Стабилизатор тока и напряжения на tl494 своими руками

Обновлено: 01.05.2024

Модуль лабораторного блока питания на TL494

Максимальный выходной ток модуля составляет 15А. Рабочая частота модуля может варьироваться от 30 до 120кГц и зависит от выбора материала и габаритов накопительного дросселя. Диапазон регулировки стабилизированного выходного напряжения составляет от +1В до 92% от входного напряжения. Диапазон регулировки ограничения выходного тока - 0,05-10А.

Модуль выполнен на широко распространенных электронных компонентах зарубежного производства и практически не содержит дефицитных деталей. В качестве ШИ-контроллера используется микросхема TL494CN (U1) в однотактном варианте включения (вывод 13 микросхемы соединен с общим проводом). При этом выходные транзисторы микросхемы (в данном случае - с открытым коллектором) формируют синфазные управляющие импульсы отрицательной полярности, а коэффициент заполнения импульсов может варьироваться практически от 0 до 99%. Все выводы микросхемы используются в стандартных включениях и использованы по прямому назначению. Напряжение питания (+12+15В) подается на вывод 1 (U1) с выхода параметрического стабилизатора, собранного на составном транзисторе TIP122 (Q1), стабилитроне VZ2 (с напряжением стабилизации 13-16В) и резисторе R3, обеспечивающего необходимое значение тока стабилизации для стабилитрона. Конденсатор C3 улучшает сглаживающие свойства стабилизатора и позволяет применить в цепи питания микросхемы конденсатор меньшей емкости (C4). Резистор R2, установленный на входе стабилизатора, служит для мощностной "разгрузки" транзистора при максимальном входном напряжении и может быть заменен перемычкой при достаточном охлаждении Q1 или при питании от источника с невысоким напряжением. Ток потребления, отдаваемый Q1 в цепь питания +12В, - невелик и с учетом работы выходных транзисторов U1, составляет не более 80мА. Однако максимальная электрическая мощность при этом, рассеиваемая Q1, может составить почти 4Вт. Минусовая шина питания микросхемы U1 выводом 7 соединена с общим проводом схемы модуля. RC-пара задающего генератора U1 образована элементами R1, PR1, C1 (с возможностью перестройки частоты генератора с помощью PR1) в соединении с выводами 5 и 6 (U1). Вывод 4 (U1) служит для организации плавного запуска, когда ширина импульса увеличивается от 0 до значения, ограниченного установленными значениями напряжений на выводах 1, 2, 15, 16. Таким же образом (от 0 до установленного значения) будет увеличиваться и выходные значения (напряжение, ток) модуля. Время нарастания выходных значений до установленных определяется элементами R13, C7. Диапазон значений выходного напряжения определяется резистивным делителем R15, R16 и устанавливается подбором номиналов этих резисторов, а так же резистора R11, установленного в цепи регулировки опорного напряжения, фиксированное значение которого (+5В) снимается с вывода 14 (U1). Установка выходного напряжения производится потенциометром PR3, путем регулирования напряжения на выводе 2 (U1). С помощью потенциометра PR2 устанавливается необходимое значение выходного тока в пределах диапазона, определяемого сопротивлением токового датчика R13 и номиналом резистора R7. С коллекторов выходных транзисторов микросхемы (U1), импульсы подаются на эмиттер транзистора Q2, выполняющего функции преобразователя уровня. Такое включение Q2 позволяет выходным транзисторам U1 (относительно низковольтным) производить управление силовым ключом (Q4, Q5), отнесенным по напряжению на большее значение, чем то, на которое рассчитаны транзисторы U1. Т.е., использование Q2 таким образом позволяет обойтись без специализированных драйверов и опторазвязки, обеспечивая однако работу модуля с повышенными входными напряжениями. Так, например, использование силовых ключей (Q4, Q5) и транзистора Q2 с соответствующими рабочими напряжениями, позволило бы использовать модуль с источником напряжения от 100В и выше. Номенклатура MOSFET-ключей с p-структурой, к сожалению, выглядит достаточно бедно в сравнении с n-структурой, а модуль ориентирован на построение из доступных компонентов, применение которых не позволило использовать модуль при больших входных напряжениях. В качестве Q2 может быть использован практически любой транзистор соответствующей проводимости с рабочим напряжением не менее 80В, током от 1А и напряжением насыщения до 1В. Коэффициент усиления транзистора не критичен, но в схеме устанавливались транзисторы с h21э от 40. При необходимости режим работы транзистора Q2 может быть подобран резистором R5. Затворы силовых ключей (Q4, Q5) заряжаются до напряжения отпирания через открытые транзисторы микросхемы U1 по цепи: R5, эмиттер-коллектор Q2, D2, R9 (R10). Напряжение на затворах (исток - затвор) ограничивается стабилитроном VZ1. Ток через стабилитрон ограничен резистором R5, некоторым падением напряжения на транзисторе Q2 и шириной импульсов управления. Транзистор Q3 в момент заряда затворов Q4, Q5 - закрыт отрицательным импульсом. Разряд затворов и закрывание Q4, Q5 происходит в момент запирания транзисторов U1, Q2 и отпирания транзистора Q3 током через резистор R4.

Для модуля разработана и изготовлена двусторонняя печатная плата размером 56Х70мм. Силовые ключи Q4, Q5, транзистор стабилизатора Q1 и диодная сборка D5 расположены в ряд для возможности установки на общий радиатор подходящих размеров с площадью охлаждения не менее 50см2, если модуль предназначен для долговременной или непрерывной эксплуатации. Максимальные размеры дросселя (проекции) для размещения на плате могут составлять 16Х24мм. Плата снабжена установочными местами под ножевые клеммы (входные и выходные напряжения) дублирующими и отверстиями для провода диаметром до 1,2мм. Регулировочные потенциометры (ток, напряжение) для установки на плату использованы вертикальные многооборотные, но могут быть использованы при выносе за пределы платы (проводниками минимальной длины) и другие типы потенциометров. Резистор R2 (мощностью не менее 2Вт) следует распаивать на высоте не менее 5мм от платы. Резистор R5 может иметь мощность 0,25-0,5Вт. Резистор R18 должен иметь мощность 3-5Вт и находиться на высоте не менее 10мм от поверхности платы. Транзисторы Q2, Q3 могут быть отечественного производства: КТ817Г, КТ961А. Микросхема U1 монтируется со стороны пайки.

Была разработана печатная плата и под SMD-компоненты. При этом незначительно изменена принципиальная схема, где вместо одного транзистора, коммутирующего затворы мощных ключей, - два, работающих на "свой" затвор; использована группа SMD-диодов вместо мощной диодной сборки; использована группа SMD-резисторов вместо R18.

Сборка и наладка не представляет трудностей и модуль начинает работать сразу после сборки.

После включения модуля необходимо выставить частоту генерации U1 40-60кГц с помощью PR1, если модуль будет использоваться в комплекте с дросселями от компьютерных БП. Подключив вольтметр, необходимо определить диапазон регулировки выходного напряжения, изменяя сопротивление PR3 в ту или иную стороны (для ускорения разрядки конденсатора С9 установив предварительно параллельно ему резистор 100-200 Ом соответствующей мощности). Диапазон регулировки выходного напряжения можно подобрать резисторами R11, соотношением резисторов R15, R16. Диапазон регулировки ограничения тока подбирается резистором R7.


Схема принципиальная модуля


Плата с подписанными номиналами компонентов (со стороны компонентов)


Плата с позиционными обозначениями компонентов (со стороны компонентов)

Вид изготовленной платы

Вид платы со стороны пайки

Транзистор Q1 можно заменить на TIP122; Q2 - на КТ817Г, 2SC2383, ME13003; Q3 - KT961A, KT817, BD139; Q4-Q5 - на IRF5210PBF. Все эти транзисторы использовались при макетировании схемы.

Регулируемый источник питания из БП ATX на TL494. Часть 1 — железо

Сегодня хотел бы рассказать Вам о своём опыте переделки самого обычного китайского БП ATX в регулируемый источник питания со стабилизацией тока и напряжения(0-20А, 0-24В).

В этой статье мы подробно рассмотрим работу ШИМ контроллера TL494, обратной связи и пробежимся по модернизации схемы БП и разработке самодельной платы усилителей ошибок по напряжению и току.

image



Честно признаться, сейчас я даже не могу назвать модель подопытного БП. Какой-то из многочисленных дешевых 300W P4 ready. Надеюсь, не нужно напоминать, что на деле эти 300W означают не больше 150, и то с появлением в квартире запаха жареного.

Рассчитываю на то, что мой опыт сможет быть кому-то полезен с практической точки зрения, а потому упор сделаю на теорию. Без нее всё равно не получится переделать БП т.к. в любом случае будут какие-то отличия в схеме и сложности при наладке.

Схема БП ATX
Для начала пройдемся по схеме БП ATX на контроллере TL494(и его многочисленных клонах).
Все схемы очень похожи друг на друга. Гугл выдает их довольно много и кажется я нашел почти соответствующую моему экземпляру.

Структурно разделим БП на следующие блоки:
— выпрямитель сетевого напряжения с фильтром
— источник дежурного питания(+5V standby)
— основной источник питания(+12V,-12V,+3.3V,+5V,-5V)
— схема контроля основных напряжений, генерация сигнала PowerGood и защита от КЗ

Выпрямитель с фильтрами это всё что в левом верхнем углу схемы до диодов D1-D4.

Источник дежурного питания собран на трансформаторе Т3 и транзисторах Q3 Q4. Стабилизация построена на обратной связи через опторазвязку U1 и источнике опорного напряжения TL431. Подробно рассматривать работу этой части я не буду т.к. знаю, что слишком длинные статьи читать не очень весело. В конце я дам название книги, где подробно рассмотрены все подробности.

Обратите внимание, в схеме по ошибке и ШИМ контроллер TL494 и ИОН дежурного питания TL431 обозначены как IC1. В дальнейшем я буду упоминать IC1 имея ввиду именно ШИМ контроллер.

Основной источник питания собран на трансформаторе Т1, высоковольтных ключах Q1 Q2, управляющем трансформаторе Т2 и низковольтных ключах Q6 Q7. Всё это дело раскачивается и управляется микросхемой ШИМ контроллера IC1. Понимание принципа работы контроллера и назначения каждого элемента его обвязки — это как раз то, что необходимо для сознательной доработки БП вместо слепого повторения чужих рекомендаций и схем.

Механизм работы примерно таков: ШИМ контроллер, поочередно открывая низковольтные ключи Q6 Q7, создает ЭДС в первичной обмотке трансформатора Т2. Видите, эти ключи питаются низким напряжением от дежурного источника питания? Найдите на схеме R46 и поймете о чем я. ШИМ контроллер также питается от этого дежурного напряжения. Чуть выше я назвал трансформатор Т2 управляющим, но кажется у него есть какое-то более правильное название. Его основная задача — гальваническая развязка низковольтной и высоковольтной части схемы. Вторичные обмотки этого трансформатора управляют высоковольтными ключами Q1 Q2, поочередно открывая их. С помощью такого трюка низковольтный ШИМ контроллер может управлять высоковольтными ключами с соблюдением мер безопасности. Высоковольтные ключи Q1 Q2 в свою очередь раскачивают первичную обмотку трансформатора Т1 и на его вторичных обмотках возникают интересующие нас основные напряжения. Высоковольтными эти ключи называются потому, что коммутируют они выпрямленное сетевое напряжение, а это порядка 300В! Напряжение со вторичных обмоток Т1 выпрямляется и фильтруется с помощью LC фильтров.

Теперь, надеюсь, в целом картину вы себе представляете и мы можем идти дальше.

image

Начнем, как это ни странно, с конца — с выходной части микросхемы.
Сейчас всё внимание на выход элемента ИЛИ (помечен красным квадратом).
Выход этого элемента в конкретный момент времени напрямую управляет состоянием одного или обоих сразу ключей Q1 Q2.
Вариант управления задаётся через пин 13(Output control).

Важная вещь №1: если на выходе элемента ИЛИ лог 1 — выходные ключи закрыты(выключены). Это верно для обоих режимов.
Важная вещь №2: если на выходе элемента ИЛИ лог 0 — один из ключей(или оба сразу) открыт(включен).

Вырисовывается следующая картина: по восходящему фронту открытый ранее транзистор закрывается(в этот момент они оба гарантированно закрыты), триггер меняет своё состояние и по нисходящему фронту включается уже другой ключ и будет оставаться включенным пока снова не придет восходящий фронт и не закроет его, в этот момент опять триггер перещёлкивается и следующий нисходящий фронт откроет уже другой транзистор. В single ended режиме ключи всегда работают синхронно и триггер не используется.

Время, когда выход находится в лог. 1(и оба ключа закрыты) называется Dead time.
Отношение длительности импульса(лог. 0, транзистор открыт) к периоду их следования называется коэффициент заполнения(PWM duty cycle). Например если коэффициент 100% то на выходе элемента ИЛИ всегда 0 и транзистор(или оба) всегда открыт.

Простите, но стараюсь объяснять максимально доступно и почти на пальцах, потому что официальным сухим языком это можно и в даташите прочитать.

Ах да, зачем же нужен Dead time? Если коротко: в реальной жизни верхний ключ будет тянуть наверх(к плюсу) а нижний вниз(к минусу). Если открыть их одновременно — будет короткое замыкание. Это называется сквозной ток и из-за паразитных емкостей, индуктивностей и прочих особенностей такой режим возникает даже если вы будете открывать ключи строго по очереди. Чтобы сквозной ток свести к минимуму нужен dead time.

Теперь обратим внимание на генератор пилы(oscillator), который использует выводы 5 и 6 микросхемы для установки частоты.
На эти выводы подключается резистор и конденсатор. Это и есть тот самый RC генератор о котором наверное многие слышали. Теперь на выводе 5(CT) у нас пила от 0 до 3.3В. Как видим, эта пила подается на инвертирующие входы компараторов Dead-time и PWM.

С терминами и работой выходной части ШИМ контроллера более-менее определились, теперь будем разбираться при чем тут пила и зачем нам все эти компараторы и усилители ошибок. Мы поняли, что отношение длительности импульса к периоду их следования определяет коэффициент заполнения, а значит и выходное напряжение источника питания т.к. в первичную обмотку трансформатора будет вкачиваться тем больше энергии, чем больше коэффициент заполнения.

Для примера разберемся, что нужно сделать чтобы установить коэффициент заполнения 50%. Вы еще помните про пилу? Она подается на инвертирующие входы компараторов PWM и Dead time. Известно, что если напряжение на инвертирующем входе выше чем на неинвертирующем — выход компаратора будет лог.0. Напомню, что пила — это плавно поднимающийся от 0 до 3.3в сигнал, после чего резко падающий на 0в.
Таким образом, чтобы на выходе компаратора 50% времени был лог.0 — на неинвертирующий вход нужно подать половину напряжения пилы(3.3в/2=1,65в). Это и даст искомые 50% duty cycle.

Заметили, что оба компаратора сходятся на том самом элементе ИЛИ, а значит, пока какой-то из компараторов выдает лог.1 — другой не может ему помешать. Т.е. приоритет имеет тот компаратор, который приводит к меньшему коэффициенту заполнения. И если на Dead time компаратор напряжение подается снаружи, то на PWM компаратор можно подать сигнал как извне(3 пин) так и с встроенных усилителей ошибок(это обычные операционные усилители). Они тоже соединяются по схеме ИЛИ, но т.к. мы уже имеем дело с аналоговым сигналом — схема ИЛИ реализуется с использованием диодов. Таким образом контроль над коэффициентом заполнения захватывает тот усилитель ошибки, который просит меньший коэффициент заполнения. Состояние другого при этом не имеет значения.

Всё это работа для тех самых усилителей ошибок. На инвертирующий вход усилителя ошибки подается опорное напряжение(эталон), а на неинвертирующий заводится напряжение на выходе источника питания. Кстати внутри ШИМ контроллера есть источник опорного напряжения 5В, который является точкой отсчёта во всех измерениях.

Компенсация обратной связи
Даже не знаю как бы по-проще это объяснить. С обратной связью всё просто только в идеальном мире. На практике же если вы изменяете коэффициент заполнения — выходное напряжение меняется не сразу, а с некоторой задержкой.

К примеру усилитель ошибки зарегистрировал понижение напряжения на выходе, откорректировал коэффициент заполнения и прекратил вмешиваться в систему, но напряжение продолжает нарастать и потом усилитель ошибки вынужден снова корректировать коэффициент заполнения уже в другую сторону. Такая ситуация происходит из-за задержки реакции. Так система может перейти в режим колебаний. Они бывают затухающими и незатухающими. Блок питания в котором могут возникнуть незатухающие колебания сигнала обратной связи — долго не протянет и является нестабильным.

У обратной связи есть определенная полоса пропускания. Допустим полоса 100кГц. Это означает, что если выходное напряжение будет колебаться с частотой выше 100кГц — обратная связь этого просто не заметит и корректировать ничего не будет. Конечно, хотелось бы, чтобы обратная связь реагировала на изменения любой частоты и выходное напряжение было как можно стабильнее. Т.е. борьба идет за то, чтобы обратная связь была максимально широкополосной. Однако та самая задержка реакции не позволит нам сделать полосу бесконечно широкой. И если полоса пропускания цепи обратной связи будет шире чем возможности самого БП на отработку управляющих сигналов(прямая связь) — на некоторых частотах отрицательная обратная связь будет внезапно становиться положительной и вместо компенсации ошибки будет ее еще больше увеличивать, а это как раз условия возникновения колебаний.

Теперь от задержек в секундах давайте перейдем к частотам, коэффициентам усиления и фазовым сдвигам…
Полоса пропускания это максимальная частота, на которой коэффициент усиления больше 1.
С увеличением частоты коэффициент усиления уменьшается. В принципе это справедливо для любого усилителя.
Итак, чтобы наш БП работал стабильно должно выполняться одно условие: во всей полосе частот, где суммарное усиление прямой и обратной связи больше 1(0дБ), отставание по фазе не должно превышать 310 градусов. 180 градусов вносит инвертирующий вход усилителя ошибки.

Вводом в обратную связь различных фильтров добиваются того, чтобы это правило выполнялось. Если очень грубо, то компенсация обратной связи это подгонка полосы пропускания и ФЧХ обратной связи под реакции реального источника питания(под характеристики прямой связи).

От теории к практике
Теперь мы можем взглянуть на схему БП и понять что в ней много лишнего. В первую очередь я выпаял всё, что относится к контролю выходных напряжений(схема формирования сигнала Power good). Нейтрализовал встроенные в ШИМ контроллер усилители ошибок путем подачи +5vref на инвертирующие входы и посадив на GND неинвертирующие. Удалил штатную схему защиты от КЗ. Выпилил все не нужные выходные фильтры от напряжений которые не используются… Заменил выходные диоды на более мощные. Заменил трансформатор! Выпаял его из качественного БП где написанные 400W действительно означают 400W. Разница в размерах между тем, что стояло тут до этого говорит сама за себя:

image

Заменил дроссели в выходном фильтре(с того-же 400W БП) и конденсаторы поставил на 25В:

image

Далее я разработал схему, позволяющую регулировать стабилизацию выходного напряжения и устанавливать ограничение тока выдаваемого БП.

image

Схема реализует внешние усилители ошибок собранные на операционных усилителях LM358 и несколько дополнительных функций в виде усилителя шунта(INA197) для измерения тока, нескольких буферных усилителей для выдачи величины установленного и измеренного тока и напряжения на другую плату, где собрана цифровая индикация. О ней я расскажу в следующей статье. Выдавать на другую плату сигналы как есть — не лучшее решение т.к. источник сигнала может быть достаточно высокоомным, провод ловит шум, мешая обратной связи работать устойчиво. В первой итерации я с этим столкнулся и пришлось всё переделать. В принципе на схеме всё подписано, подробно комментировать ее не вижу смысла и думаю, что для тех кто понял теорию выше, должно быть всё довольно очевидно.

Ах да, обратите внимание на емкость C7! 1uF это довольно много. Сделано это для того, чтобы обратную связь по току зажать в быстродействии. Это такой грязный хак для преодоления нестабильности возникающей на границе перехода от стабилизации напряжения к стабилизации тока. В таких случаях применяют какие-то более навороченные приёмы, но так заморачиваться я не стал. Супер точная стабилизация тока мне не нужна, к тому же к моменту, когда я столкнулся с этой бедой — проект переделки БП успел здорово надоесть!

По этой схеме лазерным утюгом была изготовлена плата:

image

Она встраивается в БП вот таким образом:

image

В качестве шунта для измерения тока выбран кусок медной проволоки длинной сантиметров 10 наверно.

Корпус я использовал от довольно качественного БП Hiper. Кажется это самый проветриваемый корпус из всех что я видел.

Также возник вопрос о подключении вентилятора. БП ведь регулируется от 0 до 24В, а значит кулер придется питать от дежурки. Дежурка представлена двумя напряжениями — стабильными 5В, которые идут на материнскую плату и не стабилизированным, служебным питанием около 13.5В которое используется для питания самого ШИМ контроллера и для раскачки управляющего трансформатора. Я использовал обычный линейный стабилизатор чтобы получить стабильные +12В и завёл их на маленькую платку терморегуляции оборотов кулера, выпаянную с того-же Hiper'a. Платку закрепил на радиаторе шурупом просто из соображений удобства подключения кулера.

image

Радиаторы кстати пришлось изогнуть ибо они не вмещались в корпус нового формата. Лучше перед изгибанием их нагревать паяльной станцией, иначе есть шанс отломать половину зубов. Терморезистор регулятора закрепил на дросселе групповой стабилизации т.к. это самая горячая часть.

В таком виде БП прошел длительные испытания, питая кучу автомобильных лампочек дальнего света и выдерживал нагрузки током порядка 20А при напряжении 14В. А еще он гордо зарядил несколько автомобильных аккумуляторов, когда у нас в Крыму выключали свет.

Будущее уже рядом
Тем временем я задумал немного нестандартную систему индикации режимов работы БП, о чем в последствии немного сожалел, но всё-же она работает!

image

Так что в следующей статье вас ждет программирование ATMega8 на C++ с применением шаблонной магии, различных паттернов и самописная библиотека для вычислений с фиксированной точкой поверх которой реализовано усреднение отсчётов АЦП и перевод их в напряжение/ток по таблице с линейной интерполяцией. Каким-то чудом всё это уместилось в 5 с копейками килобайт флэша.

Не переключайте канал, должно быть интересно.

P.S. Надеюсь, изложенное выше окажется полезным. Строго не судите, но конструктивная критика приветствуется.

Added для RO пользователей которые не могут писать комментарии: email: altersoft_пёс_mail.ру

Схема простого регулируемого источника питания на микросхеме TL494

Радиолюбители, каким-то образом причастные к устройствам, где используется эта универсальная микросхема, давно привыкли к тому, что применяется она в импульсных схемах для управления силовыми ключами посредством ШИМ. Микросхема TL494, ее различные аналоги и модификации производятся до сих пор огромными тиражами по всему миру, стоимость чрезвычайно низкая и, пожалуй, имеется в запасе практически у каждого электронщика, даже если он об этом и сам не помнит.

Универсальность микросхемы не ограничивается, однако, применением лишь в силовых импульсных устройствах, т.к. внутрисхемно содержит еще и независимую от прочих узлов аналоговую часть в виде пары идентичных друг другу усилителей ошибки (УО) с общим объединенным выходом и встроенный источник опорного (ИОН) напряжения (рис.1), т.е. - все необходимое для проектирования стабилизированного источника питания с выходным регулируемым напряжением и ограничением тока. На рис.1 очерчена используемая функциональная часть микросхемы TL494.


Схема источника может быть такой, как на рис.2. Она достаточно проста и содержит компонентов не более, чем в прочих, аналогичных по функционалу, схемах, не уступая им, однако, по своим параметрам хоть в чем-нибудь. Регулировка выходного напряжения производится с помощью одного из УО путем сравнения части опорного напряжения (изменяемого с помощью регулируемого делителя PR2, R3) на инверсном входе (вывод 2) с частью выходного напряжения на входе прямом (вывод 1), подключенному к делителю выходного напряжения (точка соединения резисторов R12, R13).


Второй УО, контролирующий выходной ток, так же сравнивает изменяемую часть опорного напряжения по инверсному входу (вывод 15 - с делителя на резисторах PR1, R1) с напряжением на шунте (R14) по прямому входу (вывод 15). Отношением резисторов R5 к R4 определяется коэффициент усиления первого УО; отношением резисторов R6 к R2 определяется коэффициент усиления второго УО. Результирующим сигналом на объединенном выходе УО (вывод 3) через последовательно включенный резистор R8 происходит управление переходом Э-Б транзистора Q1, база которого подключена к выходу ИОН (вывод 14) микросхемы. При перемещении движка потенциометра PR2 (в процессе регулировки напряжения) вниз, напряжение на выводе 3 микросхемы растет, снижая ток через Э-Б транзистора Q1, уменьшается падение напряжения на резисторе R9 (соответственно, на электродах сток-исток регулирующих транзисторов Q2, Q3), сопротивление каналов этих транзисторов возрастает, выходное напряжение источника снижается. Все происходит в обратном порядке при смещении движка PR2 в противоположном направлении.

По сути, построение схемы является классическим для аналогового регулируемого источника питания и никаких особых отличий от прочих подобных схем не имеет кроме того, что применение транзистора Q1 (преобразователь уровня - shifter) позволяет работать схеме при относительно высоких входных напряжениях (при условии использования в качестве Q1/ Q2/ Q3 транзисторов с соответствующим граничным напряжением). Микросхема TL494 запитана от отдельного стабилизированного источника питания напряжением 9-15В (транзистор Q3, стабилитрон VZ2, резистор R14). Резистор R13 применен для гашения избыточной мощности. В принципиальных схемах на рис.3, 4, 5 стабилизатор питания +12В отсутствует, но в качестве источника питания напряжением +10. 15В, можно использовать любой другой подходящий стабилизатор с рабочим током от 200мА.


Незначительные изменения в схеме позволяют применение биполярных транзисторов в качестве мощных регулирующих элементов. Замена полевых транзисторов на биполярные мощные предпочтительна, если регулирующие силовые компоненты не имеют достаточного охлаждения. Полевые мощные транзисторы имеют неприятное свойство - ухудшение проводимости канала с возрастанием температуры. На рис.3 показано включение силовых транзисторов по схеме с общим эмиттером (ОЭ). Нагрузка при этом включается в цепь "коллектора" составной транзисторной сборки Q102, Q103 регулирующего каскада, где Q103 является всего лишь мощным токовым повторителем. Запас по току управления регулирующим каскадом допускает использование одиночного мощного транзистора p-n-p-структуры вместо связки Q102, Q103 без заметных последствий. При этом практически исчезает вероятность самовозбуждения схемы (ввиду снижения общего коэффициента усиления стабилизатора, как усилителя постоянного тока), как и необходимость борьбы с этим явлением.


На рис.4 регулирующий каскад выполнен по схеме с общим коллектором (нагрузка включена в цепь эмиттера). Для реализации такого включения достаточно изменить схему включения транзистора Q1 (Q201 для рис.4). Если в схеме на рис.2 Q1 имел каскодное включение с управлением по эмиттеру (ОБ), то Q201 на рис.4 управляется по цепи базы (ОЭ) и имеет инверсный сигнал на коллекторе, управляющий током базы мощного составного транзистора Q202 n-p-n-структуры.

Максимальная величина входного напряжения для схем на рис.3 и рис.4 так же будет определяться граничными значениями напряжений каждого из примененных транзисторов. Максимальная мощность для всех вариантов источника питания будет определяться мощностью транзисторов регулирующего каскада.

Вариант схемы на рис.4 может взаимодействовать с интегральным регулируемым стабилизатором (ИРС) LM317 и ему подобными. Схема включения ИРС в схему показана на рис.5. Максимальное входное напряжение и мощность самого источника в этом случае будет определяться лишь параметрами примененного ИРС.


Правильно собранные схемы с применением заведомо исправных компонентов в наладке практически не нуждаются. Диапазоны регулировки выходного напряжения подбираются с помощью резисторов делителя выходного напряжения, устойчивость работы в пределах заданных регулировок по току и напряжению можно улучшить (или ухудшить) путем подбора резисторов цепи ООС усилителей ошибки микросхемы. Проблемы с устойчивостью могут проявиться в режиме ограничения тока при некоторых видах нагрузки и чрезмерной длины проводников от выхода БП до нагрузки (что характерно для стабилизаторов с большим собственным усилением). В случае самовозбуждения следует предусмотреть включение корректирующих R-C-цепей в ОС УО микросхемы, подбирая их для устойчивой работы РАС. В принципиальных схемах на рис.3,4,5 указаны номиналы для вновь добавленных элементов. Номиналы основной части схемы, присутствующей в неизменном виде во всех схемах, остаются без изменений и указаны явно на рис.2.

Для транзисторов, применяемых в качестве РЭ, необходимы радиаторы с большой площадью охлаждения (от 200см 2 ) с ее увеличением при повышении максимальной мощности РАС. Для токов свыше 2А желательно использование группы параллельно соединенных транзисторов для улучшения теплового режима работы каждого из них. Для работы с напряжениями свыше 20-30В следует предусмотреть разбивку входного напряжения на диапазоны с целью облегчения теплового режима РЭ. Транзистор Q3 стабилизатора схемы управления (+12В) так же следует расположить на радиаторе.

riswel Опубликована: 06.08.2019 0 0


Вознаградить Я собрал 0 0

494 схемы на TL494

Belorusgomel

Контакт 55э постоянно то пробой,то перегоррали,наши белоруские были вечные (ратоны)

shodan_micron_servis

Коллеги, а я вас таки возбуждаю да? Меня тут так давно не было. вы сидели тихенько, и тут вас прорвало. Странно, я никому и ничего доказывать вообще не собираюсь, мне банально нужна сходимость показаний и величин. Хотя нет. по видимому я как всегда, хочу доказать в первую очередь именно себе, что у меня в лабе вольт является вольтом, ом действительно является омом, герц герцем, а фарад фарадом. И имея это тайное знание получить из этого то что я так люблю - амперы, которые не абы что, а самые настоящие!

la5fn

А их ты типо, неувидел? Не заставляй меня изображать улыбку скунса. ) Предлагаю нам всем остаться при своём мнении и жизнерадостно похлопать. Иначе говоря - живите как вас научили. Умному - сказано достаточно. Ни о чём это не говорит. Совсем. Это говоришь лично ты, вангуя на базе неких мутнейших допущений в своём тороканнике, просто взглянув на фоту кристалла, БЕЗ КОРПУСА !! Зачем кстати? ))) Резюмирую: = ни фактом, ни доводом, подобное заявление, не является. ЗЫ. Проверить это не просто, а очень просто. Не доверяете Мультисиму, - посмотрите модельки в других симуляторах и просто обмерьте в железе, это ж элементарно. Языком лишь вы схемы свои паяете? )) )) Ещё раз, сори за беспокойство, - оставайся при своём мнении! Не пиши мне больше, тебе оно совсем ненужно, а мне до тебя оно ещё больше ненужнее)) Хорошей тебе жизни)

Никаких своих выкладок по искажениям я не приводил. Мои выкладки - в описании. Это то, что за эти годы выкладывали в интернете, кто хвалил, кто ругал. Не знаю, кто чем мерил. Я лично измерял только в железе, двумя способами. 1)дома - по Митрофанову (статья ЭА, ж. Радио) 2) - на работе - генератор Г3-118 с входящим в комплект режекторным фильтром немецкий фирмы RFT с затуханием 120 дБ, гармоники наблюдались измерителем АЧХ Х1-46, осциллографом С1-65А, и измерялись милливольтметром В7-26 с ламповой детекторной головкой на входе (ловит даже с эфира),или микровольтметром , на нагрузке 100 Вт, с уровнем до 21В /4 ОМ и 28 В/8 Ом. Уровень гармоник вместе со всеми шумами и наводками был не более 0,6мВ. Меньше уже не видно было из-за шумов самих приборов. После 60 кГц начинают плавно возрастать, и к 200кГЦ (больше генератор не даёт) уже 1,5 мВ. Вот всё это на фото, на столе макет усилителя и стоит режекторный фильтр. 2) Усилитель постоянно играет в комнате. Хоть и ночь, включил на всю. А что, если я скажу, что звук у него не меняется от самых тихих до макс.? Обидеть не хочу, но с такой корявой синусоидой, как у вас на фото, какой уж там звук? Лучше бы поискали причину. Например, если у вас ОУ не с полевиками на входе, то нужно уменьшить R3 и R5 в два раза. Конечно, все ошибаются, бывает. Но уж не настолько я дурак, чтобы выкладывать в интернет схему, у которой после трети громкости звук меняется так, что слушать невозможно. Или как? 3) Вы не задумывались, что это за усилитель должен быть, чтобы у него от 1 до 3 кГц гармоники возрастали в 3 раза?

продолжая тему по "подгонке" характеристик радиоламп. На этот раз у нас 6П6С - довольно-таки популярная лампа. Я уже как-то раньше снимал их характеристики, где был виден значительный разброс. В этот раз попробую подогнать ВАХ двух наугад взятых ламп. Все лампы покупались, как новые. Без видимых следов эксплуатации. ВАХ двух наугад взятых ламп при Uэ=250В (экземпляр Nr.1 - черный, Nr.2-синий ). Видно, что характеристика экземпляра Nr.1 выше. Подгонка второго экземпляра под первый форсированием Uэ до 260В Подгонка первого экземпляра под второй уменьшением Uэ=230в Подгонка второго экземпляра под первый форсированием накала до 7.3В Подгонка первого экземпляра под второй уменьшением накала до 5.6В Думайте сами. Решайте сами.

Гость Анонимный пользователь

Достоинства - цена - возможность изготовленя под уникальную лампу Недостатки - низкая надежность - низкая долговечность - низкая точность (а если совсем плохо сделать - можно и лампу сломать) - не подходят для горячих ламп И вообще - плохо подходят для серьезных проектов

Схема блок питания на tl494 с регулировкой напряжения и тока

Представляем схему импульсного самодельного блока питания на микросхеме tl494 с возможностью регулировки выдаваемого напряжения и тока. Такой блок питания обычно называют лабораторным блоком питания потому что при помощи него можно запитать как низковольтные маломощные потребители так и зарядить аккумулятор. Такой блок питания может выдать 30 Вольт при силе тока до 10 А.

Составные части импульсного блок питания на tl494

Блок питания можно разделить на 3 части:

1. Внутренний блок питания

Это блоки питания необходим для запитки вентилятора охлаждения, шим контроллера и вольтамперметра. Сюда подойдет любой блок питания с небольшой мощностью. Лучше конечно не собирать свой а использовать готовые решения, к примеру можно взять AC-DC преобразователь.

Внутренний блок питания на 12 Вольт, для питатния схемы блоки питания

2 Блок управления.

Блок состоит из микросхемы TL494 и драйвера на 4-х транзисторах.

Схема включения TL494 получается очень простая, такая схема подключения довольно распространена у радиолюбителей. При помощи резистора R4 осуществляется регулировка напряжения от 0 до максимального значения, а при помощи R2 задается максимальное значение силы тока. Резисторы R11 и R12 можно использовать многооборотные.

Блок управления можно собрать на отдельной плате.

Блок управления на микросхеме TL494

Печатная плата блока управления

Печатная плата блока управления на TL494

Печатная плата блока управления на TL494

3 Силовая часть

Большую часть деталей можно взять из старого блока питания компьютера, входной фильтр, выпрямитель, конденсаторы тоже берем из него.

Далее нам необходимо изготовить трансформатор управления силовыми ключами. Большинство радиолюбителей пугает тот факт что придется изготавливать трансформатор. Но в нашем случае все просто.

Для изготовления трансформатора понадобится колечко R16 x 10 x 4.5 и провод МГТФ 0.07 кв. мм. Провод берем 3 отрезка по 1 метру и делаем 30 витков в 3 провода на кольце.

Дроссель L1 также наматывается на ферритовое кольцо медным проводом длинной 1.5-2 метра и сечением 2 мм. Такая намотка позволят достичь приблизительно требуемой индуктивности.

Во множестве блоков питания есть второй дроссель на ферритовом стрежне, в качестве L2 можно взять его.

Силовой трансформатор тоже берется из блока питания от компьютера, но выходное напряжение будет 20 Вольт. Для того чтобы получить 30 Вольт, силовой трансформатор нужно перемотать. Для больших токов предпочтительнее брать ферритовые кольца.

Схема блок питания на tl494 с регулировкой напряжения и тока

Схема блок питания на tl494 с регулировкой напряжения и тока

Расчет для нашего блока питания 30 вольт 10 ампер. Трансформатор-донор из компьютерного блока питания оказался 39/20/12:

Самодельный импульсный блок питания с регулировкой напряжения и тока.


Такой тип источников питания ещё называют лабораторными, и не зря!Он подойдет не только для питания различных устройств, но и как универсальное зарядное устройство для абсолютно любых аккумуляторов.


Полный размер

Как мне кажется блок питания мега простой и отлично подойдет для начинающего радиолюбителя.Блок питания может быть построен на различные диапазоны напряжения и тока все зависит от конкретных задач.Сегодня мы рассмотрим блок питания на самый популярный диапазон 0-30 вольт/0-10 амер. Выбор такого диапазона также обусловлен применением китайского вольтамперметра с диапазоном по току до 10а.


Условно блок питания можно разделить на 3 части:

1 Внутренний источник питания.

Представляет из себя любой компактный источник напряжение 12 вольт и током не менее 300 мА.Предназначен для питания шим контроллера, вентилятора охлаждения и вольтамперметра.Можно использовать абсолютно любой адаптер на 12 вольт. Рассказывать как собрать такой в этой статье не буду, будем использовать готовый AC-DC преобразователь с китая вот такого типа:


2 Модуль управления.

Представляет из себя микросхему TL494 c небольшим драйвером на 4-х транзисторах:


Полный размер

Благодаря использованию встроенных операционных усилителей обвязка TL494 получается очень простая, такое включение широко распространено у радиолюбителей.Резистором R4 задаём желаемое максимальное напряжение, R2- ток.R11 и R12 для удобства могут быть многооборотные, но я использую обычные.
При использовании ЛУТ плату управления я как правило собираю на отдельной платке:



3 Силовая часть.
Основную часть компонентов можно использовать из старого компьютерного блока питания, главное чтобы он был соответствующей топологии.


Полный размер
Дроссель L1 мотается на ферритовом кольце из того же компьютерного бп, предварительно сматываем с него все обмотки и наматываем медный провод длинной 1.5-2м сечением 2мм, это позволит уложится в указанные параметры(это для тех у кого нечем промерять индуктивность).
Также в большинстве нормальных компьютерных бп есть второй дроссель на ферритовом стержне, его в большинстве случаев можно оставить как есть в качестве L2.
Силовой трансформатор тоже можно использовать как есть, но тогда выходное напряжение будет около 20 вольт.Для 30 вольт вторичную обмотку придется перемотать.
Когда мне нужно снять большие токи я предпочитаю использовать ферритовые кольца.
Расчет для нашего блока питания 30 вольт 10 ампер.Трансформатор-донор из компьютерного бп оказался 39/20/12:


Все основные компоненты размещаются на пп стандартных размеров под корпус компьютерного блока питания:


Полный размер

Кстати после сборки платы управления и намотки трансформатора GDT их можно проверить даже если у вас нет осциллографа.


При отсутствии ошибок при монтаже и исправных компонентах схема практически не нуждается в настройке.
Для управления вентилятором я как правило использую схему управление по температуре на lm317


или термостаты KCD 9700.Иногда и то и другое сразу.

Лицевая панель нарисована в frontdesigner 3.0 и распечатана на самоклеящейся фотобумаге, затем заламинирована самоклеящаяся пленкой для учебников и книг(есть в любом офис маге).


Вот и корпус будущего бп уже практически готов:



Полный размер

Добавлю ещё версию модуля управления попроще и помощнее, но слегка по дороже

Зашита от короткого замыкания в БП на tl494


Тема не нова и изъедена вдоль и поперек. Но все же, внесу свои пару копеек.
Предыстория такова, переделывал АТХ БП под свои нужды, — от питания ардуинки до нагрузки в 300-400 вт. Естественно по невнимательности (неосторожности) периодически коротил выход БП и палил силовую часть.
Порывшись в инете нашел множество простых схем защиты от КЗ собранных на биполярных транзисторах. Но они не устроили, т.к. нижний порог срабатывания лежал до границы используемого напряжения. Сложные схемы собирать не хотелось…
В одном их БП сделал регулировку по току, и ограничение в 10 А ( компаратор на ШИМе), от КЗ также вылетели силовые транзисторы (не сработало ограничение).
И тут пришла идея использовать напряжение падения на шунте и управление мертвым временем ШИМа. В нете толком ничего схожего не нашел, пришлось выдумывать самому.


Схема собрана из того что было под рукой.
В основе компаратор lm393 (точнее только его половина), на положительный вход подается уровень падения напряжения на шунте, на отрицательном — переменником выставляем напряжение срабатывания в эквиваленте тока нагрузки. Выход компаратора подтягиваем резистором к плюсу для получения положительного напряжения. Транзистор по схеме можно не использовать, но с ним работает лучше, сигнал подается на 4 ногу ШИМ (можно использовать другие ноги, например 3) контроллера, что приводит к уменьшению скважности ШИма. Схема также функционирует как защитная от превышения по мощности.
По факту такая схема работает не совсем по феншую, КЗ привод в зацикливание TLки т.к. скважность после падения, тут же растет и опять падает, все это происходит с большой скоростью, но схема работает и уберегла не одну пару силовых транзисторов. Из минусов, необходимо убирать конденсатор "плавного пуска", обычно стоит в цепи 4-14 нога, иначе скорость срабатывания существенно уменьшится.
Питание от внутреннего источника на 5в.
Номинал элементов приведен с расчетом питания 5в.
r1 — 1 ком
r2 — 100 ком (в схему защиты от КЗ не входит присутствует на плате БП)
r3 — в моем случае многооборотный подстроечник на 10 ком, можно поставить меньше, будет более точная регулировка, но точности на 10 ком хватает с головой.
rh — любой мощный резистор 0.1 ом, в моем случае шунт на 10а (75 мв).
vt1 — c3199-y, можно любой другой эквивалент NPN
LM393 — сдвоенный компаратор, в схеме используется только один, второй можно использовать например для защиты от переплюсовки, принцип работы такой же, только определение падения напряжения в обратном направлении, скажем 0.5а, выходной сигнал управляет полевым транзистор в силовой цепи.
Этот компаратор (или эквиваленты) уже стоят в большинстве БП АТХ, поэтому их можно не выпаивать, а собрать схему защиты.
Не желательно выставлять защиту в передел возможности БП, необходимо оставлять запас процентов 30, например БП может выдать 20а, то защиту выставить скажем на 15а.

Читайте также: