В розетке 5 проводов зачем

Обновлено: 13.05.2024

Зачем в розетке третий провод?

Многих из нас (Вас) интересует такая тема, как монтаж новой, или замена старой электропроводки в своём доме или квартире.

Кто этой темой интересуется, тот знает, что по новым правилам (ПУЭ 7 издания, дата введения 2003-01-01) электропроводка должна выполняться трёхпроводной (или пяти проводной), то есть с защитным проводником. А для чего этот защитный проводник нужен (и как он работает) – догадываются не все.

Давайте попробуем вместе в этом разобраться.

Для защиты от поражения электрическим током придумано такое устройство, как УЗО. Давайте рассмотрим, как оно действует (работает), не вдаваясь в сложные физические процессы.

узо без заземления. узо без заземления.

На схеме изображены:

Автоматический выключатель, УЗО, розетка, водонагреватель.

Допустим, что в какой-то момент времени ТЭН водонагревателя «прохудился» до такой степени, что нагревательный элемент «замкнуло» на металлический корпус водонагревателя, в результате чего он (корпус) оказался под напряжением. Если Вы живёте в своём деревянном доме с сухими чистыми полами, то Вы об этом можете и не узнать. А если у Вас в доме бетонные плиты перекрытия, на полу бетон или плитка, или просто полы сырые, то при прикосновении к корпусу неисправного водонагревателя Вас может ударить током.

узо без заземления узо без заземления

В этот момент сработает УЗО и напряжение отключится. Какой силы будет удар – сказать сложно, но ощущения будут неприятные.

Для того, что бы этого не произошло, желательно, что бы при такой неисправности отключение произошло до того, как Вы прикоснётесь к неисправному прибору. Если стена и пол сделаны из проводящего материала (бетон, кирпич, штукатурка) – то УЗО может сработать и без участия человека. А если водонагреватель висит на сухой деревянной стене, то нужно что то придумать, что бы УЗО сработало без Вашего участия.

узо без заземления. узо без заземления.

Для этого и были придуманы вилки и розетки с заземляющим контактом.

Третий провод присутствует в вилке приборов, корпус которых выполнен из металла, и присоединён к металлическому корпусу.

При включении в розетку с «заземляющим» контактом корпус прибора оказывается подключен к розетке.

третий провод в розетке. третий провод в розетке.

К этому контакту в розетке подключается защитный проводник. А куда подключить этот защитный проводник? – вывод напрашивается сам - к заземлению.

узо и заземление. узо и заземление.

Процесс понятен. Такая схема заземления называется TT.

А какими параметрами должно обладать заземление, что бы УЗО сработало? – давайте посчитаем.

Ток срабатывания УЗО – 30 мА (0,03А), напряжение в розетке – 220 вольт.

Это максимальное сопротивление заземления для срабатывания УЗО, на самом деле это сопротивление желательно иметь раз в 5 – 10 меньше.

Но здесь нужно учесть главное - если в сети с глухозаземлённой нейтралью применить сеть ТТ (как на рисунке выше), то при замыкании на корпус фазное напряжение распределится между последовательно включёнными заземлителем корпуса электроприёмника и заземлителем нейтрали трансформатора пропорционально их сопротивлениям. При этом возникает реальная угроза электропоражения у потребителя или на подстанции, тем более что указанный аварийный режим может существовать длительное время, ибо ток, проходящий через последовательно соединённые сопротивления заземлителей корпуса и нейтрали, может быть недостаточным для срабатывания защиты электроприёмника (автоматического выключателя). По указанной причине сеть ТТ может применяться только в совокупности с УЗО.

Другой вариант – подключить защитный проводник к нулевому проводу, как на схеме ниже.

узо и заземление узо и заземление

Такая схема будет называться TN-C-S. Здесь выполнено защитное зануление.

Сети переменного тока напряжением до I кВ с глухозаземлённой нейтралью и занулением электроприёмников (сети типа TN) имеют три разновидности: TN-C, TN-C-S и TN-S (см. рисунок ниже).

схемы заземлений схемы заземлений

В этих сетях используются три наименования нулевых проводников: нулевой рабочий (N), нулевой защитный (РЕ) и совмещённый нулевой рабочий и защитный (PEN). В схеме сети имеется характерная точка, где PEN - проводник разветвляется на N- и РЕ - проводники.

Положение этой точки в конечном счёте определяет параметры и свойства указанных типов сетей: количество и наименование проводов в наружной электропроводке (в питающей линии), во внутренней электропроводке (в групповых линиях) как в однофазной, так и в трёхфазной сети. Рассмотрим рисунок ещё раз.

узо и зануление узо и зануление

Здесь при небольшой «утечке» (30 мА и более) сработает УЗО, а при замыкании фазного проводника на корпус прибора сработает и УЗО, и защитный автомат, то есть безопасность повышается. Но есть одно «но» - смотрим рисунок ниже.

обрыв нуля - PEN проводника обрыв нуля - PEN проводника

Допустим, что в нашей схеме произошёл «обрыв нуля». Все приборы исправны, света в доме нет. Но до того момента, как не стало света, у нас работала электроплита, конфорка осталась включенной. В результате, все приборы оказались под опасным напряжением сети (по цепи: фаза плиты – конфорка плиты – ноль плиты – шина N2 – шина N1 – шина PE). Но тока в цепи нет, значит утечки тока тоже нет – и узо сработает только тогда, когда человек прикоснётся к исправному прибору и получит удар током.

Пока повреждённая часть установки остаётся под напряжением, прикосновение ко всем занулённым корпусам электрооборудования (в том числе исправного) опасно. Для уменьшения этой опасности выполняют повторное заземление нулевого провода: ту же роль играет присоединение зануленных корпусов к заземлителю, однако полностью устранить опасность электропоражения такими мерами не удаётся.

Две фазы в розетках: 4 причины возникновения неисправностей с поясняющими картинками и инструкцией по их устранению

Начинающий электрик попадает в «ступор», когда сталкивается с нестандартной ситуацией при поиске неисправностей и проверке напряжения однофазным индикатором.

Он может обнаружить две фазы в розетках и сразу задумывается, почему так происходит. Ведь в квартиру приходит всего 2 рабочих потенциала: фазный и нулевой. Откуда появился еще один, третий?

Именно эту ситуацию из четырех причин с подробными схемами я и разбираю в статье дальше.

Содержание статьи

Практически во всех квартирах можно найти емкостной, чаще всего китайского производства, индикатор напряжения. Именно им и пользуются все домашние мастера. Однако надо хорошо представлять те процессы, которые при этом происходят.

Как работает индикатор напряжения: краткое пояснение

Для проверки потенциала фазы наконечник индикатора отвертки устанавливают в гнездо проверяемой розетки, а пальцем касаются свободного контактного гнезда на его корпусе.

Как работает индикатор напряжения

Внутри указателя последовательно смонтирован высокоомный резистор и неоновая лампочка или светодиод. Токоограничивающее сопротивление снижает ток через эту цепочку до безопасной для тела человека величины, но достаточной для свечения индикатора.

Дальше по руке, телу и обуви ток стекает на землю и по ней возвращается на трансформаторную подстанцию, образуя замкнутый контур.

Если индикатором коснуться потенциала нулевого провода, то его очень маленькая величина не сможет вызвать свечение индикаторной лампочки, что и служит основной причиной заявить, что на нем нет опасного напряжения.

Однако на практике встречаются ситуации, когда при возникновении неисправностей в бытовой проводке, работая емкостным индикатором напряжения, домашний мастер замечает опасный потенциал там, где он, по его мнению, быть никак не может.

2 фазы в розетках однофазной проводки: 3 возможных причины

Объясняю последовательно, что может произойти при обрыве нулевого потенциала по разным причинам:

  1. внутри вводного квартирного щитка;
  2. в распределительной коробке или около нее;
  3. при пробое изоляции скрытой в стене проводки с повреждением нулевого провода и его замыканием на фазу.

Разбираю их более подробно с поясняющими схемами.

Причина №1. Повреждение контактов на вводе в квартиру или дом: как создается и чем опасно

Хотя это уже редкость, но в старых деревянных домах еще встречаются вводные щитки, которые защищены не автоматическими выключателями, а электрическими пробками с предохранителями.

Вот такие раритеты до сих пор работают в сельской местности по схеме заземления TN-C. Через две пробки в дом подается напряжение от питающей линии электроснабжения.

Предохранители

Система заземления TN-C

Вместо пробок можно встретить автоматический выключатель ПАР, но принцип пропадания потенциала нуля он не изменяет.

Дело в том, что при возникновении аварийной ситуации, связанной с созданием короткого замыкания или перегрузки отгорает тот предохранитель, плавкая вставка которого более чувствительна. Процесс случайный, предвидеть невозможно.

Электрическая цепь разрывается, а аварийный ток прекращает свое опасное воздействие.

Рассмотрим случай, что произойдет, когда отработал предохранитель нуля, а не фазы. Этот же случай характерен для более новой схемы с автоматическим выключателем, если повреждена цепь нулевого проводника в месте его подключения к сборной шине.

Отгорел ноль

Из-за нарушения правил монтажа электропроводки в квартире может быть поврежден электрический контакт провода.Он же может просто отгореть при плохом зажатии винтов крепления на клемме в месте подключения. Встречаются такие ляпы и у современных монтажников.

Электрический контакт

Плохой контакт

Приходилось видеть случаи, когда монтеры срезают изоляцию острым ножом, вращая его вокруг металлической жилы, наносят на ней царапины. В ослабленном месте она легко обламывается после нескольких загибов.

Есть мастера, которые до сих пор снимают изоляцию бокорезами или пассатижами вместо специальных приборов — стрипперов. Тяжело переубеждать таких работников. Они себе на уме. Беда в том, что от их ошибок страдают другие люди.

При таком обрыве провода потенциал нуля будет отсутствовать в схеме, а фазы дойдет до всех подключенных потребителей, включая розетки и лампочки.

Обращаю внимание, что все электрические потребители квартиры жестко подключены к нулевой шине квартирного щитка.

Если где-то в розетке что-либо включено, а это в первую очередь холодильник или морозильник, а также, микроволновка и другая техника, то через внутреннее сопротивление этого оборудования потенциал фазы проходит на сборку нулевой шинки, а далее ко всем контактам розеток.

Для более наглядного примера показал на картинке этот случай лампочкой с включенным выключателем. Светиться она, конечно, не будет (нет достаточных условий для действия закона Ома), но обходную цепочку для проникновения потенциала фазы создает.

Надеюсь, что объяснил, почему 2 фазы в розетках показывает емкостной индикатор напряжения при исчезновении потенциала нуля на вводе в квартиру.

Проблема возникает на всех коммутационных точках квартиры или частного дома.

Причина №2. Обрыв нуля внутри распределительной коробки или за ней

Типовая схема старой одноквартирной проводки создавалась с распаечными коробками, которые позволяют значительно экономить расход кабеля и проводов. Да и сейчас этот способ еще широко применяется монтажниками.

Схема квартирной проводки

Когда нарушится контакт провода нуля в распределительной коробке, то на розеточный блок в оба контактных гнезда может пройти фаза:

  • по своей цепочке она и так подводится;
  • а на второй контакт поступит через подключенный потребитель, как в предыдущем случае на вводе.

В масштабе всей системы электроснабжения эта картинка выглядит так.

Обрыв нуля в однофазной сети

Более подробно изобразил этот случай для лучшего понимания через цепочку освещения.

Обрыв нуля

Индикатор опять будет светиться в обоих положениях. Секретов здесь нет, неисправность скрыта в плохом, некачественном соединении проводов между собой. Придется искать это место и делать подключение правильно.

Причина №3. Замыкание нулевого и фазного провода при пробое изоляции с обрывом нуля в розеточном блоке

Подзаголовок получился сложным, но этот случай очень просто объяснить.

2 фазы в розетке обрыв нуля

Домашний мастер не всегда держит в своей памяти все события, где-то да ошибается. Ему периодически приходится сверлить стены для крепления мебели, светильников, картин, других предметов.

Не все думают и знают, где и как проложена проводка, под какими углами выполнены кабельные магистрали. Опять же, не все приборы поиска скрытой проводки работают правильно, да и мало кто ими пользуется.

Вот и попадают сверлом дрели или перфоратора в провод, создавая короткое замыкание, которое отключает автоматический выключатель.

После извлечения сверла один из проводов, например, нулевой, может быть оборван и отключен. А дальше при проверке напряжения емкостным индикатором от оставшейся подключенной нагрузки опять будет показано 2 фазы в розетках.

Здесь же возможна ситуация, когда в розетках нет подключенной нагрузки, но оборванный провод нуля касается фазного прямо в стене или на корпусе розеточного механизма. Все это надо проверять и осматривать.

Как искать обрыв нуля в квартире: 2 методики

Поиск неисправности можно вести:

  1. безопасно прозвонкой — на полностью обесточенной электропроводке;
  2. под напряжением, что требует навыков электромонтера хотя бы третьей группы по ТБ.

Как вызвонить электрическую схему проводки быстро и безопасно за 3 этапа

Этап №1. Отключить вводные коммутационные аппараты и проверить отсутствие напряжения

Если со снятием питания автоматическим выключателем или предохранителями обычно вопросов не возникает, то на проверку отсутствия напряжения многие электрики внимания не обращают, а зря.

Достаточно одной секунды, чтобы ткнуть индикатор в контрольную точку. Это избавит от попадания под напряжение из-за:

  • залипания контакта выключателя;
  • отключения не того участка цепи;
  • наличия «хомутов» в схеме;
  • других ошибок.

Этап №2. Общая прозвонка цепи

Цифровой мультиметр переводится в режим прозвонки или омметра для замера омических сопротивлений. Берем любой длинный изолированный провод. Один конец его подключается на отключенную шинку нуля. Второй — садится на клемму прибора.

Вторым щупом омметра проходят по всем гнездам розеток. На одном из них должна создаться электрическая цепь, когда прибор покажет маленькое сопротивление провода (нормальное состояние цепи нуля), а на втором будет большое — ∞ (отсутствие электрического контакта фазы с потенциалом нулевой шины). Это нормально.

Прозвонка проводки

Когда показания мультиметра будут иные, необходимо искать неисправность дальше. Оборванную цепь нуля мультиметр покажет высоким сопротивлением в обоих гнездах.

Правильность подключения нулевой шины нужно проверить двумя последовательными действиями после ее включения: Измерением напряжения между ее потенциалом и землей, взятом на контуре заземления или, в крайнем случае, на водопроводе, батарее отопления (допустим перепад несколько вольт из-за плохих контактов нестандартных заземлителей). Последующей проверкой омметром, который должен показать короткое замыкание.

Этап №3. Поиск неисправностей в розеточном блоке и распределительной коробке

Когда омметр показал обрыв цепи между контактом розетки и нулевой шинкой, то весь этот участок необходимо делить на отрезки, а затем поэтапно вызванивать каждый.

Для начала удобнее снять корпус с розетки, осмотреть и проверить состояние контакта на подходящем проводе. Затем ищется распределительная коробка, вскрывается, определяется узел сборки нуля (обычно самый толстый) и с него снимается изоляция.

От этого места вызванивается цепь в две стороны: к розетке и на нулевую шинку. В одном из направлений будет обрыв. Его и следует дальше обследовать. Если оборвана жила провода, то ее нужно заменить при наличии резерва.

Однако обнаруженное повреждение провода может проявиться еще раз. Поэтому лучше заменить весь отрезок кабеля на этом участке. Его просто крепят за один конец старого и, вытягивая поврежденный кусок, одновременно затягивают новый.

Поиск обрыва нуля под напряжением: подробная инструкция

Проверка наличия напряжения емкостным индикатором показывает только наличие фазы. Она не определяет величину разницы потенциалов, то есть напряжения. В этом и состоит основная ошибка.

Технологию поиска неисправности следует расширить и работать вольтметром. Сейчас эта функция имеется во всех современных цифровых мультиметрах и старых стрелочных тестерах.

Работа с вольтметром относится к опасной. Она требует соблюдения мер безопасности. Можно попасть под напряжение.

В принципе эта работа уже частично сделана. Остается только отключить полностью все потребители, освободив розетки от вставленных вилок. Заодно переведите все выключатели освещения в положение «Откл». Это облегчит поиск неисправности, упростит анализ.

Затем емкостным индикатором напряжения внимательно проверяем все гнезда розеток и записываем те, которые вызвали сомнения.

Берем вольтметр, замеряем им напряжение во всех розетках, сравниваем показания.

Проверка напряжения

На исправных розетках будет показан результат действующего напряжения бытовой сети (порядка 220 вольт), а на поврежденных — ноль. С ними и придется разбираться дальше.

Можно, конечно, разбирать участки цепи на отрезки и замерять места, куда не доходит напряжение. Но, домашнему мастеру я рекомендую не идти этим путем, а просто отключить вводной автомат и вызванивать схему по вышеприведенной технологии. Это намного безопаснее.

После устранения неисправности неопытные электрики в спешке могут создать короткое замыкание подачей напряжения на отремонтированный участок с оставленными закоротками или перемычками. Перед включением автомата проверяйте отсутствие КЗ прозвонкой цепи.

Почему обрыв нуля трехфазной схемы создает самый опасный режим и как от него защититься

Преимуществом и одновременно недостатком бытовых однофазных цепей является то, что они все взаимосвязаны и объединены в общую трехфазную схему от питающего трансформатора.

Схема трехфазного подключения

А не ней используется общий ноль (нейтраль), по которому протекают токи всех трех фаз. Он требует очень надежного подключения на вводе в здание, да и на всем протяжении воздушной или кабельной линии.

Однако провода иногда отрываются при неблагоприятной погоде и стихийных бедствиях. Да и качество монтажа иногда страдает, как показано на фото, кочующего по интернету сурового русского светодиода. На нем высокое переходное сопротивление вызвано не достаточным усилием затяжки резьбового соединения.

Суровый русский светодиод

Встречаются другие дефекты, связанные с подключением алюминиевых жил.


Такой монтаж часто приводит к перегреву провода, отгоранию ноля с разрывом цепи и перераспределением потенциалов напряжения на подключенных потребителях.

Каждые две квартиры здания оказываются последовательно подключенными под линейное напряжение 380 вольт.

Обрыв нуля в трехфазной сети

Их общее сопротивление складывается и создает единый ток нагрузки, который обеспечивает в каждой квартире свое напряжение (схема делителя).

Поскольку у одного хозяина может работать только холодильник, а у другого дополнительно большое количество мощных электроприборов, то один из них окажется подключенным практически под 380 вольт, а второй не получит почти ничего из-за смещения нейтрали


В одной квартире погорит холодильник, морозильник и вся подключенная бытовая техника, а в другой возникнут неисправности, связанные с недополучением электроэнергии.

Все эти процессы проходят очень быстро, буквально за считанные секунды. На них человеку сложно среагировать отключением коммутационных аппаратов: мало времени.

Реле контроля напряжения

Обрыв нуля трехфазного электроснабжения устраняют не домашние мастера, а специалисты, обслуживающие промышленные электроустановки. Это их зона ответственности.

Владелец видеоролика Заметки электрика популярно объясняет, как появляются две фазы в розетках. Рекомендую посмотреть.

Неисправность электропроводки или коммутационных устройств (автоматов, выключателей и пр.) или выгорание розеток – достаточно частое дело, оставляющее квартиру без «света». Фаза пропадает и, конечно, ничего не работает. Ничего удивительного. Но нередки случаи, когда в розетках и патронах светильников вместо нуля появляется еще одна фаза. Откуда ей взяться, если в квартиру подается всего одна? В это статье мы попробуем разгадать эту загадку.

Откуда взялась вторая фаза?

Для того чтобы разобраться, почему в розетке появилась вторая фаза, необходимо уяснить, как работает схема домовой проводки. Взглянем на рисунок ниже.

Упрощенная схема квартирной проводки Упрощенная схема квартирной проводки

Напряжение с вводного щита подается на распределительную коробку. С нее фаза с нулем поступают в розетку и на светильник, включенный через выключатель. В принципе ничего сложного. Как видно из схемы, в дом поступает только одна фаза, никакой второй нет и не должно быть. Но почему указатель напряжения светится в обоих гнездах розетки? Взглянем на схему ниже. На ней мы разорвали фазный провод на вводе в квартиру.

Важно! Вместо включенной лампочки причиной может стать любая из розеток, к которой подключен потребитель. В этом случае фазное напряжение попадет на нулевой провод через эту нагрузку.

Таким образом, вторая фаза не появилась в доме чудесным образом. Это все та же фаза, просто «заблудившаяся» в нулевых проводах. Убедиться в этом несложно. Достаточно взять вольтметр и замерить напряжение в розетке. Прибор покажет не 380 В, что было бы, появись в доме вторая фаза, а ноль – мы измеряем напряжение на проводе относительно него же.

Если мы физически отключим от розеток все потребители, включая те, что работают в ждущем режиме, и выключим везде свет, то фаза с нулевого провода, естественно, исчезнет, индикатор будет светиться только в одном гнезде розеток. Но ситуацию это не изменит – нет нуля – нет света, розетки не работают.

Что делать?

Устранять. Но для начала необходимо выяснить причину и хотя бы ориентировочно определить место аварии. Итак, перед нами несколько вариаций такого чуда:

  • вторая фаза во всех розетках и на обеих клеммах всех осветительных приборов;
  • индикатор светится в обоих гнездах всех розеток в доме. Освещение работает;
  • Индикатор светится в обоих гнездах только одной розетки или небольшой группы розеток. Все остальные работают.

Рассмотрим каждую проблему более подробно, чтобы локализовать место аварии.

Вторая фаза везде

Причина – неисправность во вводном щите, главной вводной коробке или на участке вводной щит – главная распредкоробка.

В первую очередь открываем вводной щит. Здесь нас могут поджидать следующие проблемы:

  • сработал автомат, включенный в нулевой провод;
  • отгорел нулевой провод в зажимах автомата;
  • отгорел провод на нулевой шине.

В первом случае автоматика просто отключила ноль из-за перегрузки. Почему сработали не оба? Из-за нарушения, если уже и стоит на вводе автомат на нуле, то он должен отключать оба провода одновременно, то есть нужно устанавливать один двухполюсный автомат, а не два однополюсных. Если в нулевой линии установлен автомат, к примеру, на 10 А, а в фазной – на 16 А, то при перегрузке первым, естественно, сработает автомат, рассчитанный на меньший ток. Он устранит перегрузку, а значит, второй автомат уже не сработает.

Важно! Такое может произойти и с автоматами, имеющими одинаковый паспортный ток отсечки. Ведь даже однотипные приборы имеют определенный разброс параметров.

Устраняем неисправность, вызвавшую перегрузку, включаем автомат заново или меняем сгоревшую в нулевом проводе «пробку» (предохранитель). И в ближайшее время устанавливаем приборы защиты с одинаковыми характеристиками. Если перегрузку устранить не можем, обращаемся к профессионалам.

Теперь главная распредкоробка. Вскрываем, осматриваем качество соединений. Подозрительные места скручиваем заново, устанавливаем новые клеммные колодки или делаем другие возможные виды соединения.

regane

Электричество как показала практика, вовсе не такая сложная и опасная наука, как утверждают электрики. Все что нужно знать, умещается на 3-4 страницах формата А4. :)
Мои комплексы не позволят мне написать меньше 10 :)

Оно приходит к нам в дом по проводам.
Количество их в зависимости от типа питания может быть разным – 2,3,4,5…

  • «Фаза» - основной провод, по которому к нам приходит электричество. Обычно изоляция этого провода имеет черный или белый цвет. Лучше проверять специальной отверткой-тестером, но не языком. Обозначается на схемах как L
  • «Ноль» - провод, на которое электричество уходит через нагрузку (Лампочки, пылесос и т.д.). Изоляция обычно синего цвета. Обычно на этом проводе нет напряжения, но бывает всякое и руками его лучше не хватать. Обозначается на схемах как N
  • «Защитная Земля, Земля» - защитный провод, на него сходит электричество во время всяких внештатных ситуаций. Провод обычно имеет зелено - желтый цвет изоляции. Обозначается на схемах как PE

Электричество к нам в дом заходит либо в трехфазном, либо однофазном виде. Тут, как говорится, кому как повезло. Разумеется, трехфазные сети, как правило, обеспечивают возможность получения большей нагрузки.

Однофазная сеть (2-х проводная) состоит из фазы и нуля. Реально такое подключение можно использовать только для маломощных приборов в изолированном пластмассовом корпусе и в не особо опасных помещениях (не в сортире, и не в ванной).

3-х проводная состоит из фазы, нуля и земли. До недавнего времени такая проводка использовалась в домах с электроплитами и только для самих электроплит. Сейчас в новых домах используется только такая проводка.

4 или 5 проводов используют для трехфазного питания.
При 5и проводном подключении используются 3 фазных провода, 1 нулевой провод и 1 провод защитного заземления.
При 4х проводном подключении используются 3 фазных провода и 1 нулевой провод, который затем делится на ноль и провод защитного заземления.

Напряжение между любой фазой и нулем - 220В.
Напряжение между двумя фазами - 380В. (Пипец как больно :)
Напряжение между нулем и землей должно быть 0В.
Браться за ноль голыми руками не рекомендуется, так как при неблагоприятном раскладе нагрузок по фазам может произойти смещение потенциала нуля и вы живенько откинетесь. :)

Провод «Земля» используется только для защиты, к нему подключаются корпуса бытовых приборов.
В вилке-розетке контакт земли должен соединяться первым, а размыкаться последним, поэтому он в вилке обычно выведен на самую длинную ножку.

Самый тонкий вопрос в разводке электрике - это организация заземления. Мы все привыкли, что в розетках и вилках (однофазных сетей) у нас присутствуют 3 контакта: фаза, ноль и земля.
Очень хорошо, когда приходят все эти три провода (при однофазном подключении), либо 5 проводов при трехфазном (3 провода - 3 фазы, ноль и земля). Сложнее, когда у нас есть 2 провода при однофазном или 4 провода при трехфазном подключении (т.е. вместе с фазой(-ми) идет только нулевой провод).

Если говорим про загородный дом, то по идее, вы должны у себя на участке вырыть глубокую яму (до глубины постоянного залегания грунтовых вод) заложить туда что-то металлическое и массивное и соединить этот предмет с контактом заземления в ваших розетках. К сожалению, это трудно реализуемое, однако нужное дело. Дело не только в неприятных земляных работах, а в том, что это заземление должно обеспечивать очень малое сопротивление, а поливать каждый день из леечки зарытую бочку вам вряд ли понравится :) За городом обычно заземление делают из вбитых на приличную глубину массивных железных уголков длиной по 3 метра.

Причем отдельное заземление для бытовой электросети и отдельное для молниеотвода. Это называется повторным (дополнительным) заземлением, потому как на трансформаторе (откуда на даче к дому приходят провода) нейтраль заземлена в обязательном порядке, с проверками и нормами.
Повторное заземление в дополнение к имеющемуся не только разрешается, но и приветствуется, это дело полезное, но его надо делать хорошо.

Заземление вообще очень полезная штука, не зря тут столько многобукав! Переходим к логическому продолжению темы защиты.

Для защиты от короткого замыкания предназначены автоматические выключатели (среди простолюдинов - "автоматы"). Они срабатывают при достаточно существенных токах короткого замыкания.

К сожалению для гибели/увечья человека достаточно гораздо меньших токов, чем ток короткого замыкания и поэтому наряду с автоматами применяются специальные приблуды - УЗО (Устройство защитного отключения)

Если произойдет утечка тока (а это может произойти в любую секунду и по любой причине, например, пробегающий бузиль закоротил фазу и корпус собой), то ток с этих металлических частей уйдет по защитному заземлению, а УЗО вырубит фазовый и нулевой провод. Примерами являются холодильник, электроплита, стиральная машина. Если они не заземлены, можно ощущать покалывание электрическим током при прикосновении к нему.

УЗО, по простому - это специальный прибор, который сравнивает приходящий ток по фазе и уходящий ток по нулю. Если разница (утечка тока) выше значения указанного порога на УЗО, то оно срабатывает и отключает и фазу, и рабочий ноль.
В трехфазных УЗО сравнивает сумму токов фаз с нулем и имеет четыре провода.
При наличии УЗО человека обычно не успевает поразить электрическим током.

  • 10 мА бывают только на 1 фазу и 16А для особо опасных помещений типа сортира. :)
  • 30 мА - защита человека от прямого прикосновения. Эти УЗО защищают от локальных проблем (растаявший холодильник, пальцы в розетке).
  • 300 мА - человека почти не защищает, а только от утечек в изоляции, противопожарное. Ставится сразу после входного автомата. Оно будет срабатывать от серьезных глобальных проблем (нарушения изоляции, пробоя фазы на зануленный корпус).

Поэтому при отключении УЗО причина ищется последовательным отключением приборов по одному. Если причина в нуле, то причину найти конечно тяжелее.
Проверять УЗО нужно ежемесячно, нажимая кнопку ТЕСТ на нем.

Стоит УЗО достаточно дорого. При правильных схемах обеспечить каждому автомату УЗО - недешевое удовольствие, поэтому при нехватке денег поставьте хотя бы щиток с запасом, общее УЗО и для ванной. Потом дополните, когда деньги появятся.

Мощность (ток) УЗО подбирается одинаковой с мощностью автомата. УЗО всегда ставится после автомата, а не наоборот.

Электрическая схема в квартире

Сначала вспомним химию:

Мощность это произведение напряжения на силу тока: Мощность(Вт) = 220(В) * Ток(А),
соответственно Ток(А) = Мощность(Вт) / 220(В).

У каждой силы тока (указывается в Амперметрах:) есть соответствующая мощность:

6А = 1.3 кВт
10А = 2.2 кВт
16А = 3.5 кВт
25А = 5.5 кВт
32А = 7 кВт
40А = 8.8 кВт

На розетках обычно указывается предельная сила тока. Обычно это 10 или 16А. Лучше 16А брать конечно.
Розетки бывают с закреплением провода под болт и самозажимные клемники. Обычно в розетку под болт можно зажать провод до 4 кв.мм, но проще - 1.5 кв.мм. Самозажимные клеммники требуют жесткого (монолитного) провода с диаметром не выше указанного.
Обязательно ставьте розетки в подрозетники, их лучше покупать глубокие – в них больше провода можно оставить для удобства монтажа.
Стоят мало, около 5 руб.
Удобно подрозеточники заделывать с помощью гипса, алебастра или ротбанда.

  • 1.5 кв. мм медный провод = 16А, 3.5 кВт
  • 2.5 кв. мм медный провод = 25А, 5.5 кВт
  • 4 кв. мм медный провод = 32А, 7 кВт
  • 6 кв. мм медный провод = 40А, 8.8 кВт
  • из-за лучшей электропроводности. То есть при одном и том же сечении вы через медь протащите тока в 1.5 больше. А при одинаковом токе это меньшее сопротивление, меньший нагрев.
  • медь более стойкая ко всяким изгибам.
  • медь является более стойкой к агрессивной среде, более долговечной.

Соединять алюминиевый и медный провода скруткой нельзя, только через клеммники (алюминий-алюминий и медь-медь можно).

Если несколько проводов собраны вместе, то это называется кабЕль. Если несколько кабелей собраны вместе это называется собачья свадьба :)

  1. Одиночные провода (ими круто плести всякую шнягу и соединять розетки между собой) - ПВ1 (жесткий), ПВ3 (гибкий).
  2. Разводочный кабель (С таким кабелем не заскучаешь:)- ПУНП, ПБПП.
  3. Магистральный кабель (жесткие многопроводные разводки)- ВВГ, NYM (нюм кста содержит дополнительный слой негорючей изоляции)
  4. Гибкий кабель в пластике (удлинители и шнуры для внутренней не очень жесткой эксплуатации) - ПВС.
  5. Гибкий кабель в резине (бетономешалку по стройке таскать и трактором при этом по кабелю ездить) - КГ.
  6. Управление (сразу очень много жил, например вентиляцию включать или какие-нибудь ворота)- КВВГ (бывает что-то типа до 35 жил, обычно 10-20).

Каждый автомат рассчитан на какой-то ток.
Этим он защищает цепь (группу) от перегрузки. Если протекает более большой ток (перегрузка по току) или короткое замыкание (КЗ), то срабатывает тепловое реле и обесточивает фазу.
При перегрузке тепловое реле автомата (с указанной на автомате установкой по току, типа 10А или 16А) нагревается и срабатывает. Время срабатывания зависит от перегрузки и может достигать нескольких минут.
Если случается КЗ, то срабатывает быстрое электромагнитное отключение.
Это основная защита от пожаров, когда потребители стараются вытащить из розетки ток, превышающий параметры розетки или провода. Существуют автоматы на 6.3А, 10А, 16А, 25А, 40А, 63А. Ток написан на панели автомата.

Ток автомата должен быть меньше или равен и току провода, и току розетки.
Только в этом случае работает защита автомата.
Например, на 16А автомат вы включите электрочайник (8А) и СВЧ (8А). Автомат выключаться не будет. Но, если вы добавите еще чего-нибудь на 8А (итого будет 24А), то, автомат сработает и защитит цепь. Повторю, что провода и розетки не защищают от перегрузки. Они только служат как соединители. Наоборот, автомат защищает их.

Пример 1. 10А розетка + 10А провод + 10А автомат = хорошо.
Пример 2. 16А розетка + 16А провод + 10А автомат = хорошо.
Пример 3. 16А розетка + 10А провод + 16А автомат = плохо (перегорит провод)
Пример 4. 10А розетка + 25А провод + 16А автомат = плохо (сгорит розетка)

Во время проектирования схемы проводки желательно делать один автомат на одну комнату. Во-первых, будет отдельный рукав до комнаты через который можно будет протащить кабель в случае обрыва (минимизация стоимости и сроков строительных работ). Во-вторых, понятная, а отсюда безопасная, схема отключения, если что-нибудь надо сделать с розеткой.

Разводка проводов по квартире

Лучше всего протащить кабель от автомата до распределительной коробки (или первой розетки) в комнате в отдельной трубе (рукаву). Трубы бывают металлические и пластиковые, гофрированные и жесткие (не гофрированные). Имеют ряд по внешнему диаметру 16, 20, 25, 32, 40 мм. Внутренний диаметр меньше

25%. Для жестких труб имеются уголки, тройники, муфты, сальники (в принципе и для гофрированных тоже) герметические (дороже) и н егерметичные.
Прокладывать трубу как можно прямее, изгибы делать плавными. Тогда в последствии можно будет переложить кабель.

От щитка можно использовать более толстый (магистральный) кабель, если кабель приходит с начала в распределительную коробку, а не сразу на розетку. Кабель 3*1.5 кв.мм имеет диаметр до 10мм, 3*2.5 кв.мм - до 11 мм. Разница между внутренним диаметра трубы и диаметром кабеля должна быть не менее 3мм.
Если все нормально, то толкаешь кабель и он лезет. Можно использовать проволоку за которую можно цеплять кабеля.
Если кабель пролезает совсем туго, можно смазать его вазелином и дело пойдет веселее! В принципе можно 2 кабеля протащить в одном рукаве, но не очень удобно (проще две гофры протянуть).

Если квартира имеет легкие для штробления (например, кирпичные) стены имеет смысл делать разводку по стенам, так как штробление полов обычно более трудо- и денежноемко впоследствии. Обязательно сделайте рисунок с точными размерами.
Штробы удобнее всего делать штроборезом, это такая фигня с двумя (алмазными) дисками на колесиках, едет по стене и оставляет два пропила на заданном расстоянии. Потом перемычка выламывается (перфоратором со штробалкой).

Обязательно нужно оставить для себя план разводки. Штробление нужно делать только по вертикали и горизонтали. От кабельного рукава до горючего материала должно быть не менее 10 мм. Если многожильный провод, то надо использовать наконечники.

Не надо делать разводку под ванной и туалетом.
Не прокладывайте там, где повышенная температура. Не прокладывайте около батареи, так как тут и тепло, и вода.
Не прокладывайте трассу прямо под межкомнатной дверью, так как в последствии вы можете крепить порожек.

С какой стороны фаза, а с какой ноль в розетке

Во время фиксации розетки к стене наиболее проблематичным этапом обычно является подсоединение к ней проводов. Стоит отметить, что однофазная розетка имеет два контакта для подключения проводов. Если присутствует заземление, то контакты три. Поэтому очень важно знать, с какой стороны должна быть фаза в розетке.

Однофазная розетка бывает неполяризованной и поляризованной. В неполяризованную розетку допускается подключать вилку прямо либо с разворотом на 180 градусов. В такие устройства подключаются электроприборы, для работы которых не имеет значения полярность.

Что касается поляризованных розеток, в них можно включать вилку исключительно в одном положении. Как следствие фаза и ноль в электроприбор поступает по определённым проводам.

С какой стороны фаза, а с какой ноль в розетке

Практически все электроприборы могут функционировать независимо от того, где фаза или ноль в розетке. Поэтому зачастую люди не смотрят на то, в каком положении подключается вилка. В качестве исключения выступают вилки, у которых кабель размещён под углом 90 градусов непосредственно к штырям.

По Правилам Устройств Электроустановок фазу нужно подключать в розетке справа. Но при этом нет документов либо инструкций, где бы указывалось правильное положение фазы в розетке. В связи с этим обычно фаза подсоединяется на усмотрение монтажника.

Однако необходимо знать, что для определённых приборов месторасположение фазы все же имеет значение. В противном варианте они не будут функционировать. Зачастую об этом говорится в инструкции. Подключаются подобные устройства в большинстве случаев специалистами. К таким устройствам относятся газовые котлы, а также колонки с электроконтроллером наличия пламени.

Что об этом говорит ГОСТ 7396.1-89 (МЭК 83-75)

Сложно найти точный ответ относительно правильного расположения в розетке фазы. Если только следовать документу ГОСТ 7396.1-89 (МЭК 83-75) «Соединители электрические штепсельные бытового и аналогичного назначения». В нем указывается о расположении фазы справа в однофазных розетках. При этом ноль находится слева . Об этом утверждает Британский институт, поэтому это касается не всех стран.

Также указывается расположение фазы справа, ноля слева, а заземления посередине в документам ГОСТ 30851.1-2002 пункт 8.6.

Профессиональные электрики всегда подключают фазный провод справа, ноль слева. Все это делается с целью беспроблемной работы в дальнейшем. Ведь после для осуществления ремонтных работ не придётся разбираться, где фаза, а где ноль в розетке.

Во время монтажа розетки в любом варианте следует на двух контактах проверить фазу. У электриков на этот счет может быть разное мнение, поэтому лучше самостоятельно убедиться, что фаза находится справа, а не слева.

Читайте также: