Фундаменты под бескаркасное здание

Обновлено: 20.05.2024

Фундаменты под ангары

Ангары, как и любые другие здания, требуют надежного основания, чтобы предотвратить обрушение и продлить срок эксплуатации сооружения. В зависимости от типа ангара предъявляются различные требования к обустройству фундамента.

Сегодня на рынке быстровозводимых зданий существуют технологии возведения ангаров и вовсе не требующих фундамента - это воздухопорные ангары. Для данного типа сооружений требуется лишь ровная поверхность. это может быть как асфальтированная площадка, так и просто подготовленный грунт. Как правило такие ангары возводят как временные сооружения на выставках, ярмарках или других мероприятиях, либо в условиях, где возведение капитального ангара невозможно или нецелесообразно, например, в условиях крайнего севера, на болотистых почвах и других подвижных грунтах.

Ангары из металлоконструкций, как и капитальные сооружения требуют обязательного устройства фундамента, который в состоянии выдерживать физические и климатические нагрузки на протяжении десятков лет. О том какие фундаменты целесообразно использовать в настоящее время и пойдет речь в данной статье.

Мы работаем по всей России. Оставьте заявку на расчет стоимости ангара на нашем сайте, сравните сметы разных компаний и выберите лучшее предложение.

Фундамент для ангара из металлоконструкций

Металлические ангары считаются легкими сооружениями, по сравнению с капитальными строениями, поэтому к фундаментам под ангары из металлоконструкций предъявляются менее жесткие требования по выдерживаемым нагрузкам. Самыми распространенными типами фундаментов под металлические ангары являются:

  • свайный фундамент;
  • столбчатый фундамент;
  • ленточный фундамент;
  • плитный фундамент.

В свою очередь сваи, используемые для свайного фундамента можно разделить на несколько различных типов, которые применяются в различных грунтах, это:

  • буронабивные сваи;
  • забивные сваи;
  • винтовые сваи.

Несмотря на то, что свайный и столбчатый фундаменты похожи, они имеют принципиальное отличие в назначении. Столбчатый фундамент чаще используют под легкие небольшие ангары с шириной пролета не более 12 метров, и их использование целесообразно только на плотном грунте с хорошей несущей способностью. Свайные фундаменты более универсальные, могут применяться в различных грунтах, в том числе и на слабых, где верхние слои почв имеют небольшую толщину. При устройстве свайного фундамента забуриваются на глубину несущего грунта минуя слабый грунт, чтобы вся нагрузка ложилась на него.

Фундамент для арочного ангара

Арочные ангары из металлоконструкций имеют низкую металлоемкость, а благодаря своей форме позволяет равномерно распределять нагрузки вызванные климатическими условиями, а также от других внешних факторов. Это позволяет использовать под арочные ангары облегченный фундамент. Преимущество в данном случае большинством строительных организаций отдается свайному фундаменту.

Фундамент бескаркасного ангара

Бескаркасные ангары также относятся к арочным ангарам. Несмотря на различные технологии производства и монтажа бескаркасные ангары также относятся к легким конструкциям и не требуют капитального устройства основания. Но бескаркасники гораздо чувствительнее к деформации, поэтому необходимо забуривать сваи на большую глубину для придания им большей устойчивости и дополнительно делать обвязку оголовков сваи ленточным фундаментом. Это предотвратит даже малейшие деформации при движении грунта.

Фундамент под ангар из сэндвич панелей

Ангары из сэндвич панелей имеют большую металлоемкость по сравнению с арочными ангарами и уже требуют устройства капитального фундамента. Несмотря на то, что сами панели являются облегченными, конструкция ангара, а это преимущественно прямостенные ангары, оказывает на фундамент значительную нагрузку, поэтому требования в нему предъявляются более жесткие. Данные сооружения преимущественно возводятся под промышленные объекты, склады, торговые комплексы, где необходимо обеспечить высокий уровень безопасности прежде всего для людей находящихся в ангаре. Поэтому при проектировании ангаров из сэндвич панелей в расчет закладываются более высокие нагрузки, чем предусмотрено по СНИП. А это ведет к увеличению металлоемкости. Под ангары из сэндвич панелей преимущественно используют свайно-ленточный или плитный фундамент.

Свайный фундамент под ангар.

Благодаря высокой скорости строительства и низкой себестоимости свайные фундаменты получили широкое применение не только на грунтах, обладающих незначительной несущей способностью, а практически в большинстве строящихся объектов. Запас прочности свайного фундамента позволяет в ряде случаев исключить исследование грунта и сразу приступить к работам. Делать это не рекомендуется, но такая практика уже сложилась. Благодаря своей конструкции свайный фундамент позволяет переместить нагрузки, действующие от каркаса ангара, на несущие пласты грунта, расположенные ниже наконечника свай.

В зависимости от типа используемых свай, технология их установки отличается.

Как мы уже писали ранее, в свайном фундаменте могут использоваться буронабивные, забивные или винтовые сваи.

Буронабивные сваи представляют собой железобетонные сваи. Технология их установки чем-то напоминает столбчатый фундамент. Сначала в грунте бурится скважина, внизу у основания делается расширение для упора в несущий грунт, в скважину вставляется армированный каркас и заливается бетонным раствором.

Забивные сваи могут изготавливаться из металла или железобетона. В отличие от буронабивных свай, под данные сваи не бурится скважина, они забиваются в грунт специальной строительной техникой.

Винтовые сваи получили свое название благодаря специальному винтовому наконечнику, который позволяет ввинчивать стальные сваи в грунт.

Заглубление винтовых свай в грунт может составлять до 4 – 15 метров при диаметре сваи до 35 сантиметров.

Винтовые сваи

Свайные фундаменты обладают низкой материалоемкостью, но требуют для закладки применения тяжелого строительного оборудования.

К преимуществам свайных фундаментов можно отнести:

  1. Возможность монтажа в различных климатических регионах и грунтах, в том числе в болотистой местности и в регионах с вечной мерзлотой.
  2. Отсутствие какого-либо влияния на фундамент уровня расположения грунтовых вод.
  3. Равномерное распределение нагрузки при строительстве ангаров на местности со сложным рельефом.
  4. Возможность монтажа в любое время года.
  5. Отсутствие воздействия морозного пучения грунта при промерзании почвы.
  6. Короткие сроки монтажа.

Ангар на винтовых сваях

Использование столбчатого фундамента под ангар

Столбчатый фундамент применяются при достаточной несущей способности грунта. Конструкция столбчатого фундамента ангара представляет собой монолитную железобетонную колону, заглубленную ниже отметки сезонного промерзания грунта. Фундаментные столбы устанавливаются под каждую стойку металлического ангара, которые крепятся к фундаменту при помощи анкеров или закладных деталей. Необходимый шаг колонн рассчитывается исходя из габаритов ангара и климатических нагрузок.

Столбчатый фундамент ангара

Для усиления несущей способности столбчатого фундамента часто его используют совместно с ростверком. Ростверк — это несущая железобетонная балка, которая соединяет столбы сверху, применяется когда существует необходимость распределять нагрузку от стен по всей длине фундамента. Столбы возводятся по тем же технологиям, но их сечение больше, а шаг чаще. Как правило, данный тип фундамента используется при строительстве бескаркасных ангаров, а также прямостенных металлоемких ангаров.

Ростверк может быть изготовлен самостоятельно на строительной площадке или заводского производства. Он обязательно должен армироваться, диаметр горизонтальных несущих стержней составлять минимум 12 мм, поперечные связи ставятся что каждые 40 см. Если расстояние между столбами и нагрузка от стен увеличивается, тогда более мощным должен быть каркас.

Ростверк не должен опираться или быть заглубленным в грунт — зимой поднимающийся под воздействием сил морозного пучения грунт должен иметь возможность свободно вертикально перемещаться, иначе ростверк может оторваться от столбов, что приведет к деформации фундамента.

Отметим положительные стороны использования столбчатого фундамента:

  1. Короткие сроки устройства фундамента;
  2. Возможность сделать фундамент самостоятельно, без использования дополнительной техники;
  3. Низкая стоимость;
  4. Отсутствие дополнительной подготовки. При возведении построек на опорном основании не нужно проводить дополнительную тепло- и гидроизоляцию.
  5. Есть возможность использования данного типа фундамента для возведения ангара на промерзших грунтах.
  6. Длительный срок службы (при правильной эксплуатации составляет 80-100 лет).

Столбчатый фундамент чаще всего сооружают под легкие ангары, когда возводить ленточный и плитный экономически невыгодно.

Устройство ленточного фундамента для строительства ангаров.

Ленточный фундамент используют при возведении ангаров любого типа. Данный тип фундаментов имеет монолитную конструкцию под всеми наружными и внутренними капитальными стенами. Сначала на строительной площадке роется котлован. Затем внутри котлована обозначается линия фундамента. По этой линии монтируют опалубку. Перед заливкой бетона в опалубку помещают металлический армированный каркас.

Ленточный фундамент для ангара

При прочих равных условиях ленточный фундамент считается более надежным и ему отдают предпочтение при монтаже многоэтажных быстровозводимых сооружений и ангаров больших размеров. Ленточный фундамент достаточно прост в устройстве и при необходимости его можно залить без привлечения строительной техники. Такой фундамент является универсальной конструкцией и применяется при строительстве любых ангаров на грунтах различного типа.

Обозначим несколько положительных моментов, за которые предпочитают именно ленточный фундамент:

  1. простота в возведении;
  2. невысокая стоимость;
  3. высокая прочность и надежность;
  4. возможность применения на пучинистых грунтах.

В каких случаях применяется плитный фундамент.

Название плитного фундамента говорит само за себя. Это огромная железобетонная плита, по площади немного превосходящая строящийся ангар. Существуют несколько разновидностей плитных фундаментов, среди которых выделяют сборные, которые изготавливаются из готовых железобетонных плит, соединенных между собой и заливные плитные основания, которые изготавливаются на месте строительства.

Плитный фундамент ангара

Устройство данного фундамента очень затратное как по времени, так и по ресурсам, но его использование оправдано при строительстве ангаров на слабых и подвижных грунтах.

Плитные фундаменты представляют собой так называемые «плавающие» фундаменты, способные перемещаться при вспучивании или передвижке непрочных грунтов.

Несмотря на высокую стоимость данные фундаменты имеют и свои плюсы:

  1. Фундаментная плита имеет большую площадь, что позволяет снизить нагрузку на грунт до минимума;
  2. Фундамент прекрасно работает на сложных (болотистых и пучинистых) грунтах. Даже сильное пучение почвы не может навредить ему – монолитная плита просто немного меняет угол залегания, в отличии от ленточного и свайного фундамента, которые могут быть разрушены при таких нагрузках;
  3. Изготовление фундамента хоть и занимает много времени, может быть выполнено с минимальным количеством тяжелого оборудования;

Мы рассмотрели основные типы фундаментов, которые используются при строительстве ангаров. Какой из них выбрать лучше решить после обследования грунта на строительной площадке и посоветоваться со специалистами. Самым распространенным на сегодняшний день является свайный фундамент из буронабивных или винтовых свай. Его вам предложат 90% подрядчиков осуществляющих строительство быстровозводимых ангаров из металлоконструкций, как каркасных, так и бескаркасных.

Возможно вас заинтересует:



ПРЕДВАРИТЕЛЬНЫЙ РАСЧЕТ СТОИМОСТИ СТРОИТЕЛЬСТВА АНГАРА

Ответьте на 5 вопросов, чтобы сравнить сметы на строительство ангара от разных организаций и выбрать лучшее предложение.

Бескаркасных Крупнопанельных зданий

Несущие и ограждающие конструкции полносборных зданий следует проектировать из крупноразмерных унифицированных типовых или стандартных комплексных изделий максимальной заводской готовности. Конструкции должны обладать необходимой прочностью, жесткостью, устойчивостью, долговечностью и огнестойкостью; должны удовлетворять общим архитектурным, эксплуатационным, санитарно-гигиеническим и теплотехническим требованиям, а также обладать достаточной звукоизоляционной способностью. Они должны быть экономичными, малой трудоемкости, простыми в изготовлении и удобными при монтаже.

Рассмотрим особенности конструирования основных элементов крупнопанельных зданий:

– стены (внутренние и наружные);

– конструкции междуэтажных перекрытий;

Фундаменты

В практике массового крупнопанельного строительства бескаркасных зданий используются следующие конструктивные решения фундаментов:

1) блочные (ленточные и прерывистые);

2) крупнопанельные (ленточные и ленточно-столбчатые);

4) плитные фундаменты в виде ребристых, безбалочных или коробчатых плит.

Для местных и транзитных инженерных сетей и других коммуникаций в жилых домах устраиваются подполья или специальные траншеи (местные заглубления).

Блочные (ленточные и прерывистые) фундаменты[2] рассматривались ранее при изучении курса „Архитектура”.

Крупнопанельные (ленточные) фундаменты выполняются из крупноразмерных элементов – панелей (рис. 4.1).

При конструктивной схеме с поперечными несущими стенами подземную часть выполняют или из панелей сплошного сечения, или из фундаментных рам (рис. 4.1, а), которые устанавливаются на фундаментные блоки – подушки. В этих случаях следует особое внимание обращать на сопряжение фундаментных рам с цокольными панелями, которые выполняются путем сварки арматурных петель с последующим их замоноличиванием.

Рис. 4.1. Сборные ленточные фундаменты крупнопанельных зданий:

а – с поперечными несущими стенами; б – с продольными несущими стенами; в – сопряжение фундаментных элементов; 1 – фундаментная рама; 2 – фундаментный блок-подушка; 3 – цокольная панель; 4 – стена жесткости; 5 – стеновая панель; 6 – панель перекрытия; 7 – арматурные петли; 8 – замоноличивание бетоном; 9 – стальная закладная деталь; 10 – крупноразмерный фундаментный элемент

При конструктивной схеме с продольными несущими стенами фундаменты целесообразно выполнять из крупноразмерных фундаментных элементов (рис 4.1, б), которые являются опорами для панелей наружных и внутренних стен. Фундаментные элементы ставятся на тщательно выровненную песчаную подсыпку толщиной 80х100 мм. В продольном направлении эти элементы разбиваются таким образом, чтобы стыки их не совпадали со стыками наружных стен. Фундаментные элементы сопрягаются между собой через арматурные петли, расположенные в торцах, с последующим замоноличиванием бетоном.

Применение ленточных фундаментов (блочных и крупнопанельных) вызывает значительный объем земляных работ, из которых около 25 % приходится выполнять вручную. Стены подполья и фундаменты требуют большого расхода бетона при недостаточном использовании его прочности. Продолжительность работ по устройству нулевого цикла 9-этажного дома при ленточных или столбчатых фундаментах составляет почти половину времени, затрачиваемого на монтаж коробки здания.

Свайные фундаменты. Решению задачи по уменьшению времени на нулевой цикл в наибольшей степени отвечает применение фундаментов из железобетонных свай. Сваи в строительстве используют уже в течение многих лет, однако применялись они главным образом при сложных гидрогеологических условиях.

Теперь речь идет о массовом применении в гражданском строительстве коротких свай (длиной 3÷7 м) и о замене ими ленточных фундаментов при обычных грунтах. Для устройства фундаментов в здании большой этажности целесообразно использовать специальные сваи-оболочки, рассчитанные на восприятие больших сосредоточенных нагрузок, или монолитные ленточные, перекрестные, или плитные фундаменты.

Исследованиями последних лет установлено, что применение фундаментов с короткими забивными сваями технически и экономически целесообразно не только при неблагоприятных грунтах, но и при обычных сжимаемых грунтах, где нижние концы свай достигают относительно плотных грунтов.

Свайные фундаменты из коротких свай применяют при массовом строительстве не только крупнопанельных зданий, но также крупноблочных и каменных жилых и общественных зданий. Такие фундаменты рекомендуется применять взамен ленточных фундаментов на естественном основании при глубине заложения 1,7÷2 м от поверхности планировки. В силу небольшой пространственной жесткости крупнопанельные здания чувствительны к неравномерным осадкам, вследствие чего происходят нарушения соединений в узлах, раскрытие стыков и т.п. Конструктивное решение короткосвайных фундаментов в крупнопанельных зданиях показано на рис. 4.2.

Особенностью новой конструкции свайных фундаментов является исключение поперечных несущих конструкций в пределах технического подполья и расположение ростверков непосредственно под цокольным перекрытием (под полом первого этажа). Такое решение позволило резко уменьшить объем потребного бетона (рис. 4.2, а). Новым также является однорядное расположение свай под поперечными несущими стенами с шагом 2 ÷ 2,5 м (рис. 4.2, а). По сваям укладывается сборный ростверк, соединенный с оголовками свай через специальную сборно-монолитную подушку.

Рис. 4.2. Размещение свай под крупнопанельным зданием с поперечными несущими стенами:

а – план размещения свай; б, в – варианты оголовка для стержневых и трубчатых свай; 1 – сваи; 2 – ростверк; 3 – отмостка; 4 – арматура головы сваи; 5 – оголовок (насадка); 6 – цокольная панель; 7 – замоноличивание; 8 – стальная закладная деталь для соединения ростверка с оголовком; 9 – трубчатая свая; 10 – стержень диаметром 18÷22 мм для сопряжения оголовки (насадки) с ростверком

Железобетонные сваи по форме разделяются на призматические и цилиндрические с острием и без острия. По виду поперечного сечения сваи бывают: сплошные квадратные, квадратные с круглой полостью, круглые или трубчатые (рис. 4.3). Минимальная длина квадратных свай принимается 3 м с градацией 1 м. Длина квадратных свай с круглой полостью принимается от 4 до 6 м с градацией через 0,5 м. Сваи-оболочки изготовляют длиной от 4 до 7 м.

Рис. 4.3. Виды железобетонных забивных свай:

а – сплошные квадратного сечения; б – квадратные с круглой полостью; в – трубчатые (сваи-оболочки); г – башмак трубчатой сваи; 1 – стержневая арматура; 2 – хомуты; 3 – арматурная сетка; 4 – стержень диаметром 22 ÷ 25 мм; 5 – петли для подъема; 6 – спиральная арматура

Сваи железобетонные длиной до 7 м называют короткими. Сваи квадратные сплошного сечения при обычном армировании изготовляются из бетона класса не ниже В 15, а трубчатые сваи – из бетона В 20; напряженно-армированные сваи изготовляют из бетона класса не ниже В 20, а сваи-оболочки – из бетона В 30.

В крупнопанельных зданиях с поперечными несущими стенами, при которых ростверк работает совместно с этими стенами, он опирается на сваи через оголовки или насадки. Ростверк может быть железобетонным монолитным, сборно-монолитным и сборным (рис. 4.2). Ростверк должен жестко связывать головы свай, поэтому верхние концы арматуры, которые обнажаются после нарушенного забивкой бетона, входят в толщину ростверка или в оголовок насадки. Сборные железобетонные ростверки изготовляют из бетона класса не ниже В 15, а монолитные – из бетона В 10.

Плитные фундаменты конструируют в виде плоских и ребристых плит или в виде перекрестных лент. Для зданий с большими нагрузками, а также при использовании его подземного пространства применяются коробчатые фундаменты (рис. 4.4).

Плитные фундаменты проектируют под здания в основном каркасной конструктивной системы. Для повышения жесткости плиты устраивают ребра в перекрестных направлениях, которые могут выполняться как ребрами вверх, так и вниз по отношению к плите.

Рис. 4.4. Плитные фундаменты:

а, б – с ребрами вверх (а) и вниз (б); в – коробчатый; г – перекрестные ленты; 1 – колонна; 2 – фундаментная плита; 3 – коробчатый фундамент; 4 – перекрестные фундаментные ленты

Фундаментная плита с ребрами вниз менее трудоемка, так как уменьшается объем земляных работ. Толщина плиты и ее армирование определяются расчетом в зависимости от ее конструкции, приходящихся нагрузок и несущей способности основания.

В учебных целях толщину ребристой плиты следует назначать от 1/8 до 1/10 пролета, а сплошной плиты от 1/6 до 1/8 соответственно.

На пересечениях ребер фундаментной плиты устанавливаются колонны при каркасной конструктивной системе, а при бескаркасной – ребра используются как стены цокольной части здания, на которые устанавливают несущие конструкции его наземной части.

Фундаменты в виде коробчатого сечения применяются при возведении высотных зданий с большими нагрузками. Ребра такой плиты выполняются на полную высоту подземной части здания и жестко связываются с перекрытиями, образуя, таким образом, замкнутые сечения различной конфигурации.

Примерами таких решений могут служить выстроенные в г. Москве жилые дома Чертаново-Северное с использованием подземного пространства под гаражи или административное здание гидропроекта.

Строй-справка.ру

Фундаменты зданий и сооружений конструируют, учитывая совместную работу сооружения и грунтов основания, причем конструкция фундамента во многом определяется типом возводимого здания. Широкое распространение в условиях массовой городской застройки получили сборные фундаменты, позволяющие снижать затраты на их возведение.

В некоторых случаях устраивают прерывистые ленточные фундаменты (рис. 5.5), позволяющие получать существенную экономию материалов. Применение прерывистых фундаментов допускается, при надежных грунтах и относительно небольших нагрузках. Зазоры между плитами заполняют песком с последующим уплотнением.

Рис. 5.5. Прерывистый ленточный фундамент: 1 — стена здания; 2 — фундаментный стеновой блок; 3 — фундаментная плита (подушка)

Блоки-подушки ленточных фундаментов могут быть сплошными (рис. 5.6, а, б), ребристыми (рис. 5.6, в) и пустотными (рис. 5.6, г). Сплошные плиты используют при значительных нагрузках, а ребристые и пустотные — при небольших, причем применение последних позволяет получать экономию строительных материалов. Стены фундаментов собирают из сплошных или пустотелых стеновых фундаментных блоков.

Отдельные сборные фундаменты применяют под колонны каркасных зданий. В зависимости от размерор такие фундаменты могут быть цельными или составными. Наиболее экономичное решение получается при использовании в качестве фундамента одного цельного блока (рис. 5.7, а), имеющего сравнительно небольшие размеры и небольшую массу. Отдельные фундаменты устанавливают в котлованах на песчано-гравийную подготовку, толщина которой должна быть не менее 10 см.

Составные сборные фундаменты в настоящее время используют значительно реже, так как их применение связано с дополнительным расходом арматуры, располагающейся на разных уровнях (рис. 5.7, б).

Возведение составного фундамента может быть целесообразно только после соответствующего обоснования й следующих случаях: если на основание передаются значительные вертикальные нагрузки, т. е. имеющиеся в распоряжении проектировщика типоразмеры одиночных фундаментов не обеспечивают требуемого давления по подошве; существует необходимость возведения фундаментов в сжатые сроки, в целях предотвращения возможного промерзания грунта в зимний период времени.

Рис. 5.6. Конструкции фундаментных, шит

Рис. 5.7. Железобетонные фундаменты:
1 — подколенник; 2 — фундаментная плита цельная; 3 — то же, блочная

Следует учитывать, что при действии значительных изгибающих моментов и горизонтальных усилий отдельные блоки составных фундаментов для обеспечения их совместной работы необходимо соединять между собой с помощью выпусков арматуры, анкеров или сварки закладных деталей.

В последнее время при строительстве каркасных зданий и сооружений стали применять сплошные фундаменты из универсальных сборных блоков. Существует два типа таких блоков со скошенными ребрами (рис . 5.8, а) и повышенной жесткости (рис. 5.8, б). В первом случае сплошная плита образуется в результате замоноличивания швов между блоками, во втором — в результате сварки выпусков арматуры и замоноличивания швов. Данный тип фундаментов по сравнению с традиционными плитными фундаментами, выполняемыми, как правило, в монолитном варианте, имеет ряд преимуществ: обладает повышенной жесткостью и более экономичен в результате уменьшения расхода материалов и сокращения трудозатрат при возведении.

Широкое применение монолитных фундаментов в практике современного строительства сдерживают следующие факторы: большие трудовые затраты при строительстве; незначительная оборачиваемость опалубки; сложность обеспечения твердения бетона в зимний период времени, а также большая продолжительность работ по сравнению с возведением сборных фундаментов.

Однако такие типы фундаментов, как сплошные, ленточные под колонны, массивные, имеющие небольшую площадь опалубки по сравнению с объемом бетона, а также фундаменты сложного очертания под уникальные сооружения и сложное оборудование, выполняют, как Правило, из монолитного железобетона. Причем применение типовой инвентарной опалубки и способов ускорения твердения бетона в зимний период времени во многих случаях обеспечивает необходимую экономичность конструктивного решения монолитного фундамента.

Рис. 5.8. Сплошной сборный фундамент: 1 — ребрй; 2 — колонна; 3 — опорная плита между ребрами; 4 — пазы в плите; 5 — замоноличенный шов; 6 — подколовник; 7 — сварной узел

При возведении коробчатых фундаментов иногда в качестве опалубки применяют сборные тонкостенные железобетонные элементы, которые после окончания твердения основной массы бетона остаются в составе конструкции фундамента.

Рис. 5.9. Конструкция жесткого фундамента

Железобетонные монолитные фундаменты проектируют как изгибаемые конструкции на сжимаемом основании с учетом совместной работы сооружения с грунтом. Сечение и арматуру таких фундаментов назначают с учетом правил проектирования, предъявляемых к железобетонным конструкциям.

Рис. 5.10. Конструкции монолитных железобетонных фундаментов: 1 — колонна; 2 — стакан; 3 — фундамент

Устройство верхней части фундамента зависит от типа опирающихся конструкций и характера передаваемых усилий. Под колонны каркасных зданий в фундаментах устраивают стаканы (рис. 5.10, а) или предусматривают жесткий стык (рис. 5.10, б), для чего в монолитном фундаменте устанавливают специальную арматуру. При использовании железобетонных колонн каркаса стаканную часть фундамента располагают на отметке — 0,150 от поверхности земли, чтобы засыпать пазухи до монтажа колонн, при металлических колоннах обрез фундамента располагают значительно ниже, так чтобы металлический подколенник располагался ниже планировочной отметки.

Монолитные железобетонные конструкции в зависимости от действующих усилий, грунтовых условий и размеров опирающихся на них конструкций могут быть одно-, дву

Строй-справка.ру

Конструкции фундаментов существенно влияют на стоимость здания. Так, в общем объеме здания трудоемкость возведения фундаментов составляет 6—8%, а расход железобетона может достигать 20%. По способу возведения фундаменты подразделяют на монолитные и сборные.

По экономическим соображениям фундаменты небольших и средних р-азмеров, а также облегченные фундаменты ребристой и пустотелой конструкций целесообразно выполнять сборными составными или сборными одноблочными, если масса блока не превышает 6 т. Такие фундаменты перевозят и монтируют обычными кранами.

Под колонны каркаса предусматривают отдельные фундаменты с подколонниками стаканного типа, а стены опирают на фундаментные балки. Ленточные фундаменты под ряды колонн или сплошные под здания (за исключением фундаментных плит в универсальных зданиях) устраивают редко — на слабых или просадочных грунтах и при больших ударных воздействиях на грунт технологического оборудования.


Рис. 1. железобетонный каркас одноэтажного здания-

Унифицированные монолитные железобетонные фундаменты, имеющие ступенчатую конструкцию с подколонником и стаканом для заделки


Рис. 2. Типы фундаментов промышленных зданий:
а — монолитный; б — сборный составной; в — свайный; г — сборный ребристый; д — сборный пустотелый; е — с подколонником пенькового типа; 1 — ростверк; 2 — свая

В зависимости от величины нагрузки на колонны, ее сечения и глубины заложения подошвы фундаментов предусмотрено несколько типоразмеров фундаментов. Высота фундаментных блоков 1,5 и от 1,8 до 4,2 м, с градацией через 0,6 м; размеры подошвы в плане от 1,5Х-1,5 до 6,6X7,2 м с модулем 0,3 м; размеры подколонника в плане от 0,9X0,9 до 1,2X7,2 м с модулем 0,3 м. Глубина стакана принята 0,8; 0,9; 0,95 и 1,25 м, а высота ступеней — 0,3 и 0,45 м.

Сборные фундаменты могут состоять из одного блока (подколенника со стаканом) или быть составными из подколонника и опорной фундаментной плиты. По расходу бетона, стоимости и затратам труда на возведение сборные фундаменты экономичнее монолитных, но на них больше расходуется стали.

Подколонник устанавливают на плиту по слою цементно-песчаного раствора. При действии на фундамент изгибающего момента соединение подколонника с плитой усиливают сваркой закладных элементов; места сварки заделывают бетоном. Площадь подошвы составных фундаментов может быть доведена до 27 м2.

В целях уменьшения веса и снижения расхода стали под колонны рекомендуется применять сборные ребристые или пустотелые фундаменты. Такие фундаменты достаточно жестки, прочны и трещиноустойчивы.

Фундаменты с подколонниками пенькового типа устраивают под железобетонные колонны большого сечения или под стальные колонны. Пенек, являющийся элементом колонны, устанавливают в период работ нулевого цикла. Пенек с фундаментом и колонну с пеньком соединяют сваркой выпусков арматуры и бетоном, нагнетаемым в швы.

В случаях залегания у поверхности земли слабых грунтов и близкого расположения уровня грунтовых вод под колонны промышленных зданий целесообразнее устраивать свайные фундаменты. Широко распространены железобетоные сваи, имеющие квадратное или круглое (полое) сечение. Головные части свай связывают монолитным или сборным железобетонным ростверком, который служит одновременно подколенником.

Возведение свайных фундаментов взамен обычных значительно уменьшает объем земляных работ, снижает расход материалов, допускает меньшую глубину заложения фундаментов под оборудование (она зачастую обусловлена наличием насыпного грунта от обратной засыпки котлованов фундаментов).

Размеры стакана в плане делают большими сечения колонн: поверху— на 150 и понизу —на 100 мм. Днище стакана располагают на 50 мм ниже отметки пяты колонны. Проектное положение низа колонны фиксируют слоем бетона, укладываемого на дно стакана. Зазоры между стенками стакана и поверхностью колонны заполняют бетоном на мелком гравии. Под спаренные колонны в местах температурных швов и перепадов высот смежных пролетов устанавливают фундаменты с двумя раздельными стаканами.

В целях сокращения числа типоразмеров колонн верх фундаментов независимо от глубины заложения подошвы следует располагать в уровне примыкающей к зданию земли, т. е. на 0,15 м ниже отметки чистого пола цеха. Это позволяет вести монтаж колонн при засыпанных котлованах, после устройства подготовки под полы и прокладки подземных коммуникаций, т. е. после работ нулевого цикла.

Глубина заложения подошвы фундаментов зависит от грунтовых условий и глубины промерзания грунта. При наличии в цехе подвалов, тоннелей или приямков вблизи колонн глубину заложения фундаментов; под эти колонны увеличивают. Разница в отметках заложения фундаментов (даже по одному ряду колонн) может достигать нескольких метров.

Увеличить глубину заложения фундаментов можно путем увеличения высоты их стаканной части, устройства подколонников пенькового типа (или вставок-банкетов), применением песчаной, щебеночной или бетонной подготовки требуемой толщины, а также использованием удлиненных колонн. Первые три варианта позволяют применять колонны той же длины, что и принятые по наименьшей отметке заложения фундаментов. Во всех случаях конструкции фундаментов не изменяются.


Рис. 3. Стыки железобетонных колонн с фундаментами:
а, б — посредством заполнения зазора бетоном; в — при помощи выпусков арматуры (ВНР); г, д — стыки, применяемые в США; 1 — бетон; 2 — арматура; 3 —-стальная прокладка; 4 — стальная труба; 5 — стальная плита; 6 — анкер

Колонны с фундаментами соединяют различными способами. В практике отечественного строительства колонны закрепляют в фундаментах бетоном. Такое крепление является жестким.

Стены каркасных зданий опирают на фундаментные балки, укладываемые между подколонниками фундаментов на специальные железобетонные столбики или на консоли колонн. Наличие фундаментных балок облегчает устройство под стенами тоннелей, каналов и коллекторов для ввода в здание различных подземных коммуникаций. Фундаментные балки, кроме того, защищают пол от продувания в случае просадки от-мостки, вследствие чего конструкция панельных стен без фундаментных балок допускается только для неотапливаемых зданий.

В местах устройства ворот для въезда в цех автомобильного или железнодорожного транспорта фундаментные балки не предусматривают. Железобетонную раму ворот и участки стены в пределах этого шага колонн опирают на монолитную подбетонку.


Рис. 4. Фундаментные балки:
а — типы балок; б — опирание балок на столбики; в — то же, на выпуски арматуры; 1 — набетонка высотой 120 мм; 2 — подливка из раствора толщиной 20 мм; 3 — железобетонный столбик; 4 — стеновая панель; 5 — выпуски арматуры

Железобетонные фундаментные балки при шаге колонн 6 м в зависимости от размеров подколенников и способов опирания имеют длину от 5,95 до 4,3 м. Сечение фундаментных балок — тавровое и трапециевидное (рис. Х-4, а).

Под самонесущие стены из кирпича, мелких блоков и панелей высоту сечения балок принимают 450 мм, а под стены навесные из панелей — 300 мм. Ширина сечения балок поверху в зависимости от типа и толщины стены может составлять 200—520 мм.

При шаге колонн 12 м применяют балки трапециевидного сечения высотой 400 и 600 мм (последние для панельных стен с кирпичным цоколем), шириной поверху 300 и 400 мм; длина балок 11,95—10,2 м.

Верх фундаментных балок должен быть на 30 мм ниже уровня пола (отметка — 0,03 м). Балки устанавливают на подливку из цементного раствора толщиной 20 мм. Раствором заполняют также зазоры между торцами балок и стенками подколонников.

Навесные панели стен допускается опирать на слой набетонки, передавая их массу непосредственно на подколонники. В этом случае фундаментные балки целесообразно опирать на подколонники (а не на столбики) через консоли, выполняемые на каждом торце балок из двух стержней диаметром 18 мм. Длина таких консолей 150 мм. Отсутствие опорных столбиков позволяет упростить опалубку подколонников, снизить расход бетона и трудоемкость возведения фундаментов.

На практике работы нулевого цикла иногда заканчивают ниже отметки —0,15 м. В таких случаях фундаментные балки допускается укладывать на верхние уступы подколонников (при сохранении отметки верха балок — 0,03 м). При этом отпадает необходимость в столбиках, а фундаментные балки требуются одинаковой длины независимо-от места укладки (5,95 и 11,95 м).

По фундаментным балкам для гидроизоляции стен укладывают один-два слоя рулонного водонепроницаемого материала на мастике. Во избежание деформации балок вследствие пучения грунтов снизу и сбоков балок предусматривают подсыпку из шлака, крупнозернистого песка или кирпичного щебня.


Рис. 5. Детали фундаментов крайнего ряда колонн:
1 — песок; 2 — щебеночная подготовка; 3 — асфальтовое покрытие толщиной 20—40 мм;. 4 — гидроизоляция; 5 — колонна; 6 — шлак или крупнозернистый песок; 7 — железобетонные столбики; 8 — фундаментная балка

В отапливаемых зданиях при расположении рабочих мест около наружных стен необходимо утеплять пристенную зону пола цеха на ширину до 2 м. Для этой цели используют шлак, укладываемый слоем толщиной 0,5—0,7 м. По периметру здания устраивают отмостку из асфальта или бетона шириной 0,9—1,5 м, которой придают уклон 3—5% от стены.

Несущие стены в зданиях бескаркасных или с неполным каркасом опирают на ленточные фундаменты, которые, как и в гражданских зданиях, выполняют из сборных элементов.

Фундаменты для бескаркассных сооружений

При возведении бескаркасного ангара нет необходимости ставить мощный фундамент. Это объясняется незначительным весом конструкции. Данный факт снижает уровень затрат времени на возведение и объемы вложенных средств, а так же упрощает процес строительства. Подходящих фундаментов для зданий такого рода существует несколько: столбчатый, ленточный, на винтовых сваях, на колоннах и т д., выбирать подходящий нужно, основываясь на следующих параметрах: место строительства, отведенное время и пожелания заказчика.

Вообще технология бескаркасных арочных ангаров легко позволяет использовать в качестве фундаментов любые конструкции: от кирпичных стен до стальных элементов.

Ленточные фундаменты

На рынке строительства бескаркасных арочных сооружений самым востребованным является фундамент типа ленточный.

Конструкция ленточного фундамента для бескаркасных сооружений

Данный вид фундамента используют при строительстве различных домов, включая помещения с цокольными этажами, тяжелыми стенами, подвалами и т.п. ленточный фундамент прокладывается под капитальными наружными и внутренними стенами сплошной линией.

Конструкция ленточного фундамента для бескаркасных сооружений

Чтобы установить ленточный фундамент сначала необходимо вырыть котлован, внутри которого нужно разместить линию фундамента. По данной линии устанавливается опалубка. После того, как опалубку смонтировали, укрепляющую металлическую арматуру помещают внутрь, после чего заливают бетоном.

Фундаменты столбчатого типа

Конструкция столбчатого фундамента для бескаркасных сооружений

Фундаменты столбчатого типа предоставляют возможность значительной экономии материала. Сначала происходит процесс разбивки плана строения, после чего бурят или выкапывают скважины, диаметр которых 250 - 450 мм, а глубина 500 - 750 мм. И так каждые 1.5 - 2,5 м. по всему периметру. На конечном этапе заливают бетон и устанавливают закладные.

Конструкция столбчатого фундамента для бескаркасных сооружений

Фундаменты длягрунтов с повышенной влажностью

Глинистые, торфяные и песчаные грунты с повышенной влажностью – это проблемные, сложные грунты. Проектирование и устройство фундаментов из стандартных фундаментных блоков и монолитных фундаментов на этих грунтах несет в себе большую опасность. Торфяные и песчаные грунты не выдерживают нагрузки строений с такими фундаментами, а на глинистых грунтах при минусовых температурах их начинает рвать.

Конструкция фундамента бескаркасных сооружений для влажных грунтов

В таких случаях мы ы предлагаем строительство ангара на фундаменте из винтовых металлических свай длиной 2-6 метров и шагом установки через 2-4 метра, при этом отсутствуют бетонные работы и фундамент устанавливается за 2-3 дня. Применение винтовых свай для установки фундаментов на сложных грунтах стало наиболее надежным и экономически выгодным решением.

В зависимости от геологии (земля, состав грунтов), снеговой и ветровой нагрузки в проект закладывается разное расстояние между сваями фундамента.

На нашем сайте Вы можете оформить заявку на расчет стоимости предполагаемого строительства, или же просто позвоните - и мы ответим на все Ваши вопросы

Характеристики бескаркасных ангаров

Характеристики бескаркасных ангаров

Бескаркасные ангары представляют собой арочные здания, которым не нужны фермы, балки, крепежные детали и т.п. Способ соединения секций делает конструкцию водонепроницаемой — нет технологических отверстий под болты, шурупы и т.п. Незначительный вес конструкции позволяет обходиться без фундамента глубокого заложения, что позволяет строить ангар практически на любом грунте.

Гарантийный срок эксплуатации здания не менее 50 лет. Экономичные бескаркасные ангары расходуют меньше металла, чем при строительстве аналогичных зданий каркасного типа. При этом экономия достигается при возведении фундамента, т.к. бескаркасные ангары имеют меньший вес, чем каркасные сооружения.

Так как элементы конструкции бескаркасного ангара – дуги из оцинкованной стали изготавливаются и собираются непосредственно на месте монтажа, сроки строительства бескаркасного ангара в 7-10 раз быстрее, чем при строительстве каркасных ангаров. Например, меньше чем за один месяц, реально построить ангар площадью 1000 кв. м. (20м х 50м).

Быстровозводимый бескаркасный арочный ангар - это универсальный тип здания, который используется как склад, зернохранилище, овощехранилище, гараж, терминал и т.д.

Ширина до 24 метров и высота до 12 метров позволяют использовать его также в составе спортивного, выставочного или торгового комплекса или как укрытие для крупногабаритной техники. Современная технология предоставляет возможность в короткие сроки изготовить и смонтировать крытое арочное сооружение большой площади. Изготовление ангара производится на месте установки сооружения. Продолжительность возведения сооружения площадью 1000м2 — месяц.

Малый вес конструкции позволяет обойтись без мощного дорогостоящего фундамента, что существенно ускоряет работу. Фальцевые соединения секций делают его герметичным, за счёт этого снижаютя расходы на обогрев помещения. Быстровозводимый ангар сейсмоустойчив, выдерживает высокие ветровые и снеговые нагрузки. По окончанию строительства не требуются отделочные работы, а также ремонтные работы раз в три года. За счёт всего этого стоимость ангара значительно ниже по сравнению с другими технологиями строительства зданий.

Читайте также: