Трансформатор тока 400 5 подключение

Обновлено: 04.05.2024

Схемы подключения счетчика через трансформаторы тока

Силовая электрическая проводка стала, наряду с водопроводом, канализацией и вентиляцией, одним из обязательных инфраструктурных компонентов современного объекта недвижимости. Потребляемый на нем электрический ток подлежит учету и оплате по действующим тарифам. Основным измерительным устройством, показания которого используются при определении платы за потраченную электроэнергию, является электрический счетчик.

Этот аппарат включается на т.н. границе раздела между оператором электрических сетей и потребителем согласно правилам, подробно описанным в главе 1.5 ПУЭ , и начинает выполнять свои функции при включении хотя бы одного потребителя.

Необходимость применения трансформаторов при подключении электрического счетчика и его конструктивные особенности

Из-за высокой мощности промышленных электроприемников нет смысла пропускать через счетчик весь потребляемый ими ток. Снизить его наиболее целесообразно с помощью трансформатора тока.

Схема включения счетчика только через трансформатор тока характерна для предприятий, номинальное напряжение входного фидера которых 380 В. В случае более высокого напряжения перед подачей на счетчик его также дополнительно понижают включением трансформаторов напряжения без потери точности контроля расхода.

При использовании только трансформаторов тока говорят о полукосвенной схеме подключения, соответственно, применение двух разновидностей трансформатора дает косвенную схему.

С учетом трехфазной схемы организации электроснабжения счетчик должен иметь 10 или 11 контактов: по три для каждой фазы: по два на ток (вход и выход) и один на напряжение, а также один или два общих для всех фаз контактов нулевого проводника.

Для подключении токовых контактов необходимо применять провода сечением 2,5 мм2, сама коммутация на основании пункта 1.5.23 ПУЭ должна выполняться через выделенную испытательную клеммную колодку.

10-проводная схема подключения

10-проводная схема подключения 3-фазного электросчетчика к питающей сети изображена на рисунке 1.

Измерительные трансформаторы напряжения и тока

Для измерения больших напряжений (выше 1000 Вольт) и токов (более 100 Ампер) нецелесообразно строить приборы на измерение таких больших величин. Это и экономически невыгодно, и приборы в этом случае будут слишком громоздкими. Не говоря про опасность непосредственной работы с такими большими значениями напряжения и тока.

Зная коэффициент трансформации ИТ достаточно просто умножить на него показания измерительного прибора для точного определения измеряемого параметра сети. Для наглядности разберем следующий пример:

измерение тока через измерительный трансформатор

Аналогично может измеряться и напряжение с помощью измерительного трансформатора напряжения и вольтметра.

Некоторые приборы, такие как ваттметры и счётчики электрической энергии устанавливаемые в электроустановках напряжением выше 1000 Вольт подключаются к электрической сети через ИТТ совместно с ИТН.

Для примера ниже приведена схема включения ваттметра в сеть высокого напряжения через ИТТ и ИТН (схемы подключения счетчиков аналогичны схеме подключения ваттметров, подробнее читайте статью: Подключение счетчика через трансформаторы)

измерение мощности через измерительные трансформаторы

Что бы определить мощность в контролируемой сети необходимо показания ваттметра умножить на общий коэффициент трансформации который является произведением коэффициентов трансформации ИТН (Кн) и ИТТ (Кт), как видно из схемы в нашем случае общий коэффициент трансформации составляет 400.

Аналогичным образом определяется и расход электроэнергии по электросчетчикам подключенным через ИТ. При этом следует учитывать, что в некоторых случаях шкала измерительного прибора может быть отградуирована с учетом коэффициента трансформации ИТ, т.е. в них изначально заложен коэффициент трансформации ИТ через которые они должны подключаться, а в некоторых электронных измерительных приборах, например электронных счетчиках, коэффициент трансформации можно устанавливать в настройках, такие приборы показывают измеряемую величину уже с учетом коэффициента трансформации, соответственно никаких дополнительных действий по ее пересчету выполнять не требуется.

Типы (виды) измерительных трансформаторов и их маркировка

Как уже было сказано выше ИТ бывают двух видов измерительные трансформаторы тока и измерительные трансформаторы напряжения, которые в зависимости от места и способа установки и других особенностей могут иметь различные типы исполнения.

Измерительные трансформаторы напряжения

Трансформаторы напряжения подразделяются по следующим основным типам:

Маркировка ИТН выглядит следующим образом:

расшифровка маркировки измерительных трансформаторов напряжения

Примеры некоторых типов ИТН:

основные типы измерительных трансформаторов напряжения

Измерительные трансформаторы тока

По конструктивному исполнению и применяемой изоляции трансформаторы тока бывают следующих типов:

Маркировка ИТТ имеет следующий вид:

расшифровка маркировки измерительных трансформаторов тока

На рисунке ниже представлены некоторые типы трансформаторов тока:

основные типы измерительных трансформаторов тока

Устройство и принцип действия измерительных трансформаторов

Принцип действия измерительных трансформаторов, как и других трансформаторов основан на законе электромагнитной индукции, с общим принципом работы трансформаторов вы можете ознакомиться в этой статье.

Устройство измерительных трансформаторов напряжения

ИТН по устройству принципу действия подобны обычным силовым трансформаторам. Они так же содержат две обмотки из медного изолированного провода, хотя их может быть и больше, расположенных на общем замкнутом магнитопроводе изготовленном из электротехнической листовой стали. Изоляция трансформатора напряжения представляет собой заливку эпоксидным компаундом, что создает монолитный блок с высокой степенью электрической прочности.

устройство измерительного трансформатора напряжения

Устройство измерительного трансформатора тока

устройство измерительного трансформатора тока

Основные характеристики и паспортные данные ИТ

К основным характеристикам измерительных трансформаторов напряжения относятся:

1) Номинальное первичное напряжение U1ном, кВ:

Напряжение, приложенное к первичной обмотке ТН и подлежащее трансформации. Значения напряжения указываются в документации на трансформаторы конкретных типов, а так же выбираются из таблиц.

2) Номинальное вторичное напряжение U2ном, В:

Напряжение, возникающее на зажимах вторичной обмотки ТН при приложении напряжения к его первичной обмотке.

Номинальные напряжения основных вторичных обмоток:

  • для однофазных трансформаторов, включаемых на напряжение между фазами, а так же трёхфазных ТН-100В;
  • для однофазных трансформаторов, включаемых на напряжение между фазой и землей -100/√3

Номинальные напряжения дополнительных вторичных обмоток:

3) Номинальный коэффициент трансформации Кн ном.:

Отношение действующего значения номинального первичного напряжения к действующему значению номинального вторичного напряжения: Кнном. = U1ном/U2ном.

4) Класс точности ТН:

5) Номинальная мощностьS, В·А:

Значение полной мощности, указанное в паспорте ТН, которую он отдаёт во вторичную цепь при номинальном вторичном напряжении с обеспечением соответствующего класса точности.

6) Предельная мощностьS, В·А:

Кажущаяся мощность, которую трансформатор напряжения длительно отдаёт при номинальном первичном напряжении, вне класса точности, и при которой нагрев всех его частей не выходит за пределы, допустимые для класса нагревостойкости данного трансформатора.

7) Номинальная частота питающей сети ƒном, Гц:

Номинальная частота напряжения питающей сети должна быть 50 или 60Гц (в отечественных электрических сетях она составляет 50Гц).

Эти паспортные данные наносятся на специальную металлическую пластину, которая закрепляется на видном месте корпуса прибора и называется табличкой или шильдиком.

Измерительные трансформаторы напряжения по техническим характеристикам должны соответствовать ГОСТ 1983-2015.


К основным характеристикам измерительных трансформаторов тока относятся:

1) Номинальноенапряжение Uном, кВ:

Выбирается из стандартного ряда напряжений: 0,66;3;6;10; 15; 20;24; 27; 35; 110; 150; 220; 330; 500; 750. Кроме встроенных трансформаторов.

2) Номинальный первичный ток I1ном, А:

Ток, протекающий в первичной обмотке ТТ и подлежащий трансформации. Может находиться в пределах от 1А до 40кА.

3) Номинальный вторичный ток I2ном, А:

Ток, протекающий во вторичной обмотке трансформатора тока. Обычно это 5А, но может быть 2А и 1А. Причём ток 1А допускается только для трансформаторов тока с номинальным первичным током до 4000А. А так же при больших измерительных расстояниях, чтобы снизить номинальную нагрузку. По заказу допускается изготовление трансформаторов тока с номинальным вторичным током 2 или 2,5А.

4)Номинальный коэффициент трансформации Ктном.:

Отношение действующего значения номинального первичноготока к действующему значению номинального вторичного тока в режиме холостого хода.Определяется по формуле: Ктном. = I1ном/I2ном.

5) Номинальная вторичная нагрузка S2ном, В·А:

Значение вторичной нагрузки, указанноена паспортной табличке ТТ, при котором гарантируется классточности. Определяется характером нагрузки с коэффициентом мощности cosφ.

6) Класс точности:

Обобщённая характеристика ТТ, определяемая установленными пределами допускаемых погрешностей при заданных условиях работы.

Для трансформаторов токасуществуют следующие классы точности: 0,1; 0,2; 0,2S; 0,5; 0,5S; 1,0; 3,0; 5Р; 10Р.

7) Номинальная частота питающей сети ƒном, Гц:

Номинальноезначение частоты напряжения сети, для работы в которой предназначен ТТ, должна быть 50 или 60Гц.

Так же как и трансформаторы напряжения, каждый трансформатор тока должен иметь табличку (шильдик), на которой указаны технические характеристики ТТ.

Измерительные трансформаторы тока по техническим характеристикам должны соответствовать ГОСТ 7746-2015.

Рассмотрим условные обозначения на такой табличке:

шильдик измерительного трансформатора тока

Особенности эксплуатации измерительных трансформаторов

Трансформаторы тока

Большую опасность представляет обрыв вторичной обмотки. В этом случае в магнитопроводе создаётся очень большой магнитный поток, который не будет уравновешиваться размагничи­вающим действием вторичной обмотки. Это приводит к тому, что во вторичной, разомкнутой, обмотке может наводиться напряжение в десятки тысяч вольт, опасное для изоляции приборов и обслуживающего персонала. Поэтому, вторичная обмотка ИТТ всегда должна быть заземлена и замкнута накоротко через подключенный к ней измерительный прибор, а в случае необходимости его демонтажа (например с целью замены), должен устанавливаться шунт закорачивающий выводы вторичной обмотки ИТТ и снимается данный шунт только после установки и подключения измерительного прибора.

Трансформаторы напряжения

Трансформаторы напряжения, в отличие от трансформаторов тока, работают в режиме, близком к холостому ходу, так как сопротивление параллельных катушек приборов и реле большое, а ток, потребляемый ими, невелик.

Для обеспечения нормальной работы, ИТН должен быть защищен от токов короткого замыкания со стороны нагрузки, поскольку они вызывают перегрев и повреждение изоляции обмоток, а также приводят к возникновению короткого замыкания в самом трансформаторе. С этой целью во всех незаземлённых проводах устанавливаются автоматические выключатели или предохранители.Защита первичной обмотки от повреждений выполняется при помощи предохранителей.

Подключая измерительные приборы и устройства защиты к ИТН, следует учитывать тот факт, что включение большого количества электроприборов приводит к повышению значения тока во вторичной обмотке и увеличению погрешности измерения.

ВАЖНО! Для обеспечения безопасности работ, проводимых в цепях измерительных приборов и устройств релейной защиты, все вторичные обмотки измерительных трансформаторов тока и напряжения должны иметь постоянное заземление.

Схемы подключения измерительных трансформаторов

Трансформаторы напряжения

Трансформаторы напряжения выполняются в однофазном и трехфазном исполнении. В зависимости от требуемой информации они могут соединяться в различные схемы, как на рисунке ниже.

схемы подключения измерительных трансформаторов напряжения

Трансформаторы тока

Трансформаторы тока являются однофазными аппаратами и могут быть установлены в одну, две или три фазы измеряемой сети.

В трехфазной сети для подключения измерительных приборов и реле, вторичные обмотки трансформаторов тока соединяются в различные схемы. Наиболее распространенные из них приведены ниже.

схемы подключения измерительных трансформаторов тока

Выбор ИТ для подключения счётчиков и измерительных приборов

Данный вопрос рассмотрим на примере выбора измерительных трансформаторов для подключения электросчетчиков.

Трансформаторы напряжения

Трансформаторы напряжения необходимо применять при необходимости подключения приборов учёта электроэнергии, а так же других измерительных приборов и реле, в высоковольтных электроустановках (выше 1000 Вольт). Их выбирают по номинальному напряжению, классу точности, вторичной нагрузке, а так же по сечению и длине проводов и кабелей.

Номинальное напряжение первичной обмотки (U1ном.), должно быть равно номинальному напряжению сети (Uс.ном.): U1ном.=Uс.ном.

Класс точности ИТН для присоединения расчётных счётчиков электроэнергии не должен быть более 0,5, для технического учёта – не более 1,0 (ПУЭ п.1.5.16).

Вторичная нагрузка, это мощность приборов и реле подключенных к ИТН. Нагрузка вторичных обмоток измерительных трансформаторов (S2нагр.), к которым присоединяются счётчики, не должна превышать номинальных значений ИТН (S2ном.): S2ном.>S2нагр. Это обеспечивает работу ИТН в заданном классе точности.

Присоединение расчетных счётчиков к трёхфазным трансформаторам напряжения не рекомендуется, т.к. они имеют несимметричную магнитную систему и увеличенную погрешность.

Трансформаторы тока

В цепях распределительных устройств выше 1кВ, а так же 0,4кВ при токах нагрузки более 100А, измерительные устройства, как правило, подключаются через трансформаторы тока.

Рассмотрим пример выбора ИТТ для подключения расчётного счётчика электрической энергии офисного здания.

  1. Номинальное напряжение трансформатора тока.

Номинальное напряжение ИТТ должно быть не меньше максимального напряжения электроустановки, где требуется установить ИТТ. Выбирается из стандартного ряда по ГОСТ 7746-2015, в кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

  1. Номинальный ток вторичной обмотки.

Выбирается исходя из номинального (базового) тока счетчика, как правило составляет 5А.

Класс точности ИТТ определяется в зависимости от назначения электросчётчика. Для коммерческого учёта в сетях 0,4кВ класс точности должен быть 0,5S.

  1. Номинальный ток первичной обмотки.

Это наиболее важный параметр ТТ. Величина номинального тока ТТ должна быть больше значения максимального тока электроустановки, где монтируется ТТ.Он выбирается из следующего ряда по ГОСТ 7746-2015, в А: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000.

Номинальный первичный ток ИТТ должен быть больше, чем максимальный рабочий ток линии (I1макс, в нашем случае 120Ампер).

Выбираем ближайший больший из стандартного ряда – 150А.

Этот ток определяет коэффициент трансформации (Кт) нашего измерительного трансформатора, который выражается отношением номинального тока первичной обмотки к номинальному току вторичной обмотки:

Кт = I1/I2 → Кт=150/5=30

Таким образом нам необходим трансформатор тока 0,66кВ, 150/5, Кт=30, 0,5S

Согласно пункту 1.5.17 ПЭУ, при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока должен составлять не менее 40% номинального тока счётчика, а при минимальной рабочей нагрузке – не менее 5%.

  • Проверим выбранный ИТТ на соответствие данному условию:
  • Определим ток во вторичной обмотке при максимальной нагрузке:

I2макс. = I1макс./Кт = 120А/30 = 4А.

  • Определим ток во вторичной обмотке при минимальной нагрузке:

I2мин. = I1мин./Кт = 36А/30 = 1,2А.

  • Определим значение полученного максимального вторичного тока (I2макс.=4А) в процентах от номинального тока счётчика (5А):

I2макс. в % = (I2макс.×100)/Iном.сч. = (4А×100)/5А = 80%.

  • Определим значение полученного минимального вторичного тока (I2мин.=1,2А) в процентах от номинального тока счётчика (5А):

I2мин. в % = (I2мин.×100)/Iном.сч. = (1,2А×100)/5А = 24%.

  • Проверяем по условиям пункта 1.5.17 ПУЭ:

Следовательно ИТТ выбран верно.

ПРИМЕЧАНИЕ: Расчёт измерительных трансформаторов тока и их проверку можно произвести с помощью нашего онлайн калькулятора.

Требования к вторичным цепям измерительных трансформаторов

Сечение и длина проводов и кабелей, согласно пункту 1.5.19 ПУЭ, в цепях напряжения расчётных счётчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5% при питании от трансформаторов напряжения класса точности 1,0. Потери напряжения от трансформаторов напряжения до счётчиков технического учёта должны составлять не более 1,5% номинального напряжения.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Подключение счетчика через трансформаторы

Схемы подключения счетчиков через измерительные трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

Счетчик трансформаторного включения имеет 10 либо 11 выводов:

Выводы для подключения счетчика через трансформаторы

В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм 2 по меди и не менее 4 мм 2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

Контакты испытательной коробки для подключения счетчика через трансформаторы

Обратная сторона испытательной коробки для подключения счетчика через трансформаторы

ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.

Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Подключения счетчика через трансформаторы тока

Трансформатор тока, внешний вид, обозначение на схеме

Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

Примечание: Расчет трансформатора тока можно произвести с помощью нашего онлайн калькулятора.

Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

2.1 Десятипроводная схема

Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

Принципиальная десятипроводная схема подключения счетчика через трансформаторы

Фактически десятипроводная схема будет иметь следующий вид:

Схема подключения счетчика через трансформаторы тока десятипроводная

Преимущества десятипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.

Недостатки десятипроводной схемы:

  1. Большой расход проводника, для сборки вторичных цепей учета.

2.2 Семипроводная схема

Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:

принципиальная семипроводная схема подключения счетчика через трансформаторы тока

Фактически семипроводная схема будет иметь следующий вид:

Схема подключения счетчика через трансформаторы тока семипроводная

Преимущества семипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.

Недостатки семипроводной схемы:

  1. Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.

2.3 Схема с совмещенными цепями

Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.

При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту И1.

принципиальная схема подключения счетчика через трансформаторы тока с совмещенными цепями

Фактически схема с совмещенными цепями будет иметь следующий вид:

Схема подключения счетчика через трансформаторы тока с совмещенными цепями

Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.

3. Подключение счетчика через трансформаторы тока и напряжения

В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Читайте так же:

25 комментариев

Принципиальные схемы правильные. Фактические просто бред. В десятипроводной попутаны и1 и и2. В семипроводной на нулевую клемму счетчика подключен вместо нуля общий заземленный провод. И даже если снять перемычки и1 и и2 все равно попутаны. Автор сколько начинающих электриков вы кинули со своими бредовыми фактическими схемами. Ни одна из схем не соответсвует ПУЭ и не позволяет подключить образцовый счетчик. Поищите в нете правильные схемы а потом публикуйтесь ведь люди вам могли и поверить.

Юрий, вы не правы. Схемы правильные. Вы вообще на практике сталкивались с тем о чем говорите? Я раньше работал электромонтером в энергоснабжающей организации и лично собирал данные схемы, в настоящий момент работаю тамже в должности инспектора и по долгу службы проверяю схемы с помощью вольтамперфазометра и образцового счетчика. И принципиальные, и фактические схемы составлены правильно и легко позволяют проводить проверку учета любым из перечисленных мной способов и полностью соответствуют требованиям действующих правил.
Поэтому с удовольствием послушал бы какие именно пункты ПУЭ нарушают данные схемы, не могли бы вы уточнить? И по поводу общего заземляющего провода, то же правила почитайте и куда в РУ-0,4 подключается PEN проводник.

Анатолий, Вы приводите вверху принципиальную правильную схему и потом на фактической собираете ее не правильно. Останавлюсь на семипроводной. На принципиальной объединены и заземлены выводы И2 ТТ и подключены на нагрузочные входы счетчика 3,6,9-правильно. На фактической:
1. Установленные подвижные перемычки закорачивают вторичные обмотки ТТ (при вкрученных винтах в перемычку с обратной стороны ИКК). Счетчик будет стоять.
2. При снятии подвижных перемычек выводы ТТ И2 будут подключены на генераторные входы счетчика 1,4,7. Если по простому счетчик пойдет в обратную сторону.
3. То что в конце концов и защитный заземляющий и нулевой проводники объединены не отменяет необходимости проложить до 10 клеммы именно нулевой провод. Смотрите свою же принципиальную схему.
4. ПУЭ 1.5.23. Цепи учета следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки.
Зажимы должны обеспечивать закорачивание вторичных цепей трансформаторов тока, отключение токовых цепей счетчика и цепей напряжения в каждой фазе счетчиков при их замене или проверке, а также включение образцового счетчика без отсоединения проводов и кабелей.
Ваша схема не позволяет подключить образцовый прибор без отключения проводов.
5. Да и вообще сравните пожалуйста свою принципиальную схему со своей же фактической!
6. Правильных схем в нете полно.

P.S. Анатолий от ИКК до счетчика у Вас три токовых провода лишние. Тянется один общий и перемычки на счетчике. Еще раз смотрите принципиальную схему.

Юрий, Вам необходимо вспомнить теорию. Как протекает электрический ток в цепи? Он протекает по замкнутому контуру. Соответственно не имеет значения какой из выводов вторичной обмотки тт заземлять, и1 или и2.
1. Закоротки в испытательном блоке закорачивают выводы тт только на время проведения работ со счетчиком (например его замена) т.к. тт должны работать в режиме короткого замыкания иначе тт могут выйти из строя о чем, кстати, и идет речь в приведенном Вами пункте ПУЭ. При работе счетчика данные закоротки размыкаются.
2. В семипроводной фактической схеме на тт закорочены и1 общий провод от них идет на закорачивающую шину икк где опять разделяются и идут до счетчика. Разделение сделано на икк потому что этот вариант надежнее по сравнению с установкой перемычек в счетчике, поэтому некоторые энергоснабжающие организации и вовсе стали запрещать ставить перемычки в счетчике. Разница между принципиальной схемой и фактической только точка заземления и1 или и2.
Нулевой провод можно провести еще один, но это будет не ужный дополнительный расход проводника, т.к. заземление тт выполняется pen проводником.
В целом схема полностью соответствует приведенному Вами пункту ПУЭ.

Я все же считаю, что при эксплуатации любого изделия, в том числе и КИП следует руководствоваться эксплуатационными документами. По ЭД КИП она подключается по семипроводной системе. Поворотные перемычки токовых цепей предназначены для возможности размыкания токовых цепей счетчика, что требует и ПУЭ. А для закорачивания токовых цепей предназначена шина на нижней стороне КИП. В десятипроводной системе конструктивные элементы КИП используются не по назначению, предусмотренному производителем.

Полностью согласен с Дмитрием! Кстати в энергоснпбжающей организации в которой я работаю так же запрещена установка перемычек в счетчике.

Онлайн расчет трансформатора тока

Данный онлайн калькулятор позволяет произвести расчет и выбор измерительных трансформаторов тока (ИТТ/ТТ) для подключения электрического счетчика по мощности.

Расчет трансформатора тока

ПРИМЕЧАНИЕ: После расчета выбранный трансформатор тока необходимо проверить по загрузке при максимальных и минимальных значениях проходящих через него нагрузок.

Проверку выполнения данного требования можно произвести с помощью следующего онлайн калькулятора:

Расчет загрузки трансформаторов тока

Справочно: Расчет производится для счетчика с номинальным (базовым) током 5 Ампер.

Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Как подключить трансформатор тока

Общие сведения о трансформаторах тока

Трансформаторы тока создаются согласно нормативной документации. Параметры регламентированы. Например, стандартами:

  1. ГОСТ 7746-2001.
  2. ГОСТ 23624-2001.

Небольшой трансформатор

Дело касается коэффициента трансформации. Главный параметр, показывающий отношение меж токами первичной, вторичной обмоток. Цифра позволит сопрягать трансформатор тока с счетчиком, защитным автоматом. Причем требования значительно снижаются. Сеть потребляет 200 А, коэффициент трансформации равен 100, достаточно наличия защитного автомата 2 А. Видите, очень выгодно. Безопасность персонала расписали.

Получается, во вторичной цепи напряжение сетевое. Выгоды не получается. Собственно, поэтому прибор называется трансформатором тока. Не меняет напряжения. Напоминаем, действующее значение фазы напряжения 380 вольт составляет 220 вольт. Работа с промышленной сетью напоминает однофазные. Трансформаторов тока понадобится три. Счетчик измеряет напряжение, ток, определяя параметры:

  • Полную мощность потребления в ВА.
  • Реактивную мощность в вар.
  • Активную мощность Вт.

Часто нужен нейтральный провод (даже в трехпроводных промышленных сетях). К трансформатору тока не относится. Включается не так, как обычный. Первичная обмотка малого сопротивления, чтобы не вносить возмущений в цепь. Включается последовательно полезной нагрузке (двигателям).

Типичный трансформатор включается следующим образом: нагрузка находится в цепи вторичной обмотки. Позволит развязать потребителя, источник по постоянному току (гальваническая развязка), получить нужные параметры. В нашем случае (!) манипуляций с входными напряжениями, токами не производится.

В цепь вторичной обмотки включается прибор измерения, контроля. Счетчики снабжены двумя катушками: тока, напряжения. В цепь вторичной обмотки включается первая. Катушка напряжения одним концом заводится на фазу, на второй подается нейтраль. Комплексный подход позволит оценить мощность. На нейтраль положено заводить один конец токовой катушки. Как узнать последовательность действий более подробно? Схема дается на приборе контроля, измерения. Трансформатор тока является изделием универсальными, тонкости нужно искать на корпусе (шильдике) стороннего оборудования.

Первичная обмотка включается последовательно полезной нагрузке, вторичная используется для внедрения в сеть устройств контроля, измерения. Подробная схема включения зависит от типа сопрягаемых устройств, приводится на корпусе, шильдике, инструкцией. Рассмотрим, как трансформатор тока обозначается электрическими схемами. На просторах сети встретим много ошибок. В предыдущих обзорах приводили рисунок трансформатора тока, просто копируем из предыдущей локации:

    Прямой толстой линией показана первичная обмотка. К одному концу подводится фаза, к другому подключается потребитель. Холодильник, кондиционер, завод. Чертеж дан показывает трехфазное напряжение 380 вольт. Показана одна ветка. Прочие подключаются аналогично. В нижнем правом углу можем видеть измерительные катушки счетчика. Одна из возможных схем, не является догмой. Подробно электрические карты приводятся корпусами, шильдиками приборов. Можно достать на специализированном форуме.

Подключение трансформатора тока

Подключение трансформатора тока

Что касается приборов, применяемых за пределами лабораторий, разброс ниже. Обратите внимание, нагрузка вторичной цепи ученых должна быть по возможности активной. Точнее говоря, если коэффициент мощности меньше 1, следует подключать только индуктивные сопротивления. По большей части выполняется, в особенности для трехфазных цепей. Сварочный аппарат на входе содержит обмотку трансформатора, двигатель подключается на катушку статора, ротора. Касается счетчиков, где витой провод послужит для оценки параметров напряжения, тока. Примеры индуктивных сопротивлений. В реальности лучше перестраховаться, если коэффициент мощности меньше 1 (реактивное сопротивление обусловило возникновение потерь), пусть лучше импеданс (комплексное сопротивление) будет индуктивным, не емкостным.

Маркировка трансформаторов тока

Различные трансформаторы

Прежде, чем произвести подключение трансформатора, убедитесь, что годится выбранным целям. Из сказанного выше понятно, как оценить количественно параметры, для применения знаний на практике следует уметь читать маркировку изделия. Код регламентируется стандартом. Приводим перечень параметров, указываемых производителем на шильдике трансформатора тока:

Характеристики трансформатора тока

Характеристики трансформатора тока

Назначение и применение трансформаторов тока

Июль 24th, 2012 Рубрика: Трансформаторы тока, Электрооборудование

transformatory_toka_трансформаторы_тока

Мы уже с Вами много говорили про трансформаторы тока (ТТ) и сегодня я решил открыть новый раздел на сайте, посвященный полностью этой теме.

Чтобы начать изучать данный раздел, необходимо точно понимать их смысл и назначение.

Вторым назначением трансформаторов тока является отделение низковольтных приборов учета и реле, подключенных ко вторичной обмотке, от первичного высокого напряжения сети. Этим обеспечивается электробезопасность оперативного и ремонтного персонала электрослужбы.

Трансформаторы тока нашли широкое применение в цепях релейной защиты. С помощью трансформаторов тока получают питание токовые цепи защиты. В случае повреждений или ненормальных режимов работы электрооборудования от ТТ зависит правильное и надежное срабатывание устройств релейной защиты.

Также трансформаторы тока применяются для питания цепей измерения и учета электроэнергии.

Пример 1

В первом примере я покажу Вам как выполнен учет электроэнергии на мощном потребителе с током нагрузки примерно 400 (А). Соответственно, при таком большом токе нагрузки подключать электросчетчик и другие приборы учета (амперметр) прямым включением в сеть НЕ ДОПУСТИМО. Они сгорят и выйдут из строя. Поэтому в этом случае необходимо применить ТТ с коэффициентом трансформации 400/5 или еще больше.

transformatory_toka_трансформаторы_тока

А ко вторичным обмоткам ТТ подключен трехфазный счетчик электрической энергии САЗУ-ИТ и щитовой амперметр Э378.

transformatory_toka_трансформаторы_тока

transformatory_toka_трансформаторы_тока

Трехфазный индукционный счетчик САЗУ-ИТ.

transformatory_toka_трансформаторы_тока

Вторичные провода выполняются медным проводом сечением 2,5 кв.мм. В начале вторичные провода с трансформаторов тока идут на промежуточный клеммник, а с него уже на приборы учета. На этот же клеммник подключаются цепи напряжения.

transformatory_toka_трансформаторы_тока

Про все действующие схемы подключения счетчика через трансформаторы тока я уже Вам рассказывал и на этом останавливаться сейчас не буду. Вот знакомьтесь:

transformatory_toka_трансформаторы_тока

В этом случае первичные обмотки трансформаторов тока подключены последовательно во всех фазах. Вторичные обмотки соединяются проводами с электросчетчиком через испытательную переходную коробку (КИП).

Пример 2

Аналогично можно сказать и про цепи релейной защиты.

Во втором примере я покажу Вам как выполняется релейная защита на потребителе напряжением 10 (кВ), с током нагрузки примерно 1000 (А). Соответственно, при таком большом токе нагрузки и высоком напряжении сети, подключать реле прямым включением в сеть НЕ ДОПУСТИМО.

В этом случае нам необходимо применить высоковольтные трансформаторы тока ТПЛ-10 с коэффициентом трансформации 1000/5 (для питания обмоток токовых реле) и измерительные трансформаторы напряжения, например, НТМИ-10, с коэффициентом 10000/100 (для питания обмоток реле напряжения и электросчетчиков).

transformatory_toka_трансформаторы_тока

В релейном отсеке ячейки КРУ установлены токовые реле защиты на базе РТ-40.

transformatory_toka_трансформаторы_тока

На двери релейного отсека размещены трехфазный счетчик СЭТ-4ТМ.03М.01 и щитовой амперметр Э30.

С помощью ТТ возможно установить приборы учета и реле, подключенные ко вторичным цепям, на значительные расстояния от контролируемых и измеряемых участков сети.

Например, амперметры всех потребителей подстанции, могут быть установлены в удобном и отапливаемом помещении (щитовой или пульте учета) для контроля их нагрузки.

transformatory_toka_трансформаторы_тока

Ниже я представляю Вашему вниманию список статей на тему ТТ (список будет пополняться по мере написания статей):

Читайте также: