Светильник с охлаждением своими руками

Обновлено: 28.04.2024

Светильник с охлаждением своими руками

Привет всем. Моя идея имеет будущее? Охлаждение светодиода водой или маслом . Три одноватных светодиода нагревают воду до 23 градусов

Файлы: 1573104.jpg (266.9 Kb) · 5780930.jpg (276.4 Kb) · 7208551.jpg (248.3 Kb)

Постов: 129 Х

Йопта.
Взвесь лампу с дюралевым радиатором 100 х 100 мм из листа двойки-тройки, и своё чудо. Есть разница?
И ещё куча причин не заниматься ерундой.
Пост отредактирован. Будете хамить, будем принимать меры.

Постов: 11046 *

Вообще идея оригинальная, как минимум. Если есть процессоры с водяным охлаждением, почему бы и светильник LED не сделать такой. Но алюминий всё равно окажется легче, проще и дешевле.

Постов: 2882 Друзья

Maestro, есть такие разработки, в инете встречались. для улучшения отвода тепла в тяжелых случаях собирается система с водяным охлаждением. вплоть до использования светодиодов в бане, в частности в парной, с температурой окружающей среды под 100". представьте сами, какая температура кристалла при работе и как быстро деградировать будет светодиод.

Отредактировал mobildoc - Вс, 30.10.2016, 22:36

Постов: 2222 Друзья

fomitsova55, а смысл? Все устройство для такого охлаждения займет больше места, чем радиаторы. Проще поставить радиатор и кулер от процессора - и охладит без проблем, и компактнее получится.

Постов: 63 ОК

Цитата jank59288 ( )

Взвесь лампу с дюралевым радиатором 100 х 100 мм из листа двойки-тройки, и своё чудо. Есть разница?


Емкость с водой или маслом я не собираюсь держать в руках -она будет спрятана за подвесным потолком . и это же не тонна . тем более у нас в ЕС радиатор 100 на 100 стоит 8 евро . а банка из под хрена

Цитата Maestro ( )

Но алюминий всё равно окажется легче, проще и дешевле.

У нас в ЕС алюминий очень дорогой ,банка из под хрена даром

Постов: 3532 Друзья

fomitsova55, а "алиэкспресс" в ЕС забанили? Идея с водяным охлаждением хорошая, но пара вопросов останется- герметичность, удобство монтажа и прочее. А радиаторы можно взять из компьютера или купить в строительном магазине лист алюминия, или прикрутить алюминиевую миску наконец Это если по-быстрому. Хотя заказы из китая в европу приходят буквально за неделю-две, это у нас почтовые улитки ещё повсеместно в ходу Так что решать вам. Хотя я с удовольствием посмотрю на результат развития этой идеи.

Постов: 8861 Модератор

Приспособить к умывальнику. И светло и водичка с подогревом

Постов: 129 Х

Цитата fomitsova55 ( )

она будет спрятана за подвесным потолком

Да хоть за кирпичной стеной.
"у нас в ЕС" - я так понимаю, это в какой-нибудь прибалтике? И что, радиатор от старого компа найти проблематично? Можно спользовать и с кулером, и пассивно - проредив ребра 1 через 2.

Постов: 63 ОК

Цитата Сергей-78 ( )

Приспособить к умывальнику. И светло и водичка с подогревом

Я так и думаю ..сделать .Если в квартире 20 лампочек стакан сделаю из алюминия и пенопласта чтобы держал тепло и соединю все светильники банки последовательно трубками и поставлю маленький насос и емкость на 50 литров из нержавейки закрытую пенопластом . приладить датчик который будет показывать температуру в баке и на кухню мыть посуду если лампочек 100 по 9 ватт и горят они 8 часов . 900 ватт умножим на 8 часов 7200 ватт !!

Цитата jank59288 ( )

И что, радиатор от старого компа найти проблематично? Можно спользовать и с кулером, и пассивно - проредив ребра 1 через 2.


Я радиаторы ставила от компа 10 лет назад . сейчас хочу на воде или на водке

Правильный расчет и изготовление светодиодной подсветки аквариума своими руками

Подсветка для аквариума обязательна, при разведении рыб из тропического или субтропического климата, где продолжительность светового дня большая на протяжении всего года.

Микроклимат создается с помощью систем подогрева воды и освещения. Если с подогревом воды всё более-менее ясно и с помощью воздушных потоков компрессора она перемешается и прогрев будет более-менее равномерным, то с освещением всё несколько сложнее. В зависимости каких рыб и растения вы будете содержать, будут меняться необходимые условия.

Освещение аквариума светодиодными лентами

Чем светодиоды лучше галогенных, люминесцентных и ламп накаливания?

До появления светильников нового поколения освещение делали на:

  1. Люминесцентных лампах;
  2. галогенных лампах;
  3. лампах накаливания.

Теперь все сместилось в сторону освещения аквариума светодиодными лампами, почему так? Лампы накаливания и галогенки выделяют много тепла, что вызывает дополнительный нагрев воды, порой избыточный, соответственно требуется отвод тепла. Тепло отводили с помощью принудительного воздушного охлаждения, т.е. кулером (вентилятором). Это вызывало дополнительный шум и затраты.

Освещение аквариума светодиодной лентой выделяет меньше тепла и выдает больше света. Особенно актуально для растений, требующих сильного освещения: от 6000 до 10 000 и более Люкс освещенности. Лампа накаливания на каждый Ватт своей мощности выдаёт от 9 до 20 Люмен.

Давайте сравним классическое и светодиодное освещение аквариума, на примере простейших расчетов мощности и освещенности.

Сравнение типов ламп

У Галогенных ламп световой поток больше, у люминесцентных еще выше, а нагрев воды от них меньше. Но последние содержат пары ртути, что при повреждении лампы, может похоронить всю живность в воде.

Однако светодиодное освещение аквариума, на день написания статьи (конец 2017 года), самое эффективное. Светодиоды обеспечивают 80-140 Лм на каждый Вт своей мощности, что в 5-10 раз эффективнее конкурнетов.

Освещенность в большей степени важна для флоры. Светодиодные лампы в аквариуме обеспечат необходимую освещенность для растений и сэкономят деньги. Вдумайтесь сами, сколько будет стоить работа светильника из ламп накаливания общей мощностью 0,5 кВт, который работает по 5-12 часов в день. Даже использование автоматики не позволит добиться существенной экономии. Свет от светодиодов потребляет от 50 до 150 Ватт, в зависимости от габаритов аквариума.

Led освещение в аквариуме может использоваться как декоративная подсветка, так и как функциональная. Прожекторы и ленты можно разместить в нижних слоях воды, как для подсветки, так и для обеспечения светом растений, расположенных у дна емкости.

Типы LED светильников

Разнообразие вариантов светодиодной подсветки для аквариума ставит человека в ступор при выборе. Разберемся с видами светодиодных источников света и способами их монтажа. Это поможет определиться с выбором, при самостоятельном изготовлении освещения.

Светодиодная лента

Светодиодная лента выпускается в различных классах защищенности от пыли и воды.

Типы светодиодных лент по защищенности

Если планируете использовать ленту для монтажа на крышку аквариума – вам подойдёт класс защиты IP65. Она защищена от брызг и крупных капель, но её нельзя погружать в воду. Возле/над водой она будет чувствовать себя замечательно.

В отдельных случаях, для подсветки растений расположенных у дна и в местах со сложным рельефом, в аквариуме нужно использовать светодиодную ленту, проложенную по дну. Можно расположить ее снаружи аквариума светодиодами внутрь, либо в воде, положив её на дно.

Подсветка LED лентой на дне аквариума

В таких случаях используйте только ленту с классом защищенности IP68. Ее применяют для подсветки дна у фонтанов, бассейнов и аквариумов. Главная задача – обеспечить надежную изоляцию места подключения питающих проводов.

Интересно выглядит цветная подсветка в аквариуме. Используйте RGB ленту, чтоб придать интерьеру красок. Учтите, что долгое шоу подобного рода может негативно сказаться на флоре и фауне аквариума.

Синяя подсветка аквариума

Синяя подсветка аквариума ночью

Освещение мощными диодами (1-3 и более ватт)

Такие диоды нужно обязательно устанавливать на теплоотвод, это может быть либо алюминиевый лист, общий радиатор или же радиаторы для отдельных светодиодов. Монтаж светодиодов можно выполнить на крышку аквариума. Установите на них рассеивающие линзы, чтобы обеспечить большую равномерность светового потока.

Освещение аквариума светодиодными лампами и прожекторами

Проще всего использовать готовый продукт, например светодиодный прожектор. Он обеспечивает хорошую яркость и качество света, а диапазон мощностей, в котором они продаются, позволит вам выбрать идеальный вариант диодного освещения для вашего аквариума.

Сколько нужно света? Расчет светодиодного освещения аквариума

Расчет количества светодиодов нужно начать с вычисления его площади. Если у вас глубина аквариума меньше его длины и ширины, можно пренебречь потерями света в толще воды, а расчеты произвести с запасом в 1,3-1,8 раз.

Допустим у нас емкость 1х0,6х0,4м, что даёт нам объём в 240 литров, а площадь освещаемой поверхности в 6000см 2 или 0,6м 2 .

Требуемая освещенность (из справочника):

  • Если в аквариуме в основном рыбы – достаточно 3000-6000 Люкс;
  • 6000-10000Лк для водорослей и рыб;
  • 10000-15000Лк нужно травянистым и ярким растениям.

Точные значения нужной освещенности для конкретных видов рыб/растений, можете найти в современных справочниках аквариумной флоры и фауны.

Китайские светодиоды из нижнего ценового сегмента выдают от 80 до 100Лм/Вт, дорогие светодиоды известных брендом (OSRAM, Philips и т.д.) до 140Лм/Вт.

Напомним, что 1 Люкс = 1 Люмен / 1 м­ 2­ .

E = F / S, где E – освещенность Лк, F – световой поток Лм, S – площадь м 2 .

Применим формулу. Выразим световой поток:

Возьмем для примера необходимую освещенность 10000Лк, площадь мы вычислили – 0,6м 2 .

F = 10000 * 0,6 = 6000Лм

На распространение света и изменение яркости, с изменением расстояния, влияет закон обратных квадратов. Т.е. с увеличением расстояния в ДВА раза, освещенность упадёт в ЧЕТЫРЕ раза, и это при условии того, что среда прозрачна, не задымлена и не запылена.

Теперь нужно выполнить подбор светодиодов для аквариума по спектральному составу. Взгляните на график:

Интенсивность роста в зависимости от длины волны

Выбор мощности светодиодов для аквариума

На фотосинтез влияет красный и синий цвета. В качестве основы выберем ленту белого цвета 5730 60шт/м, её световой поток составляет порядка 2000Лм/м, а мощность 14.4Вт/м. Значит нам нужно около 2,5 метров такой ленты, это будет больше чем 5000 Лм. Добавим светодиоды красного и синего цвета 5050 30шт/м по 2 метра каждого цвета. Световой поток каждой около 300 Лм/м, мощность 7Вт/м.

Всего получается 2,5 * 2000 + 4*300 = 6200Лм, чего уже достаточно.

При освещении дискретными светодиодами, методика та же: делите необходимый световой поток на световой поток одного диода и получаете нужно количество дискретных светодиодов.

Мощность блока питания:

(14.4 * 2,5 + 4 * 7) * 1.25 = 80 Вт

Это с приличным запасом в четверть мощности.

Здесь вы можете почитать о расчете блока питания, а тут как его сделать своими руками.

Какую марку светодиодной ленты выбрать для аквариума? Не принципиально, только нужно учитывать важные правила:

Как считать НЕправильно

В сети повсеместно встречается расчет освещенности, исходя из объема аквариума в литрах. Это в корне неверный подход. Цифры Вт/л были получены эмпирическим путем и ранее использовались только для ламп накаливания. Сегодня световой поток светодиодов на порядок сильнее светового потока ламп накаливания, при аналогичных мощностях (Вт).

Например, часто советуют использовать отношение 0,9-1Вт/л. Т.е. при нашем расчетном объеме 240л, нужен источник света мощностью 216-240Вт. А это в 3 раза(. ) больше необходимого. Будьте внимательны и не допускайте подобную ошибку.

Как сделать светильник для аквариума своими руками?

Самодельную светодиодную подсветку для аквариума можно разделить на три типа:

  • Стационарная над аквариумом;
  • подвесной светильник, с регулируемой высотой;
  • крышка с подсветкой.

Если у вас мало опыта в электронике и пайке – освещение аквариума светодиодными лентами будет более простым вариантом, чем дискретными LED’ами. Клеить прямо на крышку можно только маломощную ленту, которой не нужно дополнительное охлаждение. Когда крышка изготовлена из теплопроводящего материала, можно ставить диоды побольше.

Размещение светодиодной ленты на крышке аквариума

Для подсветки аквариума лентой отлично подойдёт корпус от светильника на люминесцентной лампе. Используйте пластиковую трубу (3/4 или 1 дюйм) и закрепите на ней светодиодную ленту, как показано на картинке ниже.

Использование корпуса люминесцентного светильника

Можно использовать мощные дискретные светодиоды – 3Вт. Подобная диодная подсветка требует дополнительного охлаждения. Рассчитывать площадь радиатора не менее 25см 2 на каждый Вт мощности. Подробнее как сделать радиатор своими руками.

Пример изготовления такой светодиодной подсветки аквариума своими руками изображен на фото ниже.

Дискретные SMD светодиоды на радиаторе

Закрепить светодиоды нужно либо теплопроводящим клеем, либо через переходную плиту типа STAR на термопасту, а к радиатору на саморезы или заклепки.

Радиатор и SMD светодиоды

Когда не получается обеспечить нужной площади охлаждения и LED светильник для аквариума греется достаточно сильно, обеспечьте активное охлаждение с помощью куллера. Подойдет куллер от компьютерного БП. На фото ниже изображено подвесное освещение аквариума с активным воздушным охлаждением.

Подвесное освещение аквариума

Изготовленный своими руками, светодиодный светильник для аквариума позволит вам контролировать и регулировать как количество, так и цвет вашего света. Увеличивая или уменьшая длительность светового дня и интенсивность света, можно контролировать рост аквариумной живности.

LED светильники своими руками

Постепенно приборы освещения переходят на светодиодные лампы. Произошло это не сразу, был затяжной переходный период с применением так называемых экономок – компактных газоразрядных лампочек со встроенным блоком питания (драйвером) и стандартным патроном Е27 или Е14.

Такие лампы широко применяются и сегодня, поскольку их стоимость в сравнение с LED источниками света не такая «кусачая».

При неплохом балансе цены и экономичности (разница в цене с обычными лампами накаливания со временем окупается за счет экономии электроэнергии), газоразрядные источники света имеют ряд недостатков:

  • Срок службы ниже, чем у ламп накаливания.
  • Высокочастотные помехи от блока питания.
  • Лампы, не любят частого включения – выключения.
  • Постепенное снижение яркости.
  • Влияние на расположенные рядом поверхности: на поверхности потолка (над лампой) со временем появляется темное пятно.
  • Да и вообще, иметь в доме колбу с некоторым количеством ртути как-то не очень хочется.

Прекрасная альтернатива – светодиодные светильники. Список достоинств весомый:

  • Направленность светового потока предъявляет высокие требования при конструировании рассеивателя.
  • Все-таки они дорого стоят (речь идет о качественных брендах, безымянные изделия среднего уровня вполне доступны).

Если ценовой вопрос регулируется подбором производителя, то конструктивные особенности не всегда позволяют просто заменить лампу в любимой люстре. Разумеется, есть богатый выбор классических грушевидных LED ламп, которые подходят под любой размер.

Но именно в этой конструкции кроется «засада».

Перед нами качественная (при этом относительно недорогая) лампа с яркостью свечения 1000 Lm (эквивалент 100 ваттной лампы накаливания), и потребляемой мощностью 13 Вт. У меня такие LED источники света работают по много лет, светят приятным теплым светом (температура 2700 K), и никакой деградации яркости со временем не наблюдается.

Но для мощного света, требуется серьезное охлаждение. Поэтому корпус у этой лампы на 2/3 состоит из радиатора. Он пластиковый, не портит внешний вид, и достаточно эффективен. Из конструкции следует главный недостаток – реальным источником света является полусфера в верхней части лампы. Это затрудняет подбор светильника – не в каждой рожковой люстре такая лампа будет выглядеть гармонично.

Есть лишь один выход – покупать готовые LED светильники, конфигурация которых изначально рассчитана под конкретные источники света.

Ключевое слово – покупать. А куда девать любимые торшеры, люстры и прочие светильники в квартире?

Поэтому было принято решение конструировать LED лампы самостоятельно

Основной критерий – минимизация стоимости.

Есть два основных направления при разработке светодиодных источников света:

1. Применение маломощных (до 0.5 Вт) светодиодов. Их требуется много, можно сконфигурировать любую форму. Не нужен мощный радиатор (мало греются). Существенный недостаток – более кропотливая сборка.

2. Использование мощных (1 Вт – 5 Вт) LED элементов. Эффективность высокая, трудозатраты в разы меньше. Но точечное излучение требует подбора рассеивателя, и для реализации проекта нужны хорошие радиаторы.

Для экспериментальных конструкций я выбрал первый вариант. Самое недорогое «сырье»: 5 мм светодиоды с рассеиванием 120° в прозрачном корпусе. Их называют «соломенная шляпа».

  • прямой ток = 20 мА (0.02 А)
  • падение напряжения на 1 диоде = 3,2-3,4 вольта
  • цвет – теплый белый

Такое добро продается по 3 рубля пучок на любом радиорынке.

Я купил несколько упаковок по 100 шт. на aliexpress (ссылка на покупку). Обошлось чуть меньше, чем по 1 р. за штуку.

В качестве блоков питания (точнее сказать источников тока), я решил использовать проверенную схему с гасящим (балластным) конденсатором. Достоинства такого драйвера – экстремальная дешевизна, и минимальное потребление энергии. Поскольку нет ШИМ контроллера, или линейного стабилизатора тока – лишняя энергия в атмосферу не уходит: в этой схеме нет элементов с рассеивающим тепло радиатором.

Недостаток – отсутствие стабилизации тока. То есть, при нестабильном напряжении электросети, яркость свечения будет меняться. У меня в розетке ровно 220 (+/- 2 вольта), поэтому такая схема в самый раз.

Элементная база тоже не из дорогих.

  • диодные мосты серии КЦ405А (можно любые диоды, хоть Шоттки)
  • пленочные конденсаторы с напряжением 630 вольт (с запасом)
  • 1-2 ваттные резисторы
  • электролитические конденсаторы 47 mF на 400 вольт (можно взять емкость побольше, но это выходит за рамки экономности)
  • такие мелочи, как макетная плата и предохранители, обычно есть в арсенале любого радиолюбителя

Чтобы не изобретать корпус с патроном Е27, используем сгоревшие (еще один повод от них отказаться) экономки.

После аккуратного (на улице!) извлечения колбы со ртутными парами, остается прекрасная заготовка для творчества.

Основа основ – расчет и принцип работы токового драйвера с гасящим конденсатором

Типовая схема изображена на иллюстрации:

Как работает схема:

Резистор R1 ограничивает скачок тока при подаче питания, пока схема не стабилизируется (около 1 секунды). Значение от 50 до 150 Ом. Мощность 2 Вт.

Резистор R2 обеспечивает работу балластного конденсатора. Во-первых, он его разряжает при отключении питания. Как минимум для того, чтобы вас не тряхнуло током при выкручивании лампочки. Вторая задача – не допустить токового броска в случае, когда полярность заряженного конденсатора и первой полуволны 220 вольт не совпадают.

Собственно, гасящий конденсатор С1 – основа схемы. Он является своеобразным фильтром тока. Подбирая емкость, можно установить любой ток в цепи. Для наших диодов он не должен превышать 20 мА в пиковых значениях напряжения сети.

Далее работает диодный мост (все-таки светодиоды – это элементы с полярностью).

Электролитический конденсатор C2 нужен для предотвращения мерцания лампы. Светодиоды не имеют инертности при включении-выключении. Поэтому глаз будет видеть мерцание с частотой 50 Гц. Кстати, этим грешат дешевые китайские лампы. Проверяется качество конденсатора с помощью любого цифрового фотоаппарата, хоть смартфона. Посмотрев на горящие диоды через цифровую матрицу, можно увидеть моргание, неразличимое для человеческого глаза.

Кроме того, этот электролит дает неожиданный бонус: светильники выключаются не сразу, а с благородным медленным затуханием, пока емкость не разрядится.

Расчет гасящего конденсатора производится по формуле: I = 200*C*(1.41*U cети - U led) I – полученный ток цепи в амперах

200 – это константа (частота сети 50Гц * 4)

С – емкость конденсатора С1 (гасящего) в фарадах

U сети – предполагаемое напряжение сети (в идеале – 220 вольт) U led – суммарное падение напряжения на светодиодах (в нашем случае – 3,3 вольта, помноженное на количество LED элементов)

Подбирая количество светодиодов (с известным падением напряжения) и емкость гасящего конденсатора, надо добиться требуемого тока. Он должен быть не выше указанного в характеристиках светодиодов. Именно силой тока вы регулируете яркость свечения, и обратно пропорционально – срок жизни светодиодов.

Для удобства можно создать формулу в Exel.

LED светильники своими руками

Схема проверена неоднократно, первый экземпляр собран почти 3 года назад, трудится в светильнике на кухне, сбоев в работе не было.

Переходим к практической реализации проектов. Количество LED элементов и емкость конденсатора в отдельных схемах обсуждать нет смысла: проекты индивидуальные для каждого светильника. Рассчитывались строго по формуле. Приведенная выше схема на 60 светодиодов с конденсатором на 68 микрофарад – не просто пример, а реальный расчет для тока в цепи 15 мА (для продления жизни светикам).

LED лампа в рожковую люстру

Выпотрошенный патрон от экономки используем в качестве корпуса для схемы и несущей конструкции. В этом проекте я не использовал макетную плату, собрал драйвер на кругляше из ПВХ толщиной 1 мм. Получилось как раз в размер. Два конденсатора – по причине подбора емкости: не нашлось нужного количества микрофарад в одном элементе.

В качестве корпуса для размещения LED элементов использована баночка от йогурта. В конструкции также использовал обрезки листов вспененного ПВХ 3 мм.

После сборки получилось аккуратно и даже красиво. Такое расположение патрона связано с формой люстры: рожки направлены вверх, на потолок.

Далее размещаем светодиоды: по схеме 150 шт. Протыкаем пластик шилом, трудозатраты: один полноценный вечер.

Забегая вперед, скажу: материал корпуса себя не оправдал, слишком тонкий. Следующий светильник был изготовлен из листового ПВХ 1 мм. Для придания формы рассчитал развертку конуса на те же 150 диодов.

Получилось не так изящно, но надежно, и отлично держит форму. Лампа полностью скрыта в рожке люстры, поэтому внешность не столь важна.

Как сделать недорогую, но очень мощную светодиодную лампу


Часто ли вы или кого-то из вашей семьи невзначай опрокидывал настольный светильник? Если говорить обо мне, то довольно много раз. Поэтому, когда мой ребенок очередной раз обронил мой настольный светильник с невинным «Ой!», я сказал: «Довольно!»
Предупреждение! В люминесцентных лампах применяется ртуть, которая весьма токсична.
Если вы случайно или преднамеренно разбили такую лампу, то рекомендовано хорошо проветрить помещение, чтобы избавить его от токсичных испарений.
Я решил заменить люминесцентную лампу моего настольного светильника, на что-то более ударостойкое.
Мой светильник должен выдерживать обращение с ним 10-летнего ребенка, и вместе с тем излучать достаточно света для удобной работы за письменным столом, стабильно работать и недорого стоить. Еще пару лет назад эта проблема не имела простого решения, но теперь ответ очевиден – это светодиодная лампа.

Материалы


Я решил использовать светодиоды Cree MX6 Q5 с максимальным световым потоком 278 лм, которые остались у меня с прошлого проекта. Светодиод будет размещаться на радиаторе охлаждения размером 5 х 5 см, который был снят со старого ПК.
Для простоты я решил использовать импульсное зарядное устройство для телефона, которое обеспечит напряжением и силой тока, достаточными для работы светодиодной лампы. Для этой цели я использовал зарядное устройство нерабочего Siemens A52, с заявленным выходом напряжения 5 В и силой тока 420 мА.
Патрон старой люминесцентной лампы будет служить для защиты электроники.
Измерения
Согласно заводским характеристикам Cree MX6 Q5 может питаться от источника с максимальной силой тока 1 А и напряжением 4,1 В. Я полагал, что мне понадобится резистор с сопротивлением 1 Ом, чтобы снизить напряжение на 1 В (с 5 В, которые выдавал источник питания) до 4,1 В, потребляемые светодиодом, если только блок питания выдержит силу тока 1 А.
Чтобы проверить максимально допустимую силу тока, которую выдержит блок питания, я подсоединял к его клеммам различные резисторы, в каждом случае измеряя напряжение и подсчитывая силу тока.
Я с удивлением обнаружил, что блок питания устроен таким образом, чтобы ограничивать силу тока на уровне 0,6 А, с которой он нормально справляется. Проводя подобным образом исследования с другими телефонными зарядными устройствами, я узнал, что все они имеют ограничение на силу тока от 20% до 50% выше, чем заявлено производителем. Это имеет смысл, так как каждый производитель проектирует блок питания таким образом, чтобы он не сильно грелся, даже если питаемое устройство будет сломано, включая от короткого замыкания. И самый простой способ обеспечить это – ограничить силу тока.
Таким образом у меня был генератор постоянного тока с ограничением силы тока до 0,6 А, очень эффективный (блок питания мобильного телефона во время использования не сильно греется), с питанием непосредственно от источника переменного тока 220 В, изготовленный на заводе и очень маленьких размеров. И это просто прекрасно.

Изготовление лампы


Для начала я разобрал блок питания, чтобы извлечь внутренности и вставить их в новую лампу. Так как большинство блоков питания при сборке склеиваются, для его вскрытия я воспользовался полотном ножовки.
Чтобы плата поместилась в цоколь лампы, нужно было сделать некоторую подгонку.
Для крепления платы внутри патрона я использовал силиконовый герметик, у которого остается большое сопротивление при высоких температурах. Прежде, чем закрывать цоколь, к его крышке я прикрепил теплоотвод (при помощи шурупа), на котором фиксировался светодиод.

Результат: настольный светильник


Вот лампа в сборе. Потребление энергии не превышает 2,5 Вт, а освещение составляет 190 лм, идеально подходит для экономного и надежного настольного светильника. И все это за час работы, за исключением застывания силиконового герметика и высыхания термоклея, который использовался для фиксации светодиода на радиаторе охлаждения.
Я был так воодушевлен успехом и простотой проекта, что несколько часов спустя, у меня уже была еще одна лампа.

Результат: прихожая


Находясь под впечатлением от полученных результатов, таким же образом я продолжил замену нескольких люминесцентных ламп в моей квартире. Я представлю их, останавливаясь лишь на некоторых деталях.
Для светильника в прихожей я применил два элемента Cree MX6 Q5 с потреблением энергии 3 Вт и максимальным световым потоком 278 лм. Каждый питается от старого зарядного устройства для мобильного телефона Samsung. Несмотря на то, что производителем заявлена сила тока 0,7 А, я путем измерений обнаружил, что ограничение установлено на 0,75 А.
Закреплено все при помощи текстильной застежки (липучки), клея и пластиковых креплений для материнской платы.
Общее потребление энергии конструкцией составляет 6 Вт со световым потоком в 460 лм.

Результат: ванная комната


Для ванной комнаты я сделал светильник из Cree XM-L T6, который питался от двух зарядных устройств для мобильного телефона LG. Согласно заводским характеристикам он может производить силу тока 0,9 А, но на практике я установил, что она ограничена 1 А. Два блока соединены параллельно для общей силы тока 2 А.
Такая лампа будет потреблять 6 Вт энергии и обеспечит освещение 700 лм.

Результат: кухня


Если в случае с прихожей и ванной комнатой обеспечение минимального освещения не было слишком значимым, то с кухней другая история. Я не хотел, чтобы моя жена или кто-либо другой порезал себе палец во время приготовления пищи и обвинил в этом меня, или, что хуже, мои ненаглядные светодиодные лампы.
Для обеспечения хорошего освещения кухни я решил использовать не один, а два элемента Cree XM-L T6, с энергопотреблением каждого 9 Вт и световым потоком 910 лм. В качестве теплоотводящего элемента я использовал радиатор охлаждения от микропроцессора Pentium III, на который при помощи термоклея я прикрепил два светодиода.
Хотя Cree XM-L T6 может работать при максимальной силе тока в 3 А, производитель для стабильной работы рекомендует использовать 2 А, при которой светодиод будет излучать около 700 лм. Тестирование нескольких блоков питания показало, что в них сила тока либо не ограничена, либо ограничение превышает необходимые 2 А. Мне удалось найти источник питания, который, исходя из технических характеристик, выдает 12 В при силе тока 1,5 А. После проверок с помощью резисторов, оказалось, что сила тока ограничена 1,8 А, что весьма близко к желаемым 2 А. Отлично!
Чтобы обеспечить изоляцию радиатора и двух светодиодов, я использовал два неодимовых магнита из нерабочего DVD-привода и пластиковые крепления для материнской платы. Все зафиксировано при помощи клея и липучки.
Хотя я ожидал, что такая лампа будет производить световой поток в 1300 лм, подобно люминесцентной лампе с энергопотреблением 23 Вт, которую она заменила, я был приятно удивлен, обнаружив, что свет производимый новой лампой ощутимо ярче, и потребление энергии составляет 12 Вт – почти вдвое меньше.

Заключение


Самая классная часть данного проекта в том, что его можно осуществить, используя предметы, которые, за исключением светодиодов, почти у каждого есть под рукой.
Таким образом можно получить светодиодную лампу по цене вдвое, а то и вчетверо ниже, чем стоимость светодиодной лампы в магазине.
Надеюсь, что теперь старые зарядные устройства для мобильных телефонов будут снова полезными, а не попадут в мусорное ведро.
Спасибо за внимание!
Original article in English

10 Ваттный светодиодный светильник

Светодиоды могут быть очень эффективными и экономичными в долгосрочном использовании. 10 ваттные светодиодные лампы могут заменить лампы накаливания мощностью 100 Вт или 30 Вт компактную люминесцентную лампу. Несмотря на относительно высокую начальную стоимость, по сравнению с другими видами ламп, Ваш счет за электричество может значительно снизиться, если вы сами будете использовать эти светодиодные лампы.

Здесь я покажу Вам, как сделать свой собственный стильный 10 ватный светодиодный светильник.


Необходимые материалы.

Нам понадобятся:

1. Цоколь от сгоревшей энергосберегающей лампы.

2. Два захвата (чтобы подключиться к светодиоду);

3. Мощный десяти ваттный светодиод, цвет по вашему выбору;

4. Два маленьких винта;

5. Один десяти ваттный светодиодный драйвер;

6. Термопаста;

7. Радиатор от видео карты;

8. Термоусадочная трубка (или изолирующая лента);

9. провода сечением 2 мм.

10. Сверлильный станок.


Перво наперва нам необходимо разобрать старую или сгоревшую энергосберегающую лампу. Будьте осторожны, не повредите стеклянную колбу. Иначе из неё выйдет очень вредный для здоровья ртутный газ.


Нам нужна только часть корпуса с цоколем. Обрежем повода от платы идущие к цоколю и припаяем свои, идущие от драйвера светодиода, за изолируем термоусадочными трубочками.


Паяльником проделаем пару отверстий для проволоки, которая будет держать всю конструкцию.


Далее в центре радиатора (где касался раньше процессор видео карты) сверлим два отверстия для крепления светодиода и нарезаем резьбу.

Сажаем светодиод. Для этого смазываем обе поверхности термопастой и плотно прикручиваем светодиод к радиаторы.


Потом берем клеммы, обжимаем, подключаем к светодиоду соблюдая полярность.

Проверяем. Некоторые китайские драйверы дают замедление где-то на 3 секунды, так что если светодиод не загорелся сразу - немного подождите.

Не вздумайте смотреть на включенный светодиод. Сила света очень велика и может нанести вред Вашим глазам!

Если все работает - собираем светильник в единое целое. Как на рисунке.


Светодиод очень яркий и бросает резкие тени. Вы можете сделать свет более гладким и мягким используя самодельный диффузор.

Вырежьте из двух литровой пластиковой бутылки дно, обработайте наждачной бумагой со всех сторон, что бы придать полную непрозрачность прямому свету. Сделать четыре отверстия и проволокой прикрепите к радиатору. Смотрите фото.



Сделая сей светильник Вы не только сэкономите свои деньги, но и сделаете более чище нашу планету !

Похожие мастер-классы

100 Ваттный фонарь своими руками

Переделка галогенного прожектора в светодиодный

Переделка галогенного прожектора в светодиодный

Как разобрать и отремонтировать LED лампу

Как разобрать и отремонтировать LED лампу

Самодельная LED лампа на 3 Вт

Переделка люминесцентной лампы на светодиодную

Переделка люминесцентной лампы на светодиодную

Светодиодная лампа дневного света

Светодиодная лампа дневного света

Особо интересное

Как без усилий отмыть многолетний нагар реально за 10 минут

Как без усилий отмыть многолетний нагар реально за 10 минут

10 рабочих столярных хитростей и советов

10 рабочих столярных хитростей и советов

6 полезных идей для мастерской

6 полезных идей для мастерской

Как сделать, чтобы к алюминиевой или чугунной сковородке ничего не прилипало. Способ из советского журнала

Как сделать, чтобы к алюминиевой или чугунной сковородке ничего

Как сделать бетонную отмостку под фундаментом вечной

Как сделать бетонную отмостку под фундаментом вечной

Как быстро очистить ручки газовой плиты от грязи и засохшего жира

Как быстро очистить ручки газовой плиты от грязи и засохшего жира

Комментарии (21)

«Сделай сам – своими руками» - сайт интересных самоделок, сделанных из подручных материалов и предметов в домашних условиях. Пошаговые мастер-классы с фото и описанием, технологии, лайфхаки - все, что нужно для рукоделия настоящему мастеру или просто умельцу. Поделки любой сложности, большой выбор направлений и идей для творчества.

Своими руками: Компьютер в столе с жидкостным охлаждением

image

Ко мне обратился товарищ и попросил помочь воплотить его мечту в реальность.

Он хотел себе компьютер в столе, с жидкостной системой охлаждения, два независимых контура и медные трубочки. Предлагаю вам оценить мои труды.

Изготовление начинается с рамы: это столешница, ножки, перекладина жесткости и кронштейн.

image

Размеры товарищ захотел 122 на 65 см.

Товарищ захотел сочетание черного и белого цвета, в матовом исполнении.

image

Изготовление кастом СВО:

Отдельный контур под процессор
Отдельный контур под видеокарту

Два радиатора по 420 мм от EK
Две колбы HEATKILLER
Моноблок на процессор EK
Водоблок на видеокарте EK
Кулеры по 140 мм от Thermaltake

image

Контур под процессор, здесь используется i9-9900K
Товарищу хватает его за глаза.

image

Моноблок от EK отлично охлаждает i9 и цепи питания на материнской плате.

image

Много подсветки, но она легко выключается одной кнопкой.

Столешница поднимается, и ты можешь полюбоваться своим компьютером.

image

Стекло и часть столешницы фиксируется в верхнем положении при помощи двух газлифтов.

image

Толщина такого ПК в столе приятно удивляет, им удобно пользоваться.

image

image

Конфигурация ПК

Процессор: i9-9900K
Мать: ASUS ROG Maximus XI Hero
ОЗУ: G.SKILL Trident Z Royal (32 GB)
Видеокарта: EVGA RTX 2080 SUPER
SSD: Samsung 970 Pro (1024 GB)
HDD: WD Black (2 Tb)

Тест на нагрев в AIDA64 и FurMark

Процессор прогревался до 50 градусов
Видеокарта прогревалась до 55 градусов
Уровень шума (при пиковой нагрузке) около 36 db.

image

Что особенно радует, стекло, даже при пиковой нагрузке, остается комнатной температуры, на улице в момент теста было около 30 градусов.

image

Вся подсветка RGB и делится на несколько зон.

Можно отдельно включать подсветку в ножках, отдельно в столешнице. Любые цвета, и выключается она одной кнопочкой.

image

Кабель питания от монитора и ПК соединяется внутри столешницы и через кабель канал в ножке выходит с правой стороны.

На выходе ты получаешь всего лишь один кабель питания, что вставляется в розетку. Гигабитный Wi-Fi уже тоже установлен внутри.

image

Вставка в ножке на магнитах и легко снимается.

Можно легко обновить дизайн своего ПК в столе, просто поменяв эту вставку. Я их делаю из карбона, стекла и даже дерева.

image

Подставка от монитора не занимает место на столешнице и при этом его можно двигать во всех плоскостях.

image

Стекло использую закаленное, толщина 6 мм, по краю есть фаска, чтобы не было углов в 90 градусов.

Так же есть тонировка, когда выключаешь подсветку, комплектующие почти не видно, и тебя ничего не отвлекает, пользуешься, как обычном столиком.

image

Верхушка естественно герметичная, если пролить чай, внутрь жидкость никак не попадет.

image

Стол легко разбирается и удобно транспортируется в деревянном ящике.

Читайте также: