый фундамент для подстанций

Что такое железобетонные лежни и где они применяются?

Сплошные балочные элементы с тавровым сечением, предназначенные для сооружения основы под трансформаторы или мосты, называются лежни железобетонные. Имеют разнообразные размеры, длину, высоту, объем ширину, вес и соответственно цену за единицу блока. Широко применяются на заводах в качестве основ и опор, а также в мостостроении.


Что это такое?

Железобетонный блок выступает фундаментом для электрических трансформаторных будок и открытых электростанций. Такие конструкции являются изолятором и защитой от коррозии и разрушения под воздействием неблагоприятных погодных условий, перепадов температур. Лежни способны выдержать большой вес, который наносят трансформаторные подстанции, а это не дает постройке пойти под землю.

Где используют?

Сфера применения железобетонных лежней — сооружение фундамента под электроподстанции. Такая конструкция обеспечивает:

  • избавление от виброоткликов;
  • защиту постройки от касаний с землей.

Виды и марки

Железобетонные лежни изготавливаются преимущественно из бетона класса В15 с морозостойкостью F100 и выше. Армирование стержнями AI или горячекатанной арматурой AIII осуществляется по ГОСТу 578182.

Стандартная маркировка лежней под электроподстанции


Высота таких изделий является постоянной величиной.

Большие буквы в маркировке ЛЖ обозначают — железобетонные лежни. Цифры через дефис указывают длину блока. Например, у блоков ЛЖ-28 длина 2800 мм. Сечение блоков, что указаны в таблице, Т-образное. Каждый строительный материал соответствует серии 3.407.1—157. Все блоки имеют унифицированные размеры: высоту — 50 см, ширину «пяты» — 40 см.

Компании, что занимаются изготовлением и распространением лежней, а именно «ЖБИ Маркет», «БЛОК», «Монолит ЖБИ» и другие, предоставляют сертификат о покупке изделия для строительства электростанции, а также гарантийный талон. Продукция обязательно должна быть сертифицирована, иметь личную маркировку в зависимости от размера, проходить все проверки на влагостойкость, температурные режимы и выносливость под весом.


Маркировка изделий для возведения мостов имеет другой вид.

Отдельно рассматриваются лежни под мостостроительства. Требования к бетону для их изготовления выше — класс прочности В30, водонепроницаемости W6 и морозостойкости F300. Эти характеристики определяют срок службы стройматериала. Сами изделия несколько иную маркировку и армируются сварным или вязаным сетками и каркасами стали A-II/A-III.

Лежневый фундамент

Полезная модель относится к временному строительству и может быть использована для возведения поверхностных фундаментов, при строительстве или восстановлении искусственных сооружений в капитальном и военном мостостроении на слабых обводненных грунтах. Технической задачей полезной модели является увеличение несущей способности лежневого фундамента, расширение области применения в слабых грунтах и на мелководье, увеличении сроков эксплуатации конструкций устраиваемых на лежневых фундаментах, исходя из военно-технических требований временного восстановления. Техническая задача решается за счет того, что лежневый фундамент, содержащий щебеночную подготовку, на которую уложены лежни из дерева или железобетона, отличающийся тем, что дополнительно слабый грунт армируется путем сооружения параллельных пар элементов усиления, на головки которых уложена щебеночная подушка и лежни, причем лежни укладываются, только в местах, где сформированы элементы усиления. Представленная конструкция лежневого фундамента удовлетворяет военно-техническим требованиям и может использоваться в качестве фундамента опор временных мостов.

Полезная модель относится к временному строительству и может быть использована для возведения поверхностных фундаментов, при строительстве или восстановлении искусственных сооружений в капитальном и военном мостостроении на слабых обводненных грунтах.

Известен лежневый фундамент, состоящий из щебеночной подушки и деревянных лежней, принимаемый за прототип и состав работ по его сооружению, включающий подготовку площадки, отсыпку щебня, укладку лежней сплошным настилом [1].

Недостаток известного фундамента низкая несущая способность на слабых (пучинистых) и в мокрых грунтах, ограничение по применению на мелководье реки, короткий срок эксплуатации.

Технической задачей полезной модели является увеличение несущей способности лежневого фундамента, расширение области применения в слабых грунтах и на мелководье, увеличении сроков эксплуатации конструкций устраиваемых на лежневых фундаментах, исходя из военно-технических требований временного восстановления [2].

Техническая задача решается за счет того, что лежневый фундамент, содержащий щебеночную подготовку, на которую уложены лежни из дерева или железобетона, отличающийся тем, что дополнительно слабый грунт армируется путем сооружения параллельных пар элементов усиления [3], на головки которых уложена щебеночная подушка и лежни, причем лежни укладываются, только в местах, где сформированы элементы усиления.

На мелководье рек, деревянные лежни заменяют железобетонными шпалами или небольшими плитами.

Фундамент иллюстрируется на фигуре 1 и фигуре 2.

На фигуре 1 изображен лежневый фундамент, где обозначены:

несущий геомассив 1; элемент усиления грунта 2; щебеночная подушка 3;

лежень 4; балка опирания надстройки опоры 5.

Устройство элементов усиления грунта 2 осуществляется по схеме, приведенной на фиг.2, а подсыпка щебеночной подушки 3 и укладка лежней 4 выполнятся в местах формирования элементов усиления 2.

Представленная конструкция лежневого фундамента удовлетворяет военно-техническим требованиям и может использоваться в качестве фундамента опор временных мостов.

1. Б.М.Григорьев, С.Н.Соловьев «Временное восстановление железнодорожных мостов» Санкт-Петербург, ВТУ ЖДВ РФ 2003 год, стр.171.

2. Технические условия проектирования военных железнодорожных мостов. Москва, 1986 год.

Лежневый фундамент, содержащий щебеночную подготовку, на которую уложены лежни из дерева или железобетона, отличающийся тем, что дополнительно слабый грунт армируется путем сооружения параллельных пар элементов усиления, на головки которых уложена щебеночная подушка и лежни, причем лежни укладываются только в местах, где сформированы элементы усиления.

Железобетонные лежни

Лежни в строительстве – это деревянные или железобетонные изделия с большим поперечным сечением, располагаемые горизонтально и служащие опорой для различных конструкций. Их основное назначение – распределение точечных вертикальных нагрузок на большую площадь опирания. Лежни используют при обустройстве фундамента, пола, потолка здания, стропильной системы. Если в частном строительстве обычно применяют деревянные изделия (бревна, брусья), то при сооружении многоэтажных жилых зданий, объектов промышленного и инженерного назначения используются их железобетонные аналоги.

Особенности материалов, используемых для изготовления лежней

Лежни, независимо от области их применения, изготавливаются из тяжелых бетонов, соответствующих ГОСТу 26633-2015. При производстве этих ЖБИ применяют бетонные смеси со следующими характеристиками:

  • прочность – не ниже В30;
  • водостойкость – W6;
  • морозостойкость – F200-300.

Если ЖБИ планируется эксплуатировать в агрессивных средах, то для их изготовления используют сульфатостойкие бетоны. Но даже в обычные бетонные смеси добавляют пластифицирующие и другие добавки, которые придают устойчивость изделиям к воздействию масел и других агрессивных веществ.


Для армирования изделий применяют сварные или вязаные каркасы из прочных арматурных сталей, способные выдерживать значительные постоянные и ударные нагрузки, благодаря чему ЖБИ могут использоваться в сейсмоопасных регионах.

Классификация лежней по назначению

Различают лежни марки Л, применяемые в мостостроении, и марки ЛЖ, рассчитанные на использование в энергетическом и промышленном строительстве.

Железобетонные лежни Л – характеристики и области применения

ЖБИ данного типа, выпускаемые в соответствии с серией 3.503.1-96, имеют прямоугольное или тавровое поперечное сечение. Применяются в качестве фундаментной опоры в местах сопряжения мостовых конструкций и путепроводов с грунтом. Также они могут использоваться для строительства пешеходных переходов через автомобильные и железные дороги.

Изделия этой марки могут иметь с одной стороны выпуски арматуры, позволяющие прочно крепить лежни к другим элементам эстакад или мостов. На лежни укладывают переходные плиты, поверх которых настилают асфальтобетон.

Изделия ЛЖ – конструкционные особенности и области применения

ЖБИ марки ЛЖ – унифицированные изделия, применяемые при устройстве фундаментов блочных трансформаторных подстанций напряжением 35-500 кВ. Эта продукция, соответствующая серии 3.407-157.1, имеет Т-образную форму поперечного сечения. Высота буквы «Т» – 500 мм, ширина пяты – 400 мм.

Широкая часть тавра укладывается на грунт, а на узкую монтируют плиты, служащие фундаментом для установки силовых трансформаторов и другого энергетического оборудования. Изделия создают между землей и плитами воздушную прослойку, которая предотвращает появление конденсата на поверхности плит и повышает электробезопасность оборудования. Еще одна функция ЖБИ марки ЛЖ – поглощение вибраций, характерных для работы мощных электроустановок.

Преимущества электротехнических лежней ЛЖ:

  • высокая прочность благодаря использованию при производстве тяжелого бетона с характеристиками, которые соответствуют запланированным условиям эксплуатации;
  • стойкость к вибрациям;
  • устойчивость к образованию и развитию очагов любых видов коррозии.

Для энергооборудования с различными размерами подбирают ЖБИ подходящей длины, которые обеспечивают устойчивое опирание оборудования и эффективное распределение вертикальных нагрузок на основание. Электротехнические изделия ЛЖ также используются на производственных предприятиях для устройства прочных оснований под тяжелое промышленное оборудование.

Лежни подстанций

Электрические подстанции предназначены для распределения электроэнергии и для повышения или понижения напряжения в сети переменного тока. Энергетическое строительство использует электрические подстанции как важный элемент в проведении высоковольтных линий электропередачи. Подстанции преобразуют напряжение, вырабатываемое генераторами, в более высокое, необходимое для передачи электроэнергии по ЛЭП.

ЛЖ-104

Лежни железобетонные ЛЖ попутно выполняют функцию опоры при проведении монтажных работ внутри трансформаторных подстанций в сочетании с фундаментами под трансформаторы и различное распределительное оборудование. Также, лежни используются на заводах и других производственных объектах и предприятиях в качестве опор, на которые устанавливается тяжелое электрооборудование, станки и т.д.

Лежни ЛЖ представляют собой сплошную балочную железобетонную конструкцию таврового сечения. Широкая часть лежня ЛЖ устанавливается на гравийную подготовку или на уплотненный грунт. На узкую часть устанавливается плита, на которую, в свою очередь, монтируется оборудование. Трансформаторы ни в коем случае нельзя ставить на плиту без применения лежней ЛЖ. В противном случае, под воздействием сезонного изменения температуры или изменения уровня влажности на плите образовывается конденсат, который может стать причиной короткого замыкания, которое может также привести к значительным повреждениям работы сети. Применение лежней ЛЖ позволяет предотвратить скапливание конденсата на плите, образовывая между плитой и землей воздушный слой.

Для армирования применяется: стержневая горячекатаная гладкая сталь класса А-I; стрежневая горячекатаная сталь периодического профиля класса А-III и A-V; стержневая термически упрочненная арматура периодического профиля класса Ат-VI; обыкновенная арматурная гладкая проволока класса В-I. Строповочные петли для удобства монтажа изготавливаются из горячекатаной гладкой арматурной стали класса А-I.

Читайте также: