Ток и напряжение могут совпадать по фазе если в цепи

Обновлено: 16.05.2024

Урок 8. Переменный электрический ток

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. - М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.


𝒾 - мгновенное значение силы тока;

m- амплитудное значение силы тока.


– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:



При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.


Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени - мгновенное значение (помечают строчными буквами - і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um - амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:


Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение. В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону


Согласно данным нашей задачи:


Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:



2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Напишем закон Ома для переменного тока:

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:


Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:


то после вычислений получаем Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

Мощность при отсутсвии сдвига фаз

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Сдвиг фаз 90 градусов

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost-formula-no

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Что значит напряжение и ток совпадают по фазе? Или наоборот ток отстаёт или опережает напряжение.

Меня интересует физически как это представляется, синусоиды я видел
В частности интересно почему происходит такая рассинхронизация? Какие-нибудь примеры конкретные?

Сергей Баруздин Оракул (67553) трехфазное напряжение поглядите в викепедии, что такое действующее значение тамже поймёте. А в некоторых цепях такое же расхождение происходит между током и напряжением.

Остальные ответы


То и значит, что они одновременно достигают максимума. Или не одновременно ))

KehayМыслитель (5456) 5 лет назад

Меня интересует физически как это представляется, синусоиды я видел
В частности интересно почему происходит такая рассинхронизация? Какие-нибудь примеры конкретные?

виктор носковОракул (88212) 5 лет назад

показаны две синусоиды с опережениями.
И ни одной с совпадением.


совпадают по фазе значит одновременно возрастают и убывают (первый случай)
а вот если одна величина опережает другую на определенный угол (второй случай, величина В опережает А)

KehayМыслитель (5456) 5 лет назад

В каких конкретно случаях такое происходит? Что может заставить ток отставать от напряжения?

Роман Ганеев Знаток (307) такой процесс всегда происходит на катушке индуктивности (именно ток отстает от напряжения, или, что то же самое, напряжение опережает ток на угол 90 градусов)

Напряжение и ток совпадают по фазе - означает, что угол между векторами тока и напряжения равен нулю.
Отстает или опережает означает, что угол есть, и он больше, либо меньше нуля

Проверьте себя в знании теории однофазного переменного тока

Синусоида тока при определении параметров в индуктивной катушке несколько отстает от синусоиды напряжения.

Напряжение опережает ток по фазе Напряжение опережает ток по фазе

А в емкости поведение совершенно противоположное - синусоида тока как бы опережает напряжение.

Ток опережает по фазе напряжение Ток опережает по фазе напряжение

Если же снимать синусоиды тока и напряжения в активной нагрузке, которой в частности являются лампы накаливания и реостаты, то максимальные и нулевые точки напряжения и тока совпадают во времени.

Напряжение ток по фазе совпадают Напряжение ток по фазе совпадают

Такое поведение характерно как для цепей однофазного, так и трехфазного тока.

При решении задач с определением величин полного тока, напряжения, полного сопротивления цепи, косинуса фи и прочих параметров графическим методом удобно заменять синусоиды векторами. И строить векторные диаграммы.

Их особенностью является то, что все векторы в них вращаются одновременно против часовой стрелки.

При наличии векторной диаграммы несложно выполнять и обратную задачу, выявить схему соединения подключенных в цепь элементов: активного, емкостного и индуктивного сопротивления .

Предлагаю вам проверить себя в знании теории в теме переменного тока однофазной цепи и решении простеньких задач с помощью векторных диаграмм .

Пройдите следующий тест и вы узнаете профан вы в электротехнике или электрик профи:

Краткий обзор темы: "Переменный электрический ток"

Вспомним основные, нужные для написания следующих статей и для лучшего усвоения материала, моменты из темы: "Переменный электрический ток".

1. Векторная диаграмма.

Переменный (синусоидальный) ток можно графически изображать в виде синусоиды или заменяющего синусоиду вектора действующего тока.

Здесь вектор ОВ (вектор силы тока), вращаясь против часовой стрелки, даёт проекции на вертикальную ось. Эти проекции есть мгновенные значения силы переменного тока.

Один оборот вектора тока соответствует одному колебанию силы тока в цепи.

Точно так же вектором напряжения можно заменить синусоиду колебаний переменного напряжения, приложенного к электрической цепи.

Изображая вектор тока и вектор напряжения на одном рисунке, получаем очень наглядную векторную диаграмму, позволяющую найти сдвиг фаз между током и напряжением, а воспользовавшись теоремой Пифагора сможем найти интересующие нас величины, характеризующие данную цепь.

Ниже, в приведённом примере, рассмотрим, как строятся векторные диаграммы и как ими пользуются.

2. Действующие значения напряжения и силы тока.

Прикладываемое к цепи напряжение (в городской сети оно равно 220 В) и возникающий при этом ток называют действующими (или эффективными) значениями напряжения и силы тока.

Это означает, что по своему тепловому действию (или эффективности) переменный ток, равный например 5 А, эквивалентен постоянному току 5 А, протекающему по той же цепи (выделяется одинаковое количество теплоты).

Вольтметры и амперметры, подключенные к электрической цепи, показывают действующие значения напряжения и силы тока.

3. Электрическая цепь с чисто активным сопротивлением.

Если электрическая цепь содержит только чисто активное сопротивление (пусть это будут лампы накаливания), то при подключении их к источнику переменного тока нити ламп накаляются, излучая тепло и свет, здесь вся мощность источника (энергия в единицу времени) активно поглощается нитями ламп. Поэтому такое сопротивление назвали активным .

Полезная (или активная) мощность такой цепи равна произведению действующего напряжения на действующий ток, то есть максимальна .

Напряжение и ток в цепи, содержащей только активное сопротивление, колеблются в одинаковой фазе - изменения тока следуют сразу за изменениями напряжения, что отражено на рисунке ниже.

Характеристики переменного тока. Переменный ток в цепях, содержащих только активное сопротивление

Генераторы переменного тока, о принципе работы которых говорилось ранее, вырабатывают переменный синусоидальный ток.

Характеристики переменного тока.

Как любая колеблющаяся величина переменный ток характеризуется периодом и частотой.

Периодом переменного тока Т называется промежуток времени, в течение которого сила тока совершает одно полное колебание:

Частотой переменного тока называется число периодов за единицу времени:

Частота переменного тока всех электростанций равна 50 Гц или период промышленного тока равен 0,02 с.

Круговая или циклическая частота переменного тока:

Так как величина и направление мгновенных значений переменного тока всё время меняются, то введено понятие действующего значения тока, путём сравнения теплового действия постоянного и переменного токов.

Действующее значение силы переменного тока численно равно такому постоянному току, который проходя через одинаковое сопротивление, что и переменный, выделяет в нём за время периода одинаковое количество тепла.

Например, если говорим, что сила переменного тока равна 2 А - это значит, что тепловое действие этого переменного тока такое же, как и постоянного тока силой 2 А. За равные промежутки времени они выделяют одинаковое количество теплоты.

Действующие значения силы переменного тока, а также действующие значения ЭДС и напряжения переменного тока связаны с их максимальными ( амплитудными ) значениями, обозначенными с индексом "нуль", следующими соотношениями:

В генераторах, установленных на электростанциях, всегда возникает переменная ЭДС, изменяющаяся во времени по синусоидальному закону. Если принять начальную фазу за нуль, то мгновенные значения ЭДС связаны с её максимальными (амплитудными) значениями следующей зависимостью:

Такая же зависимость существует между мгновенными значениями напряжений на зажимах источника и его максимальным значением:

Если к генератору переменной ЭДС, на зажимах которого существует напряжение

подключить внешнюю цепь, то в ней будет течь синусоидальный ток , мгновенные значения которого связаны с амплитудным значением тока следующей зависимостью:

Здесь угол "фи" есть разность (сдвиг) фаз между током и напряжением.

Разность фаз может быть положительной и отрицательной величиной - это зависит от вида нагрузки во внешней цепи (от того, содержит ли внешняя цепь активное, индуктивное, емкостное сопротивления).

Для цепи только с активным сопротивлением угол "фи" равен нулю , то есть колебания тока и напряжения совпадают по фазе (показано на рисунках ниже).

Какой физический смысл имеет активное сопротивление?

Вспомним электрическую цепь постоянного тока.

К понятию электрического сопротивления и к закону Ома для участка цепи (не содержащего источника тока) пришли через опыты.

А именно, к участку цепи прикладывали постоянное напряжение U и измеряли проходящий по участку ток. Оказалось, что ток всегда пропорционален напряжению.

Коэффициент пропорциональности между ними назвали сопротивлением R участка цепи прохождению по нему тока.

Так опытным путём был получен один из основных законов постоянного тока - закон Ома .

Сопротивление проводника зависит от материала, из которого он изготовлен, от температуры и определяется его размерами.

Для однородного проводника в виде проволоки, трубки, бруска, пластины

Электронная теория сопротивление проводника току объясняет столкновениями упорядоченно движущихся электронов с ионами кристаллической решётки проводника.

При изучении цепей постоянного тока R называли просто сопротивлением.

При переходе к цепям переменного тока его стали называть активным сопротивлением, потому что оно активно (постоянно) потребляет электрическую энергию от источника тока, превращая её в другие виды энергии, преимущественно в тепловую .

Так, при прохождении тока (постоянного или переменного) через нить лампочки накаливания, выделяется тепло, нить накаляется и излучает свет.

В цепях переменного тока, кроме активного сопротивления R , имеют место индуктивное и емкостное сопротивления, которые в отличие от активного сопротивления, не поглощают энергию, а лишь передают её от электрического поля магнитному, и наоборот.

Индуктивному и емкостному сопротивлениям будут посвящены следующие две статьи.

Теперь рассмотрим случай, когда в цепи переменного тока содержится только активное сопротивление:

В цепи, содержащей только активное сопротивление, ток и напряжение колеблются в од инаковой фазе , то есть ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения.

На рисунке ниже показаны кривые зависимости мгновенных значений тока и напряжения от времени за период.

Урок 8. Переменный электрический ток

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. - М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.


𝒾 - мгновенное значение силы тока;

m- амплитудное значение силы тока.


– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:



При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.


Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени - мгновенное значение (помечают строчными буквами - і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um - амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:


Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение. В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону


Согласно данным нашей задачи:


Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:



2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Напишем закон Ома для переменного тока:

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:


Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:


то после вычислений получаем Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

Урок 8. Переменный электрический ток

Рассмотрим цепь содержащую проводник сопротивлением R.

R – активное сопротивление.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

$i=I_m \cos \omega t$

$i$ – мгновенное значение силы тока,

$I_m$– амплитудное значение силы тока.

$u=U_m \cos \omega t$ – колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулой:

$e=-'=BSN \omega \sin \omega t$, $\varepsilon_m=BSN \omega $,

$U_m$– амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Средняя мощность равна $P=I^2R$.

Конденсатор включённый в цепь переменного тока оказывает сопротивление называемое ёмкостным – $X_С$.

Катушка индуктивности в цепи переменного тока оказывает сопротивление называемое индуктивным – $X_L$.

Если цепь содержит активное сопротивление, катушку и конденсатор соединённые последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Мощность цепи переменного тока:

Величина $cos \varphi$ – называется коэффициентом мощности.

Решение задачи на электромагнитные колебания

В чём преимущество переменного тока в отличие от постоянного?

В конце девятнадцатого века, благодаря открытиям в области электромагнетизма, возник спор по поводу того, какой же ток лучше применять, чтобы удовлетворить человеческие потребности. Постоянный ток замечательно работал с первыми электрическими двигателями и лампами накаливания. В чём же недостаток постоянного тока? Основная проблема – передача электроэнергии на расстояния. Передача электроэнергии с помощью постоянного тока сопровождалось большими потерями электроэнергии в проводах. Благодаря разработанному в 1876 году инженером Павлом Яблочковым трансформатору, изменять напряжение переменного тока было очень просто, что давало потрясающую возможность передавать его на сотни и тысячи километров.

Никола Тесла, работая инженером в фирме Эдисона, понял, что постоянный ток не может обеспечить человечество электроэнергией. В 1888 году Тесла представил систему, способную транспортировать электрическую энергию на расстояния в сотни миль. Особенно большое развитие получило применение переменного тока после появления выпрямителей, способных преобразовывать переменный ток в постоянный, что стало удобно для всех приёмников.

НАШИ ПАРТНЁРЫ

Минпросвещения России
Российское образование
Рособрнадзор
Русское географическое общество
Российское военно-историческое общество
Президентская бибилиотека

в разработке в разработке

© Государственная образовательная платформа «Российская электронная школа»

Переменный электрический ток



u = U m a x cos . ω t

i = u R . . = U m a x cos . ω t R . . = I m a x cos . ω t

I m a x = U m a x R . .


p = ( I m a x cos . ω t ) 2 R

cos 2 . α = 1 + cos . 2 α 2 . .

p = I 2 m a x 2 . . R ( 1 + cos . 2 ω t ) = I 2 m a x R 2 . . + I 2 m a x R 2 . . cos . 2 ω t


− p = I 2 m a x R 2 . . = − i 2 R

− i 2 = I 2 m a x 2 . .

I = √ − i 2 = I m a x √ 2

U = √ − u 2 = U m a x √ 2 . .


В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону UC = U0cos ωt, где U0 = 5 В, ω = 1000π с – 1 . Определите период колебаний напряжения на конденсаторе.

pазбирался: Алиса Никитина | обсудить разбор | оценить


В электрической цепи, показанной на рисунке, ключ К длительное время замкнут, E=6 В, r = 2 Ом, L = 1 мГн. В момент t = 0 ключ К размыкают. Амплитуда напряжения на конденсаторе в ходе возникших в контуре электромагнитных колебаний равна ЭДС источника. В какой момент времени напряжение на конденсаторе в первый раз достигнет значения E? Сопротивлением проводов и активным сопротивлением катушки индуктивности пренебречь. Ответ запишите в мкс.

Читайте также: