Выбор источников света и светильников

Обновлено: 02.05.2024

Выбор источников света и светильников

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

от 24 декабря 2020 года N 2255

2. Настоящее постановление вступает в силу с 1 января 2021 г., за исключением:

а) подпункта "б" пункта 19, пунктов 23, 24, 28 и 29 требований, утвержденных настоящим постановлением, которые вступают в силу с 1 июля 2021 г.;

б) пункта 31 требований, утвержденных настоящим постановлением, который применяется:

в отношении светильников со светодиодами для наружного освещения - с 1 апреля 2021 г.;

в отношении светильников со светодиодами для внутреннего освещения промышленных объектов - с 1 июля 2021 г.;

в отношении светодиодных ламп и прочих светильников со светодиодами - с 1 октября 2021 г.

Председатель Правительства
Российской Федерации
М.Мишустин

УТВЕРЖДЕНЫ
постановлением Правительства
Российской Федерации
от 24 декабря 2020 года N 2255

Требования к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения

I. Основные положения

1. Настоящий документ устанавливает требования к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения (далее - требования).

Настоящие требования не распространяются:

а) на декоративно-художественное освещение и архитектурную подсветку;

б) на иллюминацию и освещение рекламных конструкций;

в) на аварийное и эвакуационное освещение;

г) на освещение для специальных применений и военной техники.

2. Для целей настоящих требований используются следующие понятия:

"диффузный рассеиватель" - светопрозрачный элемент из матового материала, при применении которого в осветительном приборе перераспределение излучения происходит преимущественно путем диффузного отражения и (или) пропускания света;

"защитное стекло" - светопрозрачная часть оболочки осветительного прибора, при применении которой в осветительном приборе не рассеивается свет диффузно и не происходит влияния на визуально воспринимаемую яркость источника света;

"зеркально-отражающая оптическая система" - отражающая оптическая система, в которой отражение происходит преимущественно на основе явления зеркального отражения света;

"индекс цветопередачи" - мера соответствия зрительных восприятий цветного объекта, освещенного исследуемым и стандартным источниками света при определенных условиях наблюдения (с учетом хроматической адаптации наблюдателя);

"источник света" - устройство, излучающее свет в результате преобразования электрической энергии;

"коррелированная цветовая температура" - температура излучателя Планка (черного тела), имеющего значения координат цветности, наиболее близкие к значениям координат цветности, соответствующим спектральному распределению излучения рассматриваемого объекта;

"коэффициент мощности" - комплексный показатель, характеризующий линейные и нелинейные искажения формы тока и напряжения в электросети, обусловленные влиянием нагрузки;

"коэффициент пульсации светового потока" - критерий оценки относительной глубины колебаний светового потока источника света при питании его переменным током;

"кривая силы света" - график и соответствующий ему тип зависимости силы света светового потока источника света или осветительного прибора от меридиональных и экваториальных углов, получаемый сечением его фотометрического тела плоскостью или поверхностью;

"лампа направленного света" - лампа, колба которой имеет особую форму, содержит отражающие или преломляющие свет части для перераспределения или концентрации света;

"лампа ненаправленного света" - источник, излучающий свет внутри больших, вплоть до 4, телесных углов, не имеющий специальных оптических элементов для перераспределения света;

"лампа общего назначения" - лампа, применяемая для целей общего освещения помещений;

"люминесцентная лампа" - ртутная лампа низкого давления, в которой свет излучает один или несколько слоев люминофора, возбуждаемых ультрафиолетовым излучением разряда;

"малогабаритный встраиваемый светильник (даунлайт)" - концентрирующий свет небольшой светильник, как правило, встраиваемый в потолок;

"нитевидная (филаментная) светодиодная лампа" - лампа, состоящая из светодиодных источников света в виде светящихся нитей, без вторичной оптики и прозрачной или матовой (молочной) колбы (возможно применение колб различного цвета, например опаловых колб);

"номинальное значение" - количественное значение параметра, заявленное производителем;

"нормированное значение" - количественное значение параметра при заданных рабочих условиях (если не указано иное, все требования соответствуют нормированным значениям);

"осветительное устройство" - прибор, предназначенный для освещения и содержащий один или несколько электрических источников света и осветительную арматуру;

"призматический рассеиватель" - светопрозрачный элемент из прозрачного материала, преломляющий и диффузно рассеивающий проходящий через него свет от источника света благодаря неровной поверхности с тиснением (например, в виде призм, полусфер, "колотого льда" и т.д.) и снижающий визуально воспринимаемую яркость закрытого им источника света;

"прожектор" - осветительный прибор, концентрирующий излучение источников света с помощью элементов оптической системы (зеркал и (или) линз) в направлении, как правило, оптической оси с ограниченным углом излучения и, как правило, имеющий приспособления для изменения направления светового пучка (лиру), а в ряде случаев и его угловых размеров (фокусирующее устройство);

"светильник" - осветительный прибор, перераспределяющий излучение источников света внутри больших, вплоть до 4, телесных углов;

"светильник для наружного утилитарного освещения" - светильник, предназначенный для освещения магистралей, дорог, улиц, площадей в темное время суток;

"светильник для освещения пешеходных пространств" - светильник, предназначенный для освещения тротуаров, парков, скверов, садов и других территорий с пешеходным движением;

"светильник общего назначения " - светильник, предназначенный для общего освещения помещений и открытых пространств без акцентирующих эффектов и создания локального освещения;

"светильник с открытым выходным отверстием" - светильник, выходное окно которого не перекрыто рассеивателем, защитным стеклом, светоотражающей решеткой и др.;

"светильник со светодиодами" - светильник, в котором в качестве источников света используются светодиодные лампы или модули;

"светодиодная лампа" - устройство, которое не может быть разобрано без неизбежного повреждения, включающее в себя светодиодный источник света и любые дополнительные элементы, необходимые для зажигания и стабильной работы источника света;

"световая отдача" - величина, определяемая отношением светового потока источника света или осветительного прибора к потребляемой им электрической мощности и характеризующая энергетическую эффективность источника света или осветительного прибора;

"электрическая лампа" - источник оптического излучения, создаваемого в результате преобразования электрической энергии.

II. Требования к энергетической эффективности ламп общего назначения

3. Требования к энергетической эффективности ламп общего назначения устанавливаются в зависимости от типа ламп и их номинальной мощности.

4. К люминесцентным лампам со встроенным пускорегулирующим аппаратом (далее - компактные люминесцентные лампы) и светодиодным лампам устанавливаются следующие требования:

а) минимальные нормированные значения световой отдачи () компактных люминесцентных ламп ненаправленного света с общим индексом цветопередачи менее 90:

Искусственное освещение

Качество искусственного освещения помещений зависит от многих факторов, главные из которых будут рассмотрены в этой статье. Статья написана не для проектировщиков осветительных установок (они в основном все это знают), а для тех, кто хочет разобраться в сложных вопросах, касающихся освещения помещений. Некоторые вопросы, касающиеся тематики данной статьи уже рассматривались в статьях Проектирование освещения квартир, Светильники для кухни. В статье Основные светотехнические характеристики светильников имеются ссылки на стандарты, в которых установлены правила измерения светотехнических характеристик. В данной статье рассмотрены вопросы:

  • Освещенность
  • Цилиндрическая освещенность
  • Спектр света и индекс цветопередачи
  • Цветовая температура
  • Пульсации освещенности
  • Неравномерность освещенности
  • Показатели дискомфорта
  • Требования к светильникам
  • Магазины светильников

Освещенность

Освещенность помещения является основополагающим фактором, определяющим комфортность окружающей световой среды и соответственно качества искусственного освещения. Вычисляется как величина светового потока Ф, падающего на единицу площади освещаемой поверхности. Освещенность обозначают буквой Е. Имеет размерность люкс (лк), 1лк=1лм/м 2 . Здесь световой поток, это мощность светового излучения, воспринимаемого человеком как видимый свет, имеет размерность люмен (лм). Именно освещенность определяет, хорошо ли освещены окружающие нас предметы.

Человеческий глаз способен адаптироваться под разные условия освещенности. Мы может читать мелкий текст и при освещенности в 1 Люкс, и при 50000 Люкс. Но комфортной для глаз является освещенность 300 – 500 Лк. В некоторых случаях, когда требуется различать очень мелкие предметы, величина комфортной освещенности может находиться в пределах 1000 – 1500 Лк.

Свод Правил СП 52.13330 входит в перечень нормативных документов обязательного применения. Сейчас принят ГОСТ Р 55710-2013 добровольного применения, в соответствие с которым допускается нормировать среднюю освещенность на рабочей поверхности. При проектировании освещения, как правило, не сложно одновременно выполнить нормы, как по минимальной освещенности, так и по средней освещенности на рабочей поверхности.

Цилиндрическая освещенность

Как правило, при проектировании осветительных установок помещений ограничиваются расчетом горизонтальной освещенности. При таком упрощенном подходе к проектированию осветительной установки помещения трудно говорить о высоком качестве искусственного освещения.

В помещениях, в которых происходит общение людей (выставочные залы, конференц-залы) важным параметром является цилиндрическая освещенность, которую необходимо учитывать при проектировании освещения. При низкой величине этого параметра даже при достаточной горизонтальной освещенности мы можем увидеть лицо человека, на которое падает тень. Это происходит, если ближайший к собеседнику светильник находится за его спиной.

Цилиндрическая освещенность характеризует степень насыщенности помещения светом. Ее определяют как среднюю плотность светового потока, падающего на поверхность цилиндра, расположенного вертикально. При этом геометрические размеры цилиндра стремятся к нулю.

В небольшом помещении (площадью менее 40 – 50 м 2 ) первостепенную роль играет коэффициент отражения стен. При этом если стены и потолок светлые и хорошо отражают свет, то даже если единственный светильник находится за спиной нашего собеседника, его лицо мы видим освещенным светом, отраженным от стен и потолка.

Для обеспечения комфортной световой среды необходимо обеспечить цилиндрическую освещенность помещения порядка 50 - 150 лк. Но, для достижения хороших показателей цилиндрической освещенности требуется совместная согласованная работа светотехников, отвечающих за выбор и расстановку осветительных приборов и дизайнеров, отвечающих за выбор цвета и способов отделки стен и потолка.

Если совсем не контролировать цилиндрическую освещенность, то в принципе можно создать осветительную установку, которая будет соответствовать всем требованиям по горизонтальной освещенности, но качество осветительной установки окажется недопустимо плохим. Для небольшого помещения, например, размером 5х6 метров можно взять светодиодный прожектор мощностью около 50 Вт с углом рассеивания 120х60 градусов, который прекрасно способен осветить небольшую спортивную площадку во дворе дома, и установить его на потолке комнаты. После чего можно долго ходить с люксметром по комнате и радоваться достигнутым результатам по горизонтальной освещенности на уровне пола. Но, стены и особенно потолок окажутся темными. Кроме того, будет просто невозможно повернуться лицом в сторону прожектора. Здесь, как будет показано ниже, окажутся неприемлемыми еще и показатели дискомфорта.

Спектр света и индекс цветопередачи

Видимый нами свет представляет собой электромагнитную волну (подробнее о волновой природе света можно прочитать в статье Основные понятия о видимом свете). Источники света (лампы) излучают не весь спектр видимого света, а лишь некоторую его часть. Причем в спектре источников электрического освещения могут присутствовать значительные всплески и провалы, и даже отдельные спектральные линии. Это приводит к тому, что в условиях искусственного освещения происходит искажение восприятия цветов и их оттенков. Например, если в спектре излучения лампы отсутствуют световые волны, соответствующие красному цвету, то при рассмотрении предметов красного цвета мы увидим их неестественно темными.

Для количественной оценки источников света по обеспечению естественности и точности восприятия цветов и их оттенков введен показатель индекс цветопередачи Ra, который может принимать значения от 0 до 100. Лучшие по цветопередаче источники света на сегодняшний день – лампы накаливания (включая галогенные лампы - усовершенствованные варианты ламп накаливания). Их показатель Ra принимают равным 100. Индекс цветопередачи лучших светильников с люминесцентными лампами достигает значения 90 (отдельные экземпляры могут иметь Ra=95) .

Сравнительную таблицу с параметрами различных источников света можно посмотреть в статье про выбор источников света.

Индекс цветопередачи в некоторых случаях не играет особой роли, например, если мы читаем книгу. Но, если важным является правильное различение цветов и их оттенков, то индекс цветопередачи выходит на первый план. Для достижения высокого качества искусственного освещения индекс цветопередачи должен быть не менее 90.

Люстры и потолочные светильники на Яндекс.Маркет - цены, отзывы, динамика изменения средней цены:

Комфортное освещение для работы и отдыха

Мне редко встречались пространства с продуманным искусственным освещением, часто лампы светят в глаза, помещение недостаточно освещено и цвета предметов выглядят тусклыми или искажаются. Кроме того, освещение часто дает страшные тени на лицах. Я постарался разобраться в причинах и сделать приятное освещение.

Эта заметка содержит описание общих принципов создания комфортного освещения и фактическую реализацию бюджетного освещения жилой мастерской.



Началось с того, что я задумал превратить захламленную мансарду над гаражом в подмосковной Малаховке в жилую мастерскую, чтобы там паять, сверлить и творить.
Для реализации освещения понадобилось освоить некоторые фундаментальные характеристики:

Освещенность

Освещенность, это, грубо говоря, количество света, падающего на единицу площади, измеряется в Люксах (lux). Днем освещенность на улице обычно от 2000 до 100,000 lux. Европейский стандарт для освещения рабочих помещений рекомендует следующие значения освещенности:

Освещенность Назначение
300 lux повседневная работа в офисе, не требующая разглядывания мелких деталей
500 lux чтение, письмо и работа за компьютером
500 lux освещение переговорных комнат
750 lux техническое черчение

По моим наблюдениям очень многие помещения в России страдают недостаточным уровнем освещенности, но в определенных местах встречается и переосвещенность. Есть данные о том, что неправильный уровень освещенности может вызывать головные боли, быструю утомляемость, нарушения зрения и другие неприятности. (подробнее в википедии: Light ergonomics, Light effects on circadian rhythm )

Чтобы понять сколько нужно ламп для создания определенного уровня освещенности можно воспользоваться различными способами приблизительного расчета.

Как измерить освещенность в своей комнате?

Обычно освещенность измеряют на уровне рабочей поверхности, например стола. Для простоты я измерял на уровне 1 м над полом.
Для измерения освещенности я использовал экспонометр, вместо него приблизительно измерить освещенность можно фотоаппаратом с экспонометром. При измерении экспонометром получаем EV и потом переводим в lux с помощью таблицы.

Индекс цветопередачи (CRI)


Источники света имеют такую важную характеристику как Индекс цветопередачи(Color rendering index, CRI), чем выше его значение тем лучше цветопередача, максимальное значение Ra = 100.
По этой картинке заметно как страдает цветопередача красных и синих оттенков у люминесцентных ламп с низким CRI:

В названии люминесцентных ламп обычно содержится 3 цифры, первая цифра характеризует индекс цветопередачи 1×10 Ra.
Вторая и третья — указывают на цветовую температуру лампы. Например, наиболее распространенные 640 лампы — это лампы с плохой цветопередачей 6*10 = 60 Ra и цветовой температурой 40*100 = 4000K. Лампы с низким Ra не подходят для жилых помещений, хотя и имеют более высокую светоотдачу.

Цветовая температура


Цветовая температура это, грубо говоря, соотношение красных и синих волн в спектре излучения.

Свет до 5000 K принято называть теплым, а выше — холодным.
Среди знакомых довольно много предпочитающих теплое освещение. Мне кажется это из-за привычки к лампам накаливания(2200—3000 K) и низкого уровня цветопередачи большинства люминесцентных ламп. Естественное дневное освещение, в среднем, имеет цветовую температуру 6500 К.


Есть еще такой момент: цветовосприятие человека сильно изменяется в зависимости от освещенности. При небольшой освещенности мы лучше видим синий и хуже красный. Поэтому для каждого уровня освещенности существует наиболее подходящий диапазон цветовой температуры источников света.
Кривая, представляющая эту зависимость, названа именем нидерландского физика Arie Andries Kruithof. Вот она:

Проще говоря, это означает что приглушенный свет лучше делать теплым (2000-3000K), а яркий свет более холодным .

Какой свет нужен для продуктивной работы?
Ссылки на научные статьи
Субъективные соображения



В течении дня цветовая температура солнечного света изменяется:

Также изменяется освещенность и направление света. Именно поэтому кажется логичным делать интенсивное верхнее освещение в течение дня и приглушенное теплое для вечера.
В итоге решил сделать 2 режима освещения: дневной верхний свет, с цветовой температурой 4000K и освещенностью

300 lux и вечерний нижний свет 2700K

Выбор ламп и монтаж
  • ЭПРА отделен от лампы
  • у трубки значительно большая площадь стекла при сопоставимом с компактной лампой световым потоком, благодаря этому свет от нее более мягкий и дает меньше бликов

600 р.). Производитель рекомендует делать кабели идущие от ЭПРА к лампе как можно короче, а именно:

При длинне лампы 1,5 м выполнить все рекомендации оказалось непросто. Итоговый вариант подключения:


Общий вид:


Итоговое измерение освещенности: 6.8 EV, т.е. примерно 300 lux.


Для вечернего нижнего освещения используется сферическая лампа, ставшая ненужной после ремонта в квартире.

Освещение школьных классов и учебных аудиторий

Методический материал для руководств учебных заведений, сотрудников технического надзора и родительских комитетов. Будет интересен всем, кто интересуется качеством световой среды в помещениях, где он учится, работает и живет.


Рис. 1. Пример параметров световой среды в классной комнате, с люминесцентными лампами не соответствующей требованиям СП 52.13330.2016 цветопередачи Ra(CRI) < 60 и с устаревшими электромагнитными ПРА, из-за которых коэффициент пульсации освещенности превышает 30 %. Использован спектрометр Uprtek mk350n и люксметр-яркомер-пульсметр ЕЛАЙТ02

Содержит требования к документально подтверждаемым и проверяемым параметрам световой среды, шаблон протокола осмотра систем освещения и рекомендации по устранению несоответствий.

1. Требования к световой среде

Световая среда — совокупность измеряемых или описываемых влияющих на человека факторов окружающей среды, связанных с освещением.

1.1. Общие требования к параметрам световой среды для классов и учебных аудиторий


1.2. Дополнительные требования к светодиодным светильникам


2. Параметры световой среды: описание и способы определения

Параметры световой среды можно измерить или проконтролировать. Несоответствие является основанием для корректирующих действий.

2.1 Средний уровень освещенности парт в соответствии с СанПиН 2.2.4.3359-16 не должен быть ниже 400 лк. Минимальная освещенность парт не должна быть ниже 90 % этой нормы.

Причиной несоответствия может быть постепенное снижение светового потока люминесцентных ламп. Если в помещении не работает более одной люминесцентной лампы, скорее всего, лампы заменяются при выходе из строя, а не по графику. В таком случае необходим приборный контроль освещенности.

Для визуального комфорта разница освещенности парт неважна, но доска должна быть освещена не хуже парт. По СП 52.13330.2016 освещенность центра доски не менее 500 лк. Часто норма не соблюдается из-за того, что для доски нет отдельного светильника. Общим освещением выполнить норму можно, увеличив количество потолочных светильников в полтора раза. Чего, конечно, не делается. И хорошо освещенные дети смотрят на плохо освещенную доску.

В вузах отдельного требования к освещенности доски нет.

Единственный способ определить освещенность — измерить люксметром из реестра средств измерений со свидетельством о поверке или сертификатом о калибровке. Люксметры, не имеющие таких документов, могут ошибаться на десятки процентов. А программы для смартфона, якобы измеряющие освещенность, ошибаются в несколько раз.


Рис. 2. Светотехнический расчет школьного класса в программе Dialux

Освещенность рассчитывается с помощью программы Dialux [1] (рис. 2) или вручную [2].
Размеры, расстановка парт и даже цвет стен в учебных учреждениях определены санитарными требованиями и однотипны. Это позволяет использовать упрощенную унифицированную методику оценки средней освещенности E парт. Для этого нужно суммарный световой поток F потолочных светильников разделить на площадь класса S и дополнительно умножить на поправочный коэффициент 0,6:

.
2.2. Коэффициент пульсации освещенности — параметр, влияющий на утомляемость зрения. Питание светильника переменным сетевым напряжением приводит к пульсациям освещенности под светильником с частотой 100 Гц. Пульсации незаметны, но затрудняют перевод и удерживание взгляда [3]. Глубина пульсаций зависит от источника питания светильника, ее можно измерить портативным люксметром-пульсметром.

Коэффициент пульсаций люминесцентных ламп старого типа с электромагнитным ПРА (ЭмПРА) — 40…45 %, ламп накаливания — 10…15 %. У современных светодиодных светильников — обычно не выше 1…3 %. Однако и среди светодиодных светильников встречаются модели с упрощенным источником питания и пульсациями, не соответствующими нормам.

Высокий уровень пульсаций проявляется, когда светильник снимают на камеру смартфона (по изображению идут темные полосы), и виден на карандашном тесте (движущийся на фоне светильника карандаш, как под стробоскопом, будто замирает в некоторых положениях (рис. 3)).


Рис. 3. Уровень пульсаций 45,5 % освещенности для люминесцентного светильника с электромагнитным ПРА. И вызываемый этими пульсациями стробоскопический эффект при карандашном тесте [3].

Смартфон и карандаш — не средства измерения, результаты таких «проверок» показывают проблему, но не имеют юридической силы, однако являются достаточным основанием для измерения пульсаций с помощью прибора.

2.3. Индекс цветопередачи Ra ≥ 80 (или CRI ≥ 80) характеризует качество света, зрительный и эмоциональный комфорт. Он зависит от количества цветов радуги в спектре, определяет количество цветовых оттенков в сцене и соответствие этих оттенков тем, что видны под естественным освещением. Использование света высокой цветопередачи улучшает качество жизни, позволяет видеть больше и яснее. Использование источников света с низкой цветопередачей приводит к общему гнетущему впечатлению [4].


Рис. 4. Пример лампы с цветовым кодом в маркировке 765, что означает цветопередачу Ra = 70 и цветовую температуру КЦТ = 6500 К

CRI (color rendering index) — система индексов цветопередачи. Ra — наиболее важный общий индекс, значение которого нормируется. Правильно говорить о значении Ra, но производители светильников в паспорте часто пишут «CRI», не уточняя, что идет речь об Ra.

(Добавлено 2021.04.28) В соответствии с п. 26 ПП РФ от 24 декабря 2020 г. № 2255 «Об утверждении требований к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения» Общий индекс цветопередачи светильников со светодиодами должен составлять не менее 90 для светильников, применяемых в целях освещения в дошкольных, общеобразовательных, профессиональных образовательных организациях и образовательных организациях высшего образования.

Люминесцентные лампы и светодиодные светильники выпускаются с Ra ≥ 80, Ra ≥ 90 и даже Ra ≥ 95. Источники света с повышенной цветопередачей применяются при особенных требованиях к качеству света, к примеру в школьной художественной студии.

Наблюдения за тем, как выглядит, к примеру, кожа ладони под дневным светом и искусственным освещением, позволяют «на глаз» отличать свет с низкой и высокой цветопередачей. Но этот метод неточен. Значение цветопередачи можно определить только с помощью спектрометра.

2.4. Коррелированная цветовая температура (КЦТ), или цветовая температура, не выше 4000 К —важное требование. Холодный белый (т. е. с синим оттенком) свет цветовых температур 5000, 6000, 6500 К и т. д., особенно при низкой цветопередаче и освещенности, воспринимается как синюшный или «слепой» свет. А избыточное содержание синей компоненты в спектре вызывает нарекания у специалистов по нарушениям сна.

Теплый (т. е. с желтым оттенком) свет цветовой температуры 2700 или 3000 К допускается, но нравится не всем, так как кажется недостаточно ярким. Теплый свет целесообразно использовать вечером, но утром и днем при недостаточном уровне естественного освещения провоцирует сонливость и снижение работоспособности.

Не все предпочитают выраженно теплый или холодный свет. Нейтральный белый свет без синего или желтого оттенка с цветовой температурой 4000 К — обоснованный компромисс, устраивающий большинство. Это значение указывалось в рекомендациях гигиенистов, на основе которых составлялись нормативные документы. Свет этой цветовой температуры чаще других используют в общественных помещениях.

4000 К — типовое округленное значение, которому по ГОСТ Р 54350-2015 «Приборы осветительные. Светотехнические требования и методы испытаний» соответствует диапазон 3710…4260 К. Этот допуск обоснован естественным разбросом параметров источников и разницей температуры света, идущего от светильника под разными углами. Поэтому если в паспорте указано 4000 К, а прямой замер спектрометром показывает, к примеру, 4100 К — несоответствия нет. Для сравнения с нормативом необходимо округлить значение КЦТ 4100 К до 4000 К и уже округленное значение должно соответствовать условию «не выше 4000 К».

Необходимо отметить, что требование к цветовой температуре не выше 4000 К устанавливается только для светодиодных светильников письмом Роспотребнадзора № 01/11157-12-32. Для люминесцентных светильников таких ограничений закон не устанавливает.

Так как устанавливается не конкретное значение цветовой температуры, а диапазон, возможно использование осветительных приборов с автоматически изменяемой цветовой температурой в течение суток.

2.5. Условный защитный угол светодиодных светильников не менее 90° означает запрет потолочных светильников, в которых видны не закрытые рассеивателем светодиоды.


Рис. 5. Слева направо: рассеиватель из матового пластика; из прозрачного пластика с призматическим тиснением; из прозрачного пластика с тиснением «колотый лед»

Рассеиватели из прозрачного пластика с тиснением в виде призм, «колотого льда», шагрени и пр. в некоторых случаях недостаточно снижают неприятную яркость светодиодов. Потолочные светильники с такими рассеивателями светят преимущественно под себя, в результате чего свет в помещении идет сверху вниз, создавая тягостное впечатление «как в колодце».

Рассеиватели из светорассеивающего пластика — матовые (диффузные, опаловые или молочные), обеспечивают больший зрительный комфорт, равномернее освещают рабочие поверхности и лучше освещают вертикальные поверхности. При выборе нового оборудования целесообразно выбирать матовые рассеиватели.

2.6. Габаритная яркость светодиодных светильников не выше 5000 кд/м 2 — условие, позволяющее смотреть на светильник без визуального дискомфорта. Такая яркость по порядку величины соответствует видимой изнутри помещения яркости оконного проема в солнечный день.

Для потолочных светильников с рассеивателем из матового пластика размерами 600 × 600 мм или 300 × 1200 мм габаритная яркость не превышает допустимые 5000 кд/м 2 , если световой поток не превышает 5000 лм. Этому требованию удовлетворяют почти все подобные светильники.

2.7. Условие неравномерности яркости светодиодных светильников Lmax:Lmin не более 5:1 является требованием использовать рассеиватель, за которым не видно неприятно ярких светодиодов.


Рис. 6. Светодиодный светильник и измерение неравномерности его яркости. Яркость измерена дистанционным яркомером LMK Mobile Advanced

Даже если ряды светодиодов через рассеиватель видны, но рассеиватель изготовлен из матового или опалового пластика, однородность яркости обычно соответствует требуемой.

Контраст яркостей на улице в солнечный день многократно превышает 5:1 и не является большой проблемой. Поэтому если пятна яркости на рассеивателе светодиодного светильника визуально не кажутся значительно ярче светящейся трубки люминесцентной лампы, то и беспокоиться об этом не следует.

2.8. Объединенный показатель дискомфорта UGR характеризует, как много светильников, вызывающих дискомфорт своей яркостью, находится в поле зрения ребенка. Самое большое значение UGR обычно для задних парт в больших классах.

UGR проверяется расчетом в специализированных программах, таких как Dialux, и не может быть проверен после установки светильников в классе.

Если проанализировать требования к расстановке парт и размерам класса из СанПиН 2.4.2.2821-10, окажется, что наиболее неблагоприятный для величины UGR случай — длинный класс с максимальным допустимым расстоянием от дальней парты до доски 8,6 м и тремя рядами двойных парт. На рис. 8 показан расчет UGR в таком классе, освещенном светильниками с довольно большим световым потоком 3600 лм и матовыми рассеивателями. Даже на последних рядах UGR не превысил максимально допустимое значение UGR = 19 из имеющего рекомендательный характер ГОСТ Р 55710-2013 и тем более соответствует требованию UGR ≤ 21 из обязательного к применению СП 52.13330.2016.

В маленьких классах с менее яркими светильниками или с другими типами рассеивателей UGR будет еще меньше. Расчет для худших условий показывает, что нет необходимости рассчитывать UGR для остальных классов, в которых он будет принимать еще меньшие, заведомо соответствующие норме значения.


Рис. 7. Расчет UGR для наиболее неблагоприятного случая в программе Dialux. UGR меняется от UGR = 12 на передних рядах до UGR = 18 для учеников на задней парте по центру, в поле зрения которых одновременно находится максимальное количество светильников

3. Что учесть при замене осветительного оборудования

3.1. Модернизация люминесцентных светильников

Недостаточная освещенность и низкая цветопередача исправляются заменой ламп. Предпочтительный цветовой код новых ламп — 840 (что означает Ra ≥ 80, КЦТ = 4000 К) или, если желательна повышенная цветопередача, 940.

Высокий коэффициент пульсаций светового потока исправляется заменой в люминесцентных светильниках электромагнитных ПРА (дросселей) на электронные, которые обеспечивают минимальные пульсации.

3.2. Замена люминесцентных светильников на светодиодные

О возможности использования светодиодных светильников в школах и вузах указано в письмах Роспотребнадзора № 01/11157-12-32 от 01.10.2012 «Об организации санитарного надзора за использованием энергосберегающих источников света» и № 01/6110-17-32 от 17.05.2017 «О возможности использования светодиодного освещения».

Светодиодный светильник при том же световом потоке потребляет минимум вдвое, а обычно втрое меньше электроэнергии, чем люминесцентный старого типа с электромагнитным ПРА. А параметры световой среды получаются не хуже, чем при использовании современных светильников с электронными ПРА и хорошими люминесцентными лампами.

Без ремонта потолка квадратные люминесцентные светильники легко заменяются на квадратные светодиодные, а вытянутые — на вытянутые.

3.3. Сертификация

Наличие таких документов означает, что светильник не «ударит током» и что работа светильников в здании не помешает работе чувствительной к сетевым помехам техники.

С 2021 года вступает в силу технический регламент ТР ЕАЭС 048/2019 «О требованиях к энергетической эффективности энергопотребляющих устройств», по которому устанавливаются обязательные требования светоотдачи (энергоэффективности), качества света (индекс цветопередачи) и ряд других эксплуатационных параметров. Сертификация по данным требованиям будет производиться на основании протоколов испытаний в фотометрических лабораториях.

Также есть добровольные (необязательные) формы сертификатов и заключений, подтверждающих что светильники «пахнут», «звучат» или «стимулируют развитие микрофлоры». К качеству, безопасности или эффективности освещения эти бумаги отношения не имеют.

В настоящее время не существует систем сертификации, подтверждающих, что светильник рекомендован для учебных заведений. Никто не вправе выставлять такие требования или давать такие рекомендации.

3.4. Требования к светильникам

Чтобы параметры световой среды в классе соответствовали установленным законом требованиям и не поступало обоснованных жалоб на «плохое освещение», светильник должен соответствовать следующим условиям:

  1. Индекс цветопередачи: Ra ≥ 80 или CRI ≥ 80 для светильников с люминесцентными лампами, и Ra ≥ 90 или CRI ≥ 90 для светодиодных светильников.
  2. Коэффициент пульсации освещенности (или светового потока): Кп ≤ 5 %.
  3. Коррелированная цветовая температура: КЦТ = 4000 К, или КЦТ менее 4000 К, или КЦТ, изменяемая в течение суток.
  4. Тип рассеивателя: матовый (или опаловый).
  5. Условный защитный угол: не менее 90° (т. е. не видно открытых светодиодов).
  6. Габаритная яркость: не более 5000 кд/м 2 .
  7. Неравномерность яркости выходного отверстия Lmax:Lmin не более 5:1.

Желательно, чтобы необходимые параметры указывались в паспорте светильника, так как паспорт является документальным подтверждением соответствия нормативам и при выявленном несоответствии позволяет требовать гарантийной замены оборудования.

3.5. Необходимое количество светильников

При установке новых светильников на места старых «один в один» освещенность не уменьшится, если световой поток новых светильников не ниже светового потока старых.

Если количество светильников меняется, необходимое количество новых светильников для достижения освещенности на партах не менее 400 лк можно определить по методике из п. 2.1.
Важное значение имеет эффективность, или световая отдача, светильника. Нельзя добиваться нужной освещенности, используя большое количество низкоэффективных светильников. В проекте межгосударственного стандарта ГОСТ 32498—20хх «Методы определения показателей энергетической эффективности искусственного освещения помещений» приводится требование к удельной установленной мощности ω, равной отношению суммарной мощности светильников в помещении P к его площади S:


В классных комнатах и аудиториях при использовании светильников с люминесцентными лампами удельная установленная мощность не должна превышать 13 Вт/м 2 , а при использовании светодиодных светильников — 8 Вт/м 2 .

ПП РФ №1356 устанавливает с 1 января 2020 года требование к типичным школьным светодиодным светильникам с матовым рассеивателем — иметь световую отдачу не менее 105 лм/Вт. Этого значения с небольшим запасом достаточно, чтобы соблюсти требования и по указанной выше установленной мощности, и по освещенности.

3.6. Экономическая целесообразность замены светильников на светодиодные

Требование к установленной мощности при использовании люминесцентных светильников не более 13 Вт/м 2 выполнимо только при использовании современных светильников, сопоставимых по стоимости со светодиодными. При этом, учитывая, что световая отдача светодиодных светильников все равно выше, целесообразно выбирать их.

Выбирая, оставить люминесцентные светильники старого типа или поставить светодиодные с меньшим энергопотреблением, нужно сравнить разницу цен на оборудование со стоимостью сэкономленной электроэнергии за предполагаемый срок службы.

Потребляемую за год электроэнергию Wгод можно рассчитать по формуле:


где P — суммарная мощность всех светильников в ваттах, tгод — время работы светильников за год в часах. По данным из проекта ГОСТ 32498—20хх, при 2-сменном режиме школы наработка tгод за год составляет 2250 часов.

При разнице энергопотребления в два раза и разумном сроке окупаемости светильников 3…5 лет стоимость замены может оказаться оправдана.

4. Юридические и этические аспекты

Проверить характеристики установленных светильников, а также создаваемую ими освещенность можно в темное время суток с помощью портативных приборов: люксметра, пульсметра и спектрометра. Протокол измерений имеет юридическую значимость, если приборы внесены в реестр средств измерений и имеют действующие свидетельства о поверке или калибровке.
В любом регионе есть представительства светотехнических компаний и лабораторий, которые по запросу пришлют в школу представителя с поверенными измерительными приборами.
Если люксметра, пульсметра и спектрометра найти не удалось, большинство параметров осветительной системы можно проверить на основании данных из паспортов светодиодных светильников и цветового кода в маркировке люминесцентных ламп.

Паспорта светильников, сертификаты соответствия и копии протоколов, на основе которых сертификаты выписаны, хранятся у завхоза или в бухгалтерии и могут быть затребованы для ознакомления. В паспортах должны быть приведены необходимые для составления протокола осмотра осветительной системы параметры. Дополнительным документом, иногда предоставляемым производителем, является протокол светотехнических испытаний светильника, подтверждающий указанные в паспорте характеристики. Этот комплект документов важен тем, что определяет ответственность производителя.

Выявленное несоответствие фактических, полученных измерениями, значений заявленным в паспортах светильников является основанием для гарантийной замены оборудования. Если производитель от ответственности отказывается, необходимо обратиться в Роспотребнадзор.
Если необходимые для соответствия санитарным нормам параметры в паспорте светодиодного светильника не указаны или указаны и не соответствуют нормативам, ответственность за несоответствие несет подписавший приказ о закупке.

Школа, возможно, не позволит представителям родительского комитета провести осмотр осветительной системы и не предоставит для ознакомления паспорта светильников, тем более для составления протокола. Но предложение родительского комитета такое обследование провести, несомненно, приведет к тому, что школа проведет обследование сама или закажет экспертизу. Что, в свою очередь, приведет к выявлению и устранению проблем.

Важно то, что определение несоответствия освещения нормативам не вызывает и не обостряет противостояния родители — школа, но направляет уже существующие отношения в конструктивное русло. Любые обстоятельства можно обсудить и решить ко всеобщему удовлетворению.

Если изменить не получается совсем ничего, можно согласиться с тем, что рано или поздно проведут капитальный ремонт здания и у следующего поколения учащихся освещение будет хорошим. А этому поколению вдобавок к высокой учебной нагрузке, чрезмерному использованию смартфонов и недостаточности прогулок придется пережить и низкое качество освещения.

5. Шаблон протокола осмотра осветительной системы

Пошаговое заполнение протокола осмотра позволяет найти проблемы осветительной системы и сделать однозначный вывод о необходимых мерах.

Если измерить некоторые параметры нет возможности, но расчет или экспресс-оценка показывают соответствие нормам, в протоколе отмечается, что претензий к этим параметрам нет. Результат оценки юридически не значим, но отсутствие претензий — значимо.


Рис. 6. Шаблон протокола осмотра. Ссылка на файл: yadi.sk/i/kVk2OAcyXMMFKw

Авторы, благодарности и список литературы
Авторы

Данный документ имеет статус препринта, и опубликован для публичного обсуждения со всеми заинтересованными лицами и организациями.

Редакция v2.6 от 2021.04.28, лицензия: cc by

Благодарности

За помощь в работе выражаем благодарность родителям школьников Ивану и Светлане Черновым, Марии и Павлу Ярыкиным, Вадиму Григорову, главе представительства компании ERCO в России Роману Мильштейну, инженеру Владиславу Лямину.

Читайте также: