Ленточные и столбчатые фундаменты малоэтажных зданий

Обновлено: 18.05.2024

Ленточные и столбчатые фундаменты малоэтажных зданий

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

Проектирование и устройство оснований и фундаментов зданий и сооружений

Design and construction of soil bases and foundations for buildings and structures

1 РАЗРАБОТАН Научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений им. Н.М.Герсеванова (НИИОСП) - филиалом ФГУП "НИЦ "Строительство"

ВНЕСЕН Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России

3 ВВЕДЕН ВПЕРВЫЕ

ВНЕСЕНЫ опечатка, опубликованная в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 8, 2008 г. и опечатка, опубликованная в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 8, 2010 г.

Опечатки внесены изготовителем базы данных.

Введение

Свод правил по проектированию и устройству оснований и фундаментов зданий и сооружений разработан в развитие обязательных положений и требований СНиП 2.02.01-83* и СНиП 3.02.01-87.

Свод правил содержит рекомендации по проектированию и устройству оснований и фундаментов зданий и сооружений, в том числе подземных и заглубленных, возводимых в различных инженерно-геологических условиях, для различных видов строительства.

Разработан НИИОСП им. Н.М.Герсеванова - филиалом ФГУП НИЦ "Строительство" (доктора техн. наук В.А.Ильичев и Е.А.Сорочан - руководители темы; доктора техн. наук: Б.В.Бахолдин, А.А.Григорян, П.А.Коновалов, В.И.Крутов, В.О.Орлов, В.П.Петрухин, Л.Р.Ставницер, В.И.Шейнин; кандидаты техн. наук: Ю.А.Багдасаров, Г.И.Бондаренко, В.Г.Буданов, Ю.А.Грачев, Ф.Ф.Зехниев, М.Н.Ибрагимов, О.И.Игнатова, И.В.Колыбин, Н.С.Никифорова, B.C.Поляков, В.Г.Федоровский, М.Л.Холмянский; инженеры: Я.М.Бобровский, Б.Ф.Кисин, А.Б.Мещанский); ГУП Мосгипронисельстрой (д-р техн. наук B.C.Сажин).

1 Область применения

Настоящий Свод правил (далее - СП) распространяется на основания и фундаменты вновь строящихся и реконструируемых зданий и сооружений*, возводимых в открытых котлованах.

* Далее вместо термина "здания и сооружения" используется термин "сооружения", в число которых входят также подземные сооружения.

Настоящий СП не распространяется на проектирование и устройство оснований и фундаментов гидротехнических сооружений, опор мостов и труб под насыпями дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов, а также оснований глубоких опор и фундаментов машин с динамическими нагрузками.

2 Нормативные ссылки

В настоящем Своде правил приведены ссылки на следующие нормативные документы:

СНиП II-7-81* Строительство в сейсмических районах

СНиП II-22-81* Каменные и армокаменные конструкции

СНиП 2.01.07-85* Нагрузки и воздействия

СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах

СНиП 2.02.01-83* Основания зданий и сооружений

СНиП 2.02.02-85* Основания гидротехнических сооружений

СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах

СНиП 2.03.11-85 Защита строительных конструкций от коррозии

СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения

СНиП 2.04.03-85 Канализация. Наружные сети и сооружения

СНиП 2.06.03-85 Мелиоративные системы и сооружения

СНиП 2.06.14-85 Защита горных выработок от подземных и поверхностных вод

СНиП 2.06.15-85 Инженерная защита территории от затопления и подтопления

СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты

СНиП 3.03.01-87 Несущие и ограждающие конструкции

СНиП 3.04.01-87 Изоляционные и отделочные покрытия

СНиП 3.05.05-84 Технологическое оборудование и технологические трубопроводы

СНиП 3.07.03-85* Мелиоративные системы и сооружения

СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения

СНиП 12-01-2004 Организация строительства

СНиП 23-01-99* Строительная климатология

СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения

СП 11-102-97 Инженерно-экологические изыскания для строительства

СП 11-104-97 Инженерно-геодезические изыскания для строительства

СП 11-105-97 Инженерно-геологические изыскания для строительства (ч.I-III)

ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 12536-79 Грунты. Методы лабораторного определения гранулометрического (зернового) состава

ГОСТ 19912-2001 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-99 Грунты. Методы полевого определения характеристик прочности и деформируемости

ГОСТ 20522-96 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 22733-2002 Грунты. Метод лабораторного определения максимальной плотности

ГОСТ 23061-90 Грунты. Методы радиоизотопных измерений плотности и влажности

ГОСТ 23161-78 Грунты. Метод лабораторного определения характеристик просадочности

ГОСТ 24143-80 Грунты. Методы лабораторного определения характеристик набухания и усадки

ГОСТ 24846-81 Грунты. Методы измерения деформаций оснований зданий и сооружений

ГОСТ 25100-95 Грунты. Классификация

ГОСТ 25192-82 Бетоны. Классификация и общие технические требования

ГОСТ 27751-88 Надежность строительных конструкций и оснований. Основные положения по расчету

ГОСТ 30416-96 Грунты. Лабораторные испытания. Общие положения

ГОСТ 30672-99 Грунты. Полевые испытания. Общие положения

3 Определения

Определения основных терминов приведены в приложении А.

4 Общие положения

4.1 Основания и фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия его эксплуатации;

г) нагрузок, действующих на фундаменты;

д) окружающей застройки и влияния на нее вновь строящихся сооружений;

е) экологических требований (раздел 15);

ж) технико-экономического сравнения возможных вариантов проектных решений для выбора наиболее экономичного и надежного проектного решения, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов и других подземных конструкций.

4.2 При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации.

При разработке проектов производства работ и организации строительства должны выполняться требования по обеспечению надежности конструкций на всех стадиях их возведения.

4.3 Работы по проектированию следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (4.1). Порядок разработки проектной документации изложен в приложении Б.

4.4 При проектировании следует учитывать уровень ответственности сооружения в соответствии с ГОСТ 27751: I - повышенный, II - нормальный, III - пониженный.

4.5 Инженерные изыскания для строительства, проектирование оснований и фундаментов и их устройство должны выполняться организациями, имеющими лицензии на эти виды работ.

4.6 Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП 11-02, СП 11-102, СП 11-104, СП 11-105, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

Наименование грунтов оснований в описаниях результатов изысканий и в проектной документации следует принимать по ГОСТ 25100.

4.7 Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа основания, фундаментов и подземных сооружений и проведения их расчетов по предельным состояниям с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических условий площадки строительства и свойств грунтов, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование без соответствующего инженерно-геологического, а также инженерно-экологического обоснований или при их недостаточности не допускается.

Примечание - При строительстве в условиях существующей застройки инженерные изыскания следует предусматривать не только для вновь строящихся сооружений, но и для окружающей застройки, попадающей в зону их влияния.

4.8 Конструктивное решение проектируемого сооружения и условия последующей его эксплуатации необходимы для выбора типа фундамента, учета влияния конструкций на работу основания, а также на окружающую застройку, для уточнения требований к допускаемым деформациям и т.д.

ФУНДАМЕНТЫ

Фундаментом называется нижняя часть здания, воспринимающая все нагрузки от здания и передающая их на основание.

В малоэтажных зданиях наибольшее применение получили ленточные и столбчатые фундаменты. Ленточные фундаменты могут быть монолитными из бутовой кладки (рис. 2.1, а, б), бутобетона (рис. 2.1, в), бетона (рис. 2.1, г) и железобетона (рис. 2.1, д), а также сборными (рис. 2.2).



Рис. 2.1. Монолитные ленточные фундаменты а – бутовый без уступов; б – бутовый с уступами; в – бутобетонный с уступами; г – бетонный с уступами; д – железобетонный; е – фрагмент плана фундамента 1 – кирпичная стена; 2 – обрез фундамента; 3 – уступ (ступень); 4 – подошва фундамента

Сборные ленточные фундаменты состоят из железобетонных фундаментных плит-подушек и бетонных блоков стен подвалов (табл. 2.1). Подушки могут укладываться вплотную с нормированным зазором 20 мм (непрерывный ленточный фундамент) и с разрывом 0,2 - 0,9 м (прерывистый фундамент).

Фрагменты выполнения планов ленточных фундаментов приведены на рисунках 2.1, е и 2.3.

Столбчатые фундаменты состоят из столбов и фундаментных балок. Столбы устанавливают в углах здания, в местах пересечения или примыкания стен и под простенками на расстоянии 2,5 – 4,5 м. Столбы могут быть монолитными и сборными. Предназначенные для опирания стены фундаментные балки также могут быть выполнены из монолитного или сборного железобетона. В качестве сборных балок могут быть использованы сборные железобетонные перемычки.


Рис. 2.2. Сборный ленточный фундамент

1 – кирпичная стена; 2 – бетонные блоки стен подвала; 3 – железобетонная фундаментная плита-подушка


Рис. 2.3. Фрагмент плана сборного ленточного фундамента в здании с подвалом

1 – горизонтальная гидроизоляция; 2 – вертикальная гидроизоляция

Номенклатура элементов сборных ленточных фундаментов

Железобетонные фундаментные подушки Бетонные блоки стен подвала
Марка Размеры в мм Марка Размеры в мм
Ширина Длина Ширина Длина Высота
ФЛ 6.24 ФБС 9.3.6
ФЛ 6.12 ФБС 9.4.6
ФЛ 8.24 ФБС 9.5.6
ФЛ 8.12 ФБС 9.6.6
ФЛ 10.24 ФБС 12.3.3
ФЛ 10.12 ФБС 12.3.6
ФЛ 10.8 ФБС 12.4.3
ФЛ 12.24 ФБС 12.4.6
ФЛ 12.12 ФБС 12.5.3
ФЛ 12.8 ФБС 12.5.6
ФЛ 14.24 ФБС 12.6.6
ФЛ 14.12 ФБС 24.3.6
ФЛ 14.8 ФБС 24.4.6
ФЛ 16.24 ФБС 24.5.6
ФЛ 16.12 ФБС 24.6.6
ФЛ 16.8

При строительстве на пучинистых грунтах под фундаметными балками наружных стен следует устраивать засыпку из шлака или песка. На рис. 2.4 дано конструктивное решение и фрагмент выполнения плана столбчатого фундамента в монолитном варианте.




Фрагмент плана фундамента

Рис. 2.4. Столбчатый фундамент из монолитного бетона

1 – кирпичная стена; 2 – железобетонная фундаментная балка; 3 – фундаментный столб; 4 – подушка из крупного песка, шлака и т.п. (d, c и h принимаются в соответствии с рис. 1.1.)

Свайные фундаменты состоят из свай и свайных ростверков. Сваи располагают в углах здания, в местах пересечения или примыкания стен, а также в промежутках с шагом (3÷8)d в зависимости от величины действующих нагрузок. Для малоэтажных зданий наиболее целесообразна однорядная расстановка свай. Вариант свайного фундамента с применением забивных железобетонных свай и монолитного железобетонного ростверка приведен на рис. 2.5.


Рис. 2.5. Свайный фундамент с использованием забивных железобетонных свай 1 – кирпичная стена; 2 монолитный железобетонный ростверк; 3 – железобетонная забивная свая (d = 250, 300 мм)

Глубина заложения фундаментов (расстояние от поверхности грунта до подошвы фундамента) зависит от характеристики грунта (подверженность пучению), уровня грунтовых вод, глубины промерзания грунта, эксплуатационного режима здания (отапливаемое или неотапливаемое здание), конструктивного решения фундаментов и других факторов




Глубина заложения фундаментов зданий без подвалов при строительстве на грунтах, подверженных пучению, определяется по формуле: Нз = Нн к, где

Нн - нормативная глубина промерзания грунта в районе строительства (для Минска 1,0 м);

к – коэффициент влияния теплового режима здания на промерзание грунта;

к = 0,9 – пол первого этажа по балкам;

к = 0,8 – пол первого этажа по лагам;

к = 0,7 – пол первого этажа на грунте.

При строительстве на непучинистых грунтах глубина заложения фундаментов под наружные стены не зависит от глубины промерзания грунта и принимается не менее 0,7 м. В зданиях с подвалами глубину заложения фундаментов под наружные стены назначают таким образом, чтобы от пола подвала до подошвы фундаментов было не менее 0,5Нз и не менее 0,5 м. Глубина заложения фундаментов под внутренние стены не зависит от глубины промерзания грунта и должна быть не менее 0,5 м.

Глубина заложения фундаментов может быть уменьшена до 0,5 м (фундаменты мелкого заложения), если при возведении здания выполнены мероприятия по исключению влияния неблагоприятных факторов, например, утепление фундамента влагостойким утеплителем (рис. 2.6).


Рис. 2.6. Конструктивное решение фундамента мелкого заложения отапливаемого здания с теплоизоляцией пола

1 – фундамент; 2 – непучинистый грунт; 3 – бетонная подготовка; 4 - гидроизоляция; 5 – теплоизоляция пола; 6 – теплоизоляция стены; 7 – защитное покрытие стены; 8 – теплоизоляция стены влагостойким утеплителем; 9 - теплоизоляция из экструдированного пенополистирола; 10 – клеевой состав; 11 – дренажная труба с фильтрующей оболочкой

Цокольная часть стены должна быть выполнена из прочных влагостойких и морозостойких материалов либо облицована такими материалами. Высота цоколя (расстояние от уровня обреза фундамента до планировочной отметки земли) рекомендуется принимать не менее 500 мм.

При определении габаритов верхней части фундамента следует учитывать рекомендации, приведенные на рисунках 2.1-2.5. В двухслойных стенах фундамент устраивают под несущий внутренний слой, а в трехслойных – либо под всю стену, либо также под внутренний несущий слой. В последнем случае можно предусмотреть устройство опоры для наружного самонесущего слоя в виде консольной железобетонной плиты, защемленной в кладке несущего слоя, либо опирать самонесущий слой на опорный уголок из нержавеющей стали. Варианты устройства цокольной части стены и утепления подвальных помещений приведены на рисунках 2.7 и 2.8.


Рис. 2,7. Вариант устройства цокольной части здания с подвалом при двухслойной наружной стене

1 – стена из легкобетонных камней; 2 – утепление стены; 3 – защитное покрытие стены; 4 - теплоизоляция из экструдированного пенополистирола; 5 – защитное покрытие стены подвала; 6 – вертикальная гидроизоляция; горизонтальная гидроизоляция; 8 – обрамляющие профили; 9 – облицовка цоколя плитами естественного камня

Для отвода атмосферной влаги от фундамента по периметру здания чаще всего устраивается отмостка шириной не менее 0,7 м с уклоном 2÷3% от стены здания. Отмостка может быть выполнена из бетона толщиной 150 мм (рис. 2.6), слоя асфальтобетона или цементно-песчаного раствора толщиной не менее 30 мм по основанию из щебня или крупного песка толщиной 150-200 мм, тротуарной плитки и других каменных материалов. В последнее время при утепленных подвальных помещениях часто применяют гравийную отмостку шириной 500 мм и глубиной не менее 200 мм (рис. 2.7 и 2.8), через которую влага попадает в дренажную систему, устраиваемую по периметру здания.

В зданиях с однородными стенами из ячеистобетонных блоков стена должна выступать за внешнюю грань фундамента не менее чем на 50 мм, но не более 1/3 толщины кладки.


Рис. 2.8. Вариант устройства цокольной части здания с подвалом при трехслойной наружной стене

1 – монолитные железобетонные стены подвала; 2 – монолитное железобетонное перекрытие; 3 - стена из бетонных камней; 4 – утепление стены; 5 - утепление стены подвального помещения; 6 – теплоизоляция из экструдированного пенополистирола; 7 – облицовка из каменной кладки; 8 – геотекстиль; 9 - опорная консоль из нержавеющей стали; 10 – открытые вертикальные швы кладки; 11 – горизонтальная гидроизоляция; 12 вертикальная гидроизоляция

Для защиты стен зданий от капиллярной влаги устраивают горизонтальную и вертикальную гидроизоляцию. В зданиях без подвалов горизонтальная гидроизоляция устраивается в одном уровне, чаще всего на 150-300 мм выше уровня отмостки и не менее чем на 100 мм ниже уровня пола 1-го этажа.

В зданиях с подвалом дополнительно устраивается 2-й слой горизонтальной гидроизоляции в уровне пола подвала. Горизонтальная гидроизоляция может быть выполнена из 2-х слоев толя или рубероида на битумной мастике или слоя жирного цементного раствора толщиной 20-30 мм. Вертикальную гидроизоляцию чаще всего выполняют обмазкой битумом поверхностей стен, соприкасающихся с грунтом (рис. 2.3).

Конструктивные решения фундаментов

Ленточные сборные фундаменты состоят из ж/б плит - подушек и бетонных блоков стен подвала. Подушки могут укладываться как в виде непрерывной ленты с конструктивным зазором 20 мм, так и прерывистыми с зазором до 300 мм. Подушки укладываются непосредственно на основания или песчаную подсыпку толщиной 100-150 мм. Стеновые блоки укладывают по подушкам на цементном растворе с обязательной перевязкой верхних вертикальных швов не менее 300мм.



При строительстве зданий на участках со значительным уклоном фундаменты выполняют с продольными уступами. Высота уступа не более 0,5 м, длина - не менее 1 м.


Столбчатые фундаменты. В бескаркасных малоэтажных зданиях без подвалов при небольших нагрузках на фундамент непрерывные ленточные фундаменты целесообразно заменять столбчатыми, располагаемыми обязательно под углами здания, в местах пересечения и примыкания стен, а также в промежутках между ними с определенным расчетным шагом.

Столбчатые фундаменты состоят из фундаментных подушек, столбов, фундаментных балок. Фундаментные балки устанавливают по всему контуру стен аналогично ленточным фундаментам. Они принимают на себя нагрузку от стен и передают ее на столбы. Для предохранения балок от сил пучения грунта, а также для свободной их осадки под ними устраивают песчаную подсыпку. Если при этом необходимо утеплить пристенную часть пола, подсыпку выполняют из шлака или керамзита.


Столбчатые одиночные фундаменты применяют для отдельно стоящих колонн или столбов при возведении зданий с каркасной конструктивной системой.



Сплошные фундаменты устраиваются при большой передаваемой на грунт нагрузке. Эти фундаменты устраивают под всей площадью здания из монолитного железобетона. При сплошных фундаментах обеспечивается равномерная осадка здания, что особенно важно для зданий повышенной этажности.


Свайные фундаменты устраиваются при строительстве на слабых, сильносжимаемых грунтах при передаче на основание большой нагрузки, а также в случае, когда достижение естественного основания экономически или технически нецелесообразно из-за большой глубины его заложения.

Железобетонные сваи изготавливают сплошные квадратного сечения (от 250×250 мм до 400×400мм) и прямоугольные (250×350 мм), а также трубчатого сечения диаметром 400-700 мм. Сваи могут быть короткими – от 3 до 6 м (для малоэтажных зданий) и длинными – более 6 м.

В зависимости от величины нагрузки передаваемой на основание и механических свойств грунта сваи под стены располагают следующими способами:

в) в шахматном порядке.

Если в здании предусмотрены колонны, то под них устанавливается куст свай.

Для обеспечения равномерной передачи нагрузки от стен на сваи по их верхним концам укладываются монолитные или железобетонные распределительные балки, называемые ростверком, а на куст свай - оголовки.

Высота ростверка определяется расчетом, но не менее 300 мм. Оси свай должны совпадать с осями ростверка. Расстояние между смежными сваями назначается не менее тройной толщины или диаметра свай.

По способу передачи вертикальной нагрузки на грунт сваи делят на:

сваи - стойки - проходящие через слабые слои грунта и опирающиеся своими концами на прочный грунт;

висячие сваи - не достигающие прочного грунта и передающие нагрузку на грунт трением, возникающим между боковой поверхностью сваи и грунтом.

Конструктивные решения основных видов фундаментов (ленточных, свайных, столбчатых, отдельностоящих, сплошных) гражданских зданий.

По своему назначению все конструктивные элементы здания подразделяются на несущие и ограждающие. Несущиеконструктивные элементы воспринимают все нагруз­ки, возникающие в здании или действующие на здание, ограждающиеотделяют помещения от внешнего пространства и одно помещение от другого. В ряде случаев конструктивные элементы выполняют и несущую и ограждающую функции од­новременно.

2.Формирование объемно-планировочной структуры гражданского здания.

Помещения, составляющие объем здания, по их роли в функциональном процессе подразделяются на группы:

основные– соответствуют основным функциям здания (жилые ком­наты жилых домов, школьные классы и кабинеты, зрительные залы театров и кино, торговые залы магазинов);

вспомогательные предназначены для обеспечения основных функций здания, но не определяют их (конференц-залы, архивы, фойе и кулуары театров, подсобные помещения магазинов и музеев и др.);

– обслуживающие – повышающие комфорт и санитарно-гигиеничес­кие условия, но не имеющие прямого отношения к основной функции здания (вестибюли, холлы, санитарные узлы, буфеты общественных зданий);

– коммуникационные – необходимы для связи внутри здания (лестницы, лифты, эскалаторы, коридоры, галереи);

технические– иногда целые этажи – предусматривают для размещения инженерно-технического оборудования (машинные отделения лифтов, камеры мусоросборные, вентиляционные и кондиционирования).

Планировочные схемы:

Коридорная схема (рис. 9, а ) характеризуется расположением помещений с одной, двух или частично с одной и частично с двух сторон коридора, связанного с лестничными клетками. При одностороннем расположении помещений планировка называется галерейной. Через коридор или галерею осуществляется связь между помещениями, Коридорная схема широко применяется в различных гражданских зданиях: общежитиях, гостиницах, интернатах, административных, учебных, лечебно-профилак­тических и др.

Анфиладная схема (рис.9 б) планировки характеризуется отсутствием коридоров: помещения располагают последовательно одно за другим, и связана они между собой дверными проемами, расположенными по одной оси. Анфиладная схема, прежде всего распространенная в жилых, культовых и дворцовых постройках, имеет ограниченное применение: музеи и выставки, торговые здания.

Центрической(рис.9, в) называют такую планировочную схему, в которой четко выделяется: главное большое помещение, а вокруг него группируются второстепенные меньшие вспомогательные помещения. Примерами применения этой схемы могут быть зрелищные здания – театры, кинотеатры, концертные залы, цирки.

Зальная планировочная схема характерная для зданий, состоящих из одного помещения на этаже – крытых рынков, выставочных павильонов, спортивных сооружений, гаражей и т.п. (рис. 9, г).

Секционная схема включает ряд повторяющихся и изолированных друг от друга частей – секций. В пределах секции помещения могут быть расположены по разным планировочным схемам (рис. 9, д). Эта схема широко применяется в жилых зданиях.


В многофункциональных и сложных по условиям строительства зданиях и комплексах, как правило, сочетается несколько планировочных схем. Композиционные схемы, в которых сочетается несколько планировочных схем, называют смешанными.

Рис.9. Планировочные схемы зданий:

а – коридорная и галерейная; б – анфиладная; в – центрическая;

г – зальная; д – секционная

3.Конструктивные схемы и конструктивные системы гражданских зданий.

Конструктивная система представляет совокупность взаимосвязанных несущих конструкций здания, обеспечивающих его прочность, жесткость и устойчивость. Конструктивная система здания должна удовлетворять основным требованиям: - эксплуатационно-техническим;- экономическим;- санитарно-гигиеническим; - эстетическим и другим.


Рис. Классификация конструктивных систем жилых зданий .

- каркасная - с пространственным рамным каркасом, применяется преимущественно в строительстве многоэтажных сейсмостойких зданий

- стеновая (бескаркасная) - самая распространенная в жилищном строительстве, ее используют в зданиях различных планировочных типов высотой от одного до 30 этажей;

- объемно-блочная система зданий в виде группы отдельных несущих столбов из установленных друг на друга объемных блоков применяется для жилых домов высотой до 12 этажей в обычных и сложных грунтовых условиях, столбы объединяют друг с другом гибкими или жесткими связями;

- ствольная система применяется в зданиях свыше 16 этажей. Наиболее целесообразно применение ствольной системы для компактных в плане многоэтажных зданий, особенно в сейсмостойком строительстве, а также в условиях неравномерных деформаций основания (на просадочных грунтах, над горными выработками и др.);

- оболочковая система присуща уникальным высотным зданиям жилого, административного или многофункционального назначения.

Наибольшее распространение получили следующие комбинированные системы (рис. 3.3)

Конструктивная схема представляет собой вариант конструктивной системы по признакам состава и размещения в пространстве основных несущих конструкций – продольному, поперечному или др.

В каркасных зданиях применяют три конструктивные схемы (рис.3): - с продольным расположением ригелей; - с поперечным расположением ригелей; - безригельная.

Каркас с продольным расположением ригеля применяют в жилых домах квартирного типа и массовых общественных зданиях сложной планировочной структуры, например, в зданиях школ.

Каркас с поперечным расположением ригеля применяют в многоэтажных зданиях с регулярной планировочной структурой (общежития, гостиницы), совмещая шаг поперечных перегородок с шагом несущих конструкций.


Рис. 3. Конструктивные схемы каркасных зданий:

а – с продольным расположением ригеля; б – с поперечным; в – безригельная.

Безригельный (безбалочный) каркас, в основном используют в многоэтажных промышленных зданиях, реже в общественных и жилых, в связи с отсутствием соответствующей производственной базы в сборном жилищном строительстве и относительно малой экономичностью такой схемы.

Конструктивные решения основных видов фундаментов (ленточных, свайных, столбчатых, отдельностоящих, сплошных) гражданских зданий.

По конструктивной схеме фундаменты раз­личают ленточные, отдельностоящие, сплош­ные и свайные.

Ленточные фундаменты устраи­вают под все капитальные стены, а в некото­рых случаях и под колонны. Они представля­ют собой заглубленные в грунт ленты — стен­ки из бутовой кладки, бутобетона, бетона или железобетона. Они подразделяются на сборные и монолитные.

Отдельностоящие фундаменты представляют собой отдельные плиты с установленными на них подколонниками или башмаками колонн. Их устраивают для кар­касных зданий. Разновидностью отдельностоящих фундаментов являются столбчатые, ко­торые проектируют для малоэтажных зданий при малых нагрузках и прочных основаниях, когда ленточные фундаменты нерациональны. Столбчатые фундаменты могут быть монолитными и сборными.

Сплошные фундаменты мо­гут быть плитные и коробчатые, в один или несколько этажей. Сплошные фундаменты при­меняют для зданий с большими нагрузками или при слабых и неоднородных основаниях.

Свайные фундаменты приме­няют на слабых сжимаемых грунтах, при глу­боком залегании прочных материковых пород, больших нагрузках и т. д. В последнее время свайные фундаменты получили широкое рас­пространение для обычных оснований, так как их применение дает значительную экономию объемов земляных работ и затрат бетона. Свайные фундаменты состоят из свай и ростверка(сборного или монолитного).Сваи бывают:забивные инабивные.


Основным элементами свайных фундаментов являются собст­венно сваи, оголовки и ростверки. Сваи представляют собой железобетонные, бе­тонные и реже деревянные или металлические стержни, погруженные в грунт ударным иливибрационным способом, ввинчиванием, или бетонируемые на месте, в заранее пробурен­ных скважинах.

по способу армирования — сваи с ненапрягаемой прод.и попереч. арм-ой и предварительно напряжённые со стержневой или проволочной прод. и попереч.арм-ой и без него;

по форме поперечного сечения — сваи квадратные, прямоугольные, квадратные с круглой полостью, полые круглого сечения;

по форме продольного сечения — призматические, цилиндрические и с наклонными боковыми гранями (пирамидальные, трапецеидальные, ромбовидные, булавовидные);

по конструктивным особенностям — на сваи цельные и составные (из отдельных секций);

по конструкции нижнего конца — на сваи с заостренным или плоским нижним концом.

Рис.1. Конструкции ленточных фундаментов: а – сборный; б – то же, прерывистый; в – монолитный фундамент (бутобетонный); г – бутовый фундамент; 1- фундаментные подушки; 2- бетонные блоки; 3 – отмостка; 4 - гидроизоляция; 5 – кирпичная облицовка (в ½ кирпича).

Рис.2 Столбчатые фундаменты малоэтажных зданий:а – под каменные стены; б – под панельные стены малоэтажных зданий;в – под деревянные стены; 1- фундаментные столбы; 2- цокольная стенка из кирпича; 3 – шлак (песок); 4 – отмостка; 5 – фундаментный стакан; 6 – железобетонный столб 120х120 мм; 7 – рандбалка; 9 – фундаментно-цокольная рандбалка; 10 – стеновая панель; 11 – гидроизоляция.



Рис.3. Сборные столбчатые фундаменты многоэтажных зданий:а – под каменные колонны; б – под сборные колонны; в – фундамент стаканного типа; 1 – блок-подушка; 2- колонны; 3- цокольная панель; 4 – отмостка; 5 – песчаная подсыпка; 6 – заливка цементным раствором; 7 – подколонник.

Рис. 1. Сплошные фундаменты:

а — из перекрестных железобетонных лент;

б — сплошная ребристая плита; в — сплошная


Рис. 2. Свайные фундаменты:

а — со сваями-стойками; 6, в — со сваями трения (висячими); г — расположение свай рядами; д — то же, кустами; 1,4 — забивные сваи; 2 — несу­щая конструкция здания; 3 — ростверк; 6 — набив­ные сваи

5. Наружным стенам гражданских зданий: виды и конструктивные решения, теплотехнические требования. Понятие тепловой реабилитации существующих зданий.

Несущие стены помимо вертикальной на­грузки от собственной массы воспринимают и передают фундаментам нагрузки от смежных конструкций: перекрытий, перегородок, крыш и пр. (табл.5.1).

Самонесущиестены воспринимают вер­тикальную нагрузку только от собственной массы (включая нагрузку от балконов, эрке­ров, парапетов и других элементов стены) и передают ее на фундаменты непосредственно либо через цокольные панели, рандбалки, ро­стверк или другие конструкции.

Ненесущие стены поэтажно (или через несколько этажей) оперты на смежные внутренние конструкции здания (перекрытия, стены, каркас).

Зависимость от принятых конструктивных систем и схем.

Конструктивная система здания Конструктивная схема здания Тип стен
Бескаркасная С несущими стенами продольными Продольные – несущие, поперечные – самонесущие
Бескаркасная То же, с поперечными Поперечные – несущие, продольные – навесные или самонесущие
Каркасная Неполный каркас Продольные наружные – несущие, остальные - самонесущие
Каркасная Полный каркас Продольные и поперечные – навесные и самонесущие

Несущие и самонесущие стены воспринима­ют наряду с вертикальными и горизонтальные нагрузки, являясь вертикальными элементами жесткости сооружений.

В зданиях с ненесущи­ми наружными стенами функции вертикаль­ных элементов жесткости выполняют каркас, внутренние стены, диафрагмы или стволы жесткости.

Несущие и ненесущие наружные стены мо­гут быть применены в зданиях любой этажно­сти. Высота самонесущих стен ограничена в целях предотвращения неблагоприятных в эксплуатационном отношении взаимных сме­щений самонесущих и внутренних несущих конструкций, сопровождающихся местными повреждениями отделки помещений и появле­нием трещин. В панельных домах, например, допустимо применение самонесущих стен при высоте здания не более 4 этажей. Устойчивость самонесущих стен обеспечивают гибкие связи с внутренними конструкциями.

Несущие наружные стены применяют в зданиях различной высоты. Предельная этаж­ность несущей стены зависит от несущей спо­собности и деформативности ее материала, конструкции, характера взаимосвязей с внут­ренними конструкциями, а также от экономических соображений. Так, например, примене­ние панельных легкобетонных степ целесооб­разно в домах высотой до 9—12 этажей, несущих кирпичных наружных стен – в зданиях средней этажности, а стен стальной решетчатой оболочковой конструкции – в 70-100 этажных зданиях.

По конструкции - мелкоэлементные и крупноэлементные - из круп­ных панелей, блоков и др.

По показателям массы и степени тепловой инерции наружные сте­ны зданий делят на четыре группы - массивные, средней массивности, легкие,особо легкие (табл. 5.2.).

Таблица 5.2. Классификация стен по массе и степени тепловой инерции

Классификация стен по массе Масса 1 кв.м, кг Классификация стен по степени тепловой инерции Тепловая инерция D
Тяжелые Более 750 Большая инерционность Более 7
Облегченные 401 - 750 Средняя инерционность 4 - 7
Легкие 150 - 400 Малая инерционность 1,5 – 4
Особо легкие Менее 150 Безинерционные До 1,5

По материалу различают основные типы конструкций стен: бетонные, каменные из небетонных материалов и деревянные. В соответствии со строительной системой каждый тип стены содержит несколько видов конструкций: бетонные стены — из монолитного бетона, крупных блоков или панелей; каменные стены — ручной кладки, стены из каменных блоков и панелей; стены из небетонных материалов — фахверковые и панельные каркасные и бескаркасные; деревянные стены - рубленные из бревен или брусьев каркасно-обшивные, каркасно-щитовые, щитовые и панельные. Бетонные и каменные стены применяют зданиях различной этажности и для различных статических функций в соответствии с их ролью в конструктивной системе здания. Стены из небетонных материалов используют в зданиях различной этажности только в качестве ненесущей конструкции.

Наружные стены могут быть однослойной или слоистой конструкции.

Однослойные стены возводят из панелей, бетонных или каменных блоков, монолитного бетона, камня, кирпича,деревянных бревен или брусьев. В слои­стых стенах выполнение разных функций возложено на различные материалы. Функции прочности обеспечивают бетон, камень, дерево: функции долговечности — бетон, камень, дере­во или листовой материал (алюминиевые сплавы, плакированная сталь, асбестоцемент или др.); функции теплоизоляции — эффективные утеплители (минераловатные плиты, фибролит, пенополистирол и др.); функции пароизоляции - рулонные материалы (прокладочный рубероид, фольга и др.), плотный бетон или мастики; декоративные функции - различные облицовочные материалы. В число слоев такой ограждающей конструкции может быть вклю­чена воздушная прослойка. Замкнутый — для повышения ее сопротивления теплопередаче, вентилируемый — для защиты помещения от радиационного перегрева либо для уменьше­ния деформаций наружного облицовочного слоя стены.

Конструкции одно- и многослойных стен мо­гут быть выполнены полносборными или в традиционной технике.

Конструкции стен должны отвечать требованиям капитальности, прочности и устойчивости. Теплозащитная и звукоизоляционная способность стен устанавливается на основе теплотехнических и звукоизоляционных расчетов.

Толщину наружных стен выбирают по наибольшей из величин, полученных в результате статического и теплотехнического расчетов, и назначают в соответствии с конструктивными и теплотехническими особенностями ограждающей конструкции.

Ограждающие конструкции зданий должны защищать помещение от холода, солнечной радиации, ветра, атмосферных осадков, шума и других воздействий.

Наруж.огражд.констр.зд. должны удовлетворять теплотехническим требованиям:
1)обладатьтеплозащитными свойствами;
2)температура внутренних поверхностей при эксплуатации не д.б. слишком низкой, чтобы избежать появления конденсата на стенах и на потолках верхних этажей;
3)воздухопроницаемостьстен зданий не должна превосходить допустимого предела;
4)необходимо сохранять нормальную влажность ограждений, т.к увлажнение ухудшает их теплозащитные свойства и уменьшает долговечность ограждений.

Потери тепла через наружные стены зданий могут достигать 40 %, поэтому тепловая реабилитация (утепление) здания является одним из ключевых вопросов при строительстве и реконструкции зданий и сооружений.

Тепловая реабилитация здания позволяет уменьшить потери тепла в старых зданиях примерно до 10-15 %. При постройке новых зданиях уже предусматривается тепловая реабилитация.

Разновидности тепловой реабилитации:

1)Устройство монолитной полистиролбетонной ТИ методом торкретирования с последующей защитой поверхности декоративными растворными или красочными составами.

2) Выполнение многослойного покрытия («термошуба»), включающего ТИ слой из минераловатного или полистирольного плитного материала, стеклосетки, воспринимающей деформации, и защитно-декоративного штукатурного покрытия.

3) Наружная теплозащита каменной кладкой из газобетонных блоков на клеевом растворе с декоративной отделкой тонкослойными(3-8мм) дышащими штукатурными составами.

4) Внутреннее утепление стен гипсо- и древесноволокнистыми плитами.

5) Выполнение дополнительной наружной засыпочной ТИ(до 15мм) с ограждением из кирпича или камня на растворе.

6) Нанесение на внутреннюю стеновую поверхность по закрепленой сетке ТИ «дышащего штукатурного раствора.

Читайте также: