Срабатывает защита при включении светильника

Обновлено: 27.04.2024

Почему мигают светодиодные лампы после выключения? Виноват выключатель с подсветкой!

Выключатель с подсветкой – удобное и красивое решение. Она нужна для того чтобы ночью не искать рукой где включается свет, беспорядочно хлопая по стене. Но с переходом на энергосберегающие, а затем и на светодиодные лампы многие столкнулись с проблемой, что лампочка мигает или тускло светится с таким выключателем. Подсветка и вызывает этот эффект. В этой статье мы расскажем почему светодиодные лампочки мигают, когда свет не горит.

Содержание статьи

Виды подсветки выключателей и принцип действия

В выключателях устанавливают подсветку одного из двух возможных видов:

1. Неоновая лампочка (индикатор тлеющего разряда).

Световая индикация на неоновой лампочке, как и на светодиодах потребляет малый ток (единицы миллиампер). Неоновый индикатор зажигается, когда выключатель переведён в положение «ОТКЛ», то есть когда его контакты разомкнуты. Когда вы нажимаете на клавишу, замыкая его контакты – лампа включается, а индикация выключается.

Логика работы элементарна. Но как работает подсветка выключателя?

Независимо от типа подсветки, чтобы она горела нужно чтобы через лампочку протекал ток. Ранее, для домашнего освещения, мы использовали лампы накаливания или галогеновые лампы, в любом случае свет излучался металлической спиралью.

Так вот ток светодиода или неонки протекал по цепи:

Это наглядно проиллюстрировано на рисунке ниже.

Ознакомьтесь со схематическим изображением этой цепи.

Схема светодиодной подсветки изображена ниже.

Почему мерцают светодиодные и энергосберегающие лампы

Но спираль лампы накаливания представляет собой замкнутый участок цепи, пусть и с большим сопротивлением. Так мы плавно подошли к основному вопросу статьи – причине мигания светодиодных ламп от выключателя с индикатором.

Через светодиоды или компактную люминесцентную лампу (энергосберегайка) ток подсветки протекать не может потому, что они не запитаны напрямую от сети 220В, и не представляют собой аналог спирали. Оба типа экономных лампочек питаются от специального устройства, для люминесцентных ламп называется оно электронный пускорегулирующий аппарат, а для светодиодных – драйвер.

В общем виде оба источника питания представляют собой импульсный преобразователь. Когда вы включаете такую лампу в цепь где есть выключатель с подсветкой – её ток начинает заряжать сглаживающий конденсатор, до тех пор, пока на нём не окажется энергии в количестве достаточном для кратковременного запуска лампы.

Это и есть причина мигания светильника при отключенном выключателе. В зависимости от мощности лампы и схемотехники цепей питания – лампа может мерцать, тускло гореть или вовсе не реагировать на такие выключатели. Подсветка в свою очередь может работать, а может и не работать совсем.

Как устранить проблему

Всё очень просто, чтобы свет не мигал нужно убрать светодиод или неонку из выключателя. Для этого снимают декоративную клавишу выключателя, извлекают его из стены и убрать неонку или светодиод, она может быть либо в виде такого модуля как изображен ниже, либо просто установлена между контактами. В любом случае нужно убрать лампочку-индикатор.

В этом видео наглядно продемонстрирован этот процесс.

Если вы не хотите убирать подсветку – сформируйте альтернативный путь для протекания тока. Для этого параллельно лампе устанавливают резистор высокого сопротивления – 50-510 кОм 2 Вт. Его можно рассчитать по току индикатора, а можно подобрать опытным путем.

Но многие электрики ругают этот способ из-за того, что резистор может греться. Вы можете использовать реактивное сопротивление конденсатора в этих же целях. Ёмкость конденсатора должна быть порядка долей микрофарада (0.1-0.5мкФ), а рабочее напряжение не меньше 400В.

Заключение

Устранить мигание отключенной лампы от выключателя с подсветкой не составляет труда. Мы привели три варианта решения этой проблемы. У каждого есть свои преимущества и недостатки. Какой из них выбрать – решать вам. Также стоит отметить и то, что сейчас многие светодиодные лампы не мигают от подсветки выключателя.  

Светодиодные лампы загораются, но потом начинают периодически гаснуть и загораться вновь

Происходит это примерно через 10 минут после включения освещения клавишей выключателя. Такая неисправность случилась в одной из парикмахерских моего города.

На потолке из гипсокартона установлено 4 светильника со светодиодными лампами, и все 4 лампы ведут себя одинаково.

После проверки качества подключения выключателя (он оказался исправным, контакты хорошо протянуты) первая мысль, которая пришла в голову – плохая скрутка. Но где её искать?

Не будешь ведь разбирать стены и потолок?

Решил извлечь из потолка один из светильников, тот, который расположен ближе всех к выключателю.

Блок защиты ламп накаливания Блок защиты ламп накаливания

А вот это уже может быть причиной неисправности. Последовательно с шлейфом питания ламп включен блок защиты ламп накаливания. Этот блок делает плавное включение ламп накаливания и галогеновых ламп, вследствие чего эти лампы служат намного дольше.

Для проверки решил этот блок защиты ламп демонтировать, и шлейф присоединить напрямую.

А демонтированный блок положил в карман, для того, что бы проверить его исправность дома.

Без блока защиты лампы включились и стали светиться немного ярче (по визуальному ощущению)

По приезду домой подключил патрон с лампой накаливания 60 Вт последовательно с этим блоком защиты – лампы плавно загорелась и продолжала гореть минут 30, за это время ничего не произошло. Затем вместо лампы накаливания вкрутил в патрон светодиодную лампу на 12 Вт. Лампа загорелась, но мне показалось, что светит она не очень ярко.

Подключил патрон со светодиодной лампой напрямую, без блока защиты – лампа стала светить намного ярче.

Неисправности светильников с лампами накаливания

• если произошло замыкание проводов в месте их присоединения к патрону или в
коробке, то заменить светильник.

Обрыв цепи в автомате:

Неисправен выключатель, включающий одну или несколько ламп:

Выскочили из зажимов или обгорели провода в патроне, выключателе, автомате,

Лампа не касается контактов в патроне:

• если контакты отогнулись, то подогнуть контакты

• если контакты обгорели или отломились, то заменить патрон
Перегорание электрической лампочки:

1. Заменить электрическую лампочку.

2. Если замена лампы накаливания не дает положительного результата, причину
следует искать в патроне:

а) необходимо проверить, есть ли касание цоколя с центральным контактом;

б) при необходимости центральный контакт необходимо немного отогнуть;

в) при плохом контакте возможны приваривание цоколя лампы к патрону, недопус тимый перегрев лампы, патрона, светильника и подводящих проводов;

г) при наличии механических поломок контактных стоек, обгорании пластмассовых
корпусов, наличии трещин и сколов патрон необходимо заменить на исправный.

Лампы накаливания не выворачиваются из патрона:

Лампы накаливания часто не выворачиваются из патрона из-за того, что заржавел цоколь или приварился центральный контакт. Применение большого усилия приводит к отрыву цоколя. Для устранения неисправности необходимо:

• обесточить электросеть, вывернув предохранительные пробки или отключив авто­ матические включатели;

• обмотать колбу в несколько слоев толстой тряпкой, чтобы не порезать руку, если колба лопнет, и попытаться вывернуть лампу;

• в итоге лампа или выворачивается, или у нее срывается баллон, а цоколь остается в патроне.

Баллон лопнул, а цоколь остался в патроне;

• для выворачивания цоколя из патрона прибегнуть к помощи плоскогубцев;

• край цоколя, выступающий из патрона, захватить плоскогубцами и, придер­
живая патрон рукой, вывернуть цоколь, вращая его плоскогубцами против часовой
стрелки;

• если не удается вывинтить цоколь плоскогубцами, патрон придется разобрать.

Важный параметр светодиодных светильников, о котором не все знают

Светодиодное освещение экономично и удобно в использовании. Светильники потребляют меньше электроэнергии, чем их предшественники — лампы накаливания и люминесцентные. Но всё ли так хорошо и просто на практике или есть какие-то подводные камни? Сегодня и предлагаю поговорить на эту тему.

В чём проблема и кто виноват

Проблема заключается в том, что при включении светодиодного освещения выбивает автомат.

С этой проблемой сталкиваются как в жилых помещениях, так и в офисах, магазинах и прочих местах, где установлено много светильников. Причём такое случается, даже если суммарная мощность светильников лежит в пределах нескольких сотен ватт.

Это связано с тем, что при включении LED-светильников кратковременно (до 500 мкс) протекает пусковой ток в 10…100 раз больше номинального. Он обусловлен особенностям источников питания для светодиодов — драйверов, во входных цепях которых устанавливают диодный мост и фильтрующий (сглаживающий) конденсатор. Скачек тока приводит к тому, что срабатывает электромагнитный расцепитель автоматического выключателя на этой линии.

Важно! Пусковые токи не у светодиодов, а у драйверов!

Немного схем и теории

Любые светодиодные приборы состоят из двух основных элементов: источника света (матрицы из светодиодов) и блока питания.

Светодиоды работают от постоянного тока, а в электросети у нас переменный, поэтому для работы светодиодов нужно преобразовать переменный ток в постоянный, а лучше ещё и стабилизировать его. Для преобразования и стабилизации тока используют специальные источники питания — драйверы.

В дешёвых светильниках вместо драйверов используют гасящий конденсатор (C1), который ограничивает ток до величины необходимой светодиодам (HL1-HL16). После конденсатора устанавливают выпрямитель (ZL1) и фильтр (C2) и получают постоянное по знаку и величине напряжение.

Схема светодиодного светильника с гасящим конденсатором Схема светодиодного светильника с гасящим конденсатором

Но в течение дня напряжение в электросети изменяется, иногда в широких пределах, и может быть как пониженным, так и повышенным. В этой схеме нет никакой стабилизации, ток на выходе изменяется в зависимости от нагрузки и от питающего напряжения, а при повышенном токе светодиоды быстро выходят из строя.

Драйвер — это импульсный источник питания, который в общем случае состоит из таких блоков:

  1. Сетевой фильтр. Он нужен, чтобы не пропускать помехи в питающую сеть, возникающие в процессе работы инвертора. В дешёвых маломощных драйверах его зачастую нет.
  2. Выпрямитель и сглаживающий фильтр. Преобразуют переменное напряжение из электросети в постоянное. На выходе фильтра постоянное напряжение равно амплитудному сетевому — примерно 320 В.
  3. Инвертор. Преобразует постоянное напряжение опять в переменное напряжение или ток, но уже высокой частоты. Состоит из силового ключа, его обвязки и схемы управления. Силовой ключ управляет током в первичной обмотке трансформатора.
  4. Импульсный трансформатор. Выполняет такую же функцию, как и сетевой железный трансформатор, но в качестве сердечника используется не железо, а феррит. Это позволяет ему работать на высокой частоте (десятки и сотни килогерц). С его помощью понижают или повышают сетевое напряжение до требуемой величины, а также обеспечивают гальваническую развязку с сетью.
  5. Выходной выпрямитель с фильтром нужен, чтобы ещё раз преобразовать высокочастотное переменное напряжение в постоянное и сгладить его пульсации.
Пример функциональной схемы импульсного источника питания Пример функциональной схемы импульсного источника питания

Блок управления инвертором отслеживает выходное напряжение или ток и корректирует работу инвертора так, чтобы поддерживать их на нужном уровне, то есть стабилизирует выходные параметры. Помимо этого, он может выполнять функции защиты от перегрузки, короткого замыкания и других аварийных режимов, возникающих в работе источника питания.

На практике схема драйвера может отличаться, например, вместо трансформатора используют дроссели, а инвертор выполняют в виде одной детали со встроенным силовым ключом. Так как статья не об этом, предлагаю не углубляться в подробности схемотехники ИИП.

Пример схемы светодиодного драйвера Пример схемы светодиодного драйвера

И в драйвере, и в схеме с гасящим конденсатором ток сначала выпрямляется (1) диодным мостом, а затем сглаживается ёмкостным или другим фильтром (2).

Графики напряжения выпрямителя: 1 — на выходе диодного моста без фильтра; 2 — с фильтром Графики напряжения выпрямителя: 1 — на выходе диодного моста без фильтра; 2 — с фильтром

Разряженный конденсатор по свойствам похож на участок цепи с коротким замыканием, то есть у него очень низкое сопротивление и при подключении к сети потребляет очень большой ток, как и другие виды ёмкостной нагрузки. Отсюда и возникает пусковой ток драйверов и других ИИП.

Какие могут быть последствия

Мы уже сказали, что при групповом включении светильников могут выбивать автоматические выключатели. Например, светодиодные светильники общей мощностью 300 ватт могут запросто выключить автоматический выключатель B6, который должен выдерживать нагрузку до 1320 ватт, а пусковой ток при этом может доходить до сотни ампер, а иногда и выше.

Но если выбивающий автомат можно заменить на другой, с большим номиналом (насколько это позволяет сделать проводка), и менее чувствительной ВТХ, то вторая проблема принесёт больше неприятностей.

При включении большого тока контакты искрят. Из-за искрения контакты начинают подгорать, со временем переходное сопротивление увеличивается, и они начинают греться. В самых негативных сценариях развития этой проблемы контакты и вовсе прилипают друг к другу, проще говоря, свариваются.

Вы часто можете видеть подобное, когда включаете вилку импульсного блока питания, даже простой зарядки от смартфона в розетку, почти всегда из неё летят искры. Представьте, что то же самое происходит при каждом включении света внутри выключателя.

Если с обычными выключателями всё не так страшно, можно и заменить, то что делать с автоматикой, например, с распаянными на платах контроллеров реле? А ведь номинальный ток этих реле позволяет питать нагрузку в киловатт, а иногда и больше. Можно, конечно, установить дополнительный контактор или мощное реле. Но, скорее всего, его всё равно придётся периодически менять.

Хотя производители предупреждают. Таблица допустимой нагрузки импульсного реле от Евроавтоматики F&F. Хотя производители предупреждают. Таблица допустимой нагрузки импульсного реле от Евроавтоматики F&F.

Что говорят производители о величине и длительности пускового тока

А здесь начинается самое интересное для проектировщика и электрика. Известные производители светодиодных драйверов в технических характеристиках указывают величину и длительность пусковых токов. Кстати, в англоязычной среде они обозначаются как «inrush current ».

Ниже приведена подборка скриншотов из инструкций драйверов мощностью около 20 ватт (±5 ватт), разных производителей, выбранных случайным образом.

В паспорте драйвера Phillips CertaDrive 19W 200-350mA 54V DS 230V в первой таблице указываются основные характеристики устройства.

CertaDrive 19W 200-350mA 54V DS 230V CertaDrive 19W 200-350mA 54V DS 230V

Но это не всё, в конце документа отдельный лист отведён описанию пусковых токов, и в нём есть две таблицы. В первой указаны следующие параметры:

  1. Пусковой ток в пике. У рассматриваемого драйвера 17,56А.
  2. Длительность пускового тока. Под длительностью здесь понимается время от начала импульса до момента, когда величина тока снизилась в 2 раза от пиковой. У рассматриваемого драйвера 138,5 мкс, что равно 0,000139 секунды.
  3. Количество драйверов на 1 автоматический выключатель B 16. Можно подключить до 108 этих драйверов на 1 автомат.

Может показаться, что проблемы как таковой и нет: «ну подключай себе 108 драйверов на одну линию, этого что мало что ли?». Но посмотрите внимательно на характеристики драйвера — номинальный ток 90 миллиампер, а пусковой – 17,56 ампер, разница в 217 раз!

Дальше идёт таблица подбора автоматов по количеству драйверу, не самая удобная, на мой взгляд.

В первой колонке указан тип ВТХ, во второй — номинальный ток, а в третьей — «относительное количество драйверов в цепи». Здесь количество указано не в штуках, а в процентах от 108 драйверов. То есть если у вас автомат 6А типа В, то вы можете поставить 40% драйверов от 108, то есть 108×40%=43,2 драйвера, округлять в меньшую сторону.

Но смущает, что при пусковом токе в 17 ампер можно подключить так много драйверов, возможно это опечатка или ошибка в паспорте. Поэтому давайте посмотрим ещё несколько. Например, ещё один от Phillips, модель CertaDrive 21W 0.5A 42V 230V.

Характеристики драйвера CertaDrive 21W 0.5A 42V 230V Характеристики драйвера CertaDrive 21W 0.5A 42V 230V

Структура паспорта у него аналогична, но вот значения пусковых токов и количества драйверов на 1 автомат уже интереснее. Такой же автомат (В16) может запитать уже 40 драйверов по 21 ватту. То есть номинальная мощность нагрузки будет всего 840 ватт, а ток около 3.6 ампер, и если подключить ещё несколько штук, то начнёт выбивать автомат на 16 ампер. Неплохая разница, согласны? Но на освещение часто ставят автоматы на 6-10А, в таблице ниже указано, что к автомату В6 можно подключить 40×40%= 16 драйверов — всего лишь 336 ватт и 1,4 ампера нагрузки.

И это очень любопытно, ведь пусковой ток заявлен всего 4 ампера, и длительность его в 2 раза меньше — всего 60 мкс, а драйверов можно подключить меньше, чем в предыдущем случае…

Возможно, кто-то скажет, что выбраны не «те» драйверы, и не «того» производителя. Давайте глянем на продукцию сильного конкурента в лице OSRAM. Посмотрим паспорт на OPTOTRONIC FIT D NFC FL мощностью 25 ватт. Пусковой ток у них до 16А, длительностью 240 мкс, при номинальном 0,18А. Здесь нет такой большой таблицы по подбору автоматов, указано только что к В16 можно подключить 36 драйверов, а к В10 — 22.

Следующим посмотрим драйвер Arlight ARJ -KE 68300A 20W , 300mA , PFC . Прямо в карточке товара на сайте указан пусковой ток 43А, при номинальном 0,3А (пусковой в 143 раза больше), данных о возможном количестве подключённых к одной линии драйверов нет.

Ну и наконец посмотрим, что нам покажет ещё один популярный бренд — Mean Well. У драйвера LPC-20-350 мощностью 20 ватт, при номинальном потребляемом токе 0,35А, пусковой составляет 70А, который через 220 мкс снижается до 50% от пикового. То есть пусковой ток в 200 раз больше номинального.

Последний драйвер отлично иллюстрирует проблему, к автомату на 16А с ВТХ типа В можно подключить всего 8 драйверов, а если изменить ВТХ на тип С, то до 14 драйверов. Теперь немного посчитаем:

1. Потребляемая драйвером мощность: 230×0,35=80,5 ватт.

2. Суммарная мощность при использовании АВ С16: 80,5×8= 644 ватта.

3. Суммарная мощность при использовании АВ С16: 80,5×14= 1127 ватт.

То есть к автомату, который выдерживает 3.6 кВт можно подключить драйверов на 600-1000 ватт, притом что суммарная мощность светодиодов, которые они запитают, будет 168 и 294 ватт (обратите внимание на верхнюю часть таблицы) для первого автомата В16 и С16 соответственно.

На этом предлагаю закончить обзор характеристик продукции, думаю, вы уже убедились, что проблема существует. Но если производитель всё указывает, то просто установи нормальный автомат, чего обсуждать?

В этом и есть основная проблема – большинство производителей готовых светильников со встроенными или внешними драйверами не указывают пусковые токи и их длительность, и уж тем более не предлагают таблиц с максимальным количеством светильников на 1 автомат. Это вызывает серьёзные проблемы у проектировщиков, ведь не зная реальных параметров нагрузки, пусковых токов нельзя корректно подобрать автоматический выключатель, а без него нельзя и посчитать кабельную линию.

Способы решения проблемы

Кто виноват мы разобрались (конденсаторы в драйверах), давайте теперь поговорим о том, что делать! Есть ряд решений проблем с LED-драйверами:

  1. Повышение номинала автоматов.
  2. Установка реле и контакторов.
  3. Включение при переходе через ноль.
  4. Задержка включения.
  5. Решения по ограничению пусковых токов от радиолюбителей.
  6. Модульные ограничители пусковых токов.

Номинал автоматического выключателя

Повысить номинал автомата можно только в тех случаях, когда кабельная линия была выбрана с запасом, например, на освещение проложили 1.5 мм², и поставили АВ на 6 ампер. Если это не так, то при повышении номинала нужно использовать кабель большего сечения, что особенно заметно, особенно если подключают десятки и сотни мощных светильников и их суммарный пусковой ток очень высок. А что делать, если кабель уже выбран и смонтирован? Поэтому такой вариант не всегда возможен.

Можно ли посчитать номинал автомата при известных пусковых токах? Теоретически да, но не всё так просто. Как известно, при подключении элементов в цепь параллельно их токи складываются. Но если посчитать очевидным образом общий пусковой ток, скажем 10 светильников, с драйверами из последнего примера, то получится:

Электромагнитный расцепитель автомата C 16 сработает при перегрузке в 5-10 раз от номинального тока:

По такой логике он должен сработать уже от двух (трёх) светильников. Но в инструкции производитель «разрешает» подключать к С16 до 14 светильников, чей суммарный пусковой ток будет равен 980А, как же так?

Всё дело в их длительности, по данным производителя пусковые токи протекают 220 мкс = 0,22 мс = 0,00022 с. При этом через указанное время ток составляет уже 50% от пикового. То есть указанные 70 ампер протекают в течение ещё меньшего периода времени, возможно, даже на порядок.

А как, вернее, когда сработает автомат? Согласно время-токовой характеристике при 10 кратной перегрузке он отключится не позже чем через 0,1 секунду (или 100 мс, или 100 000 мкс), при перегрузке примерно в 100 раз (1600А), он должен сработать через 5 мс (5000 мкс). А длительность пускового тока всего 220 мкс (в 20 раз короче).

Для правильного расчёта следует обратиться к журналу «Полупроводниковая светотехника» №2/2020, в котором опубликована статья «Электрические характеристики ОП со светодиодными источниками света при включении и требования к устройствам защиты сети электропитания».

Авторы этой статьи опираясь на материалы от компании ABB и другую нормативно-техническую документацию рассказали, как правильно учитывать пусковые токи и рассчитывать номиналы автоматов для светодиодного освещения. Особый интерес в ней вызывает график срабатывания автоматов ABB при импульсных токах, поэтому рекомендую ознакомиться с этой статьёй, которая, кстати, есть в свободном доступе на официальном сайте журнала.

Но если автоматический выключатель и кабель мы подобрали, что делать с выключателями и реле автоматики? Чтобы продлить их срок службы устанавливают дополнительно более мощные реле или контакторы. Но это также может полностью не решить проблему — пусковые токи как были, так и остались. Контакты как подгорали, так и будут это делать, возможно, медленнее.

Переход через ноль

Реально улучшит ситуацию использования реле, которые включают нагрузку при переходе питающего напряжения через ноль. Для проверки сказанного смоделируем цепь с выпрямителем и входной ёмкостью. Резистор сопротивлением 1 Ом будем использовать для измерения тока с помощью осциллографа. Так 1 вольт соответствует 1 амперу.

Неисправности светильников с люминесцентными лампами

Люминесцентные лампы относятся к газоразрядным лампам низкого давления. Могут быть различной формы: прямые трубчатые, фигурные и компактные (КЛЛ). Диаметр трубки не связан с мощностью лампы, которая может достигать до 200 Вт.

Типовые неисправности светильников с люминесцентными лампами.

Неисправность

Необходимо заменить лампу

Трубчатые лампы имеют двухштырьковые следующие типы цоколей в зависимости от расстояния между штырьками: G-13 (расстояние - 13 мм) для ламп диаметром 40 мм и 26 мм и G-5 (расстояние - 5 мм) для ламп диаметром 16 мм.

Особенность устройства компактных люминесцентных ламп в том, что трубка делается специальной формы для уменьшения длины лампы. Многие компактные люминесцентные лампы небольшой мощности (до 20 Вт) предназначенные для замены ламп накаливания и сконструированы так, что могут ввертываться в резьбовой патрон непосредственно или через адаптер. Компактные люминесцентные лампы могут быть разных форм, могут быть с электронным пускорегулирующим аппаратом (ЭПРА) и разной длины.

Люминесцентны лампы требуют работы специального устройства - пускорегулирующего аппарата (дросселя). Большинство зарубежных ламп могут работать как с обычными (с дросселем), так и с электронными пускорегулирующими аппаратами (ЭПРА). Но некоторые из них предназначены только для одного вида ПРА.

Светильники с ЭПРА имеют следующие преимущества: лампа не мерцает, лучше зажигается, не шумит (шум от дросселя), легче по весу, экономит электроэнергию (потери мощности в ЭПРА намного ниже, чем в ПРА).

Достоинства: По сравнению с лампами накаливания экономичнее и долговечнее, обладают хорошей светопередачей. Срок службы до 10000 часов у импортных ламп и до 5000-8000 часов у отечественных. Удобно использовать там, где свет горит много часов

Недостатки: При температуре ниже 5 градусов тяжело зажигаются и могут гореть более тускло.

Меняя виды люминофора, можно изменять цветовые характеристики ламп. Буквы, входящие в наименование типов таких ламп, означают:

Л - люминесцентная, Б - белой цветности, ТБ - тепло-белая, Д - дневной цветности, Ц - с улучшенной цветопередачей, цифры 18, 20, 36, 40, 65, 80 обозначают номинальную мощность в ваттах. Например, ЛДЦ-18 - лампа люминесцентная, дневная, с улучшенной цветопередачей, мощностью 18 Вт.

Светильник с люминесцентными лампами работает следующим образом - трубчатая лампа заполнена аргоном и парами ртути. Стартер необходим для пуска лампы, нужно на короткое время прогреть электроды, ток, текущий через дроссель и стартер значительно увеличивается, нагревает биметаллическую пластину стартера, электроды лампы прогреваются, контакт стартера размыкается, ток в цепи уменьшается, на дросселе образуется кратковременное большое напряжение, его энергии накопленной хватает на то, чтобы пробить газ в колбе лампы. Далее ток идет через дроссель и лампу, при этом 110 Вольт падает на дросселе, а 110 Вольт на лампе, пары ртути с помощью люминофора создают свечение, воспринимаемое глазом человека. Дроссель почти не потребляет энергию, энергию, которую он берет при намагничивании, он почти полностью возвращает при размагничивании, при этом бесполезно загружаются провода, чтобы разгрузить сеть используется конденсатор С, обмен энергией происходит не между сетью и дросселем, а между дросселем и конденсатором. Наличие конденсатора понижает КПД лампы, без него КПД лампы 50-60%, с конденсатором С - 95%. Конденсатор, который подключен параллельно стартеру, используется для защиты от радиопомех.

Неисправность люминесцентного светильника может заключаться в нарушении электрического контакта в схеме светильника или в выходе из строя одного из элементов светильника. Надежность контактов проверяется визуальным осмотром и проверкой тестером.

Работоспособность лампы или пускорегулирующей аппаратуры проверяется путем последовательной замены всех элементов на заведомо исправные.

Лампочка выбивает УЗО. Это как?

Коллеги, странная ситуация. Делаю ремонт в новостройке, электрик, который делал разводку, более недоступен, так что нужен совет. При попытке подключения обычной светодиодной лампы в ванной почему-то в квартирном щитке выбивает УЗО. Если лампу не присоединять, а просто провода висят голые - не выбивает. На всякий случай подключал лампу к трем выведенным проводам во всех комбинациях (вдруг, думаю, электрик по доброте душевной землю с нейтралью поменял) - нет, не получается. Фаза с землей и фаза с нейтралью УЗО вышибает, нейтраль и земля ожидаемо не работают, УЗО не выбивается. Я даже теоретически не могу понять, в чем может быть косяк, прошу совета.

20.09.2017 в 11:45

bc---- ,
предположу, что у Вас не узо, а диффавтомат и выбивает по стартовому току. Лампочку Ильича пробовали?

20.09.2017 в 12:02

bc---- написал:
При попытке подключения обычной светодиодной лампы в ванной почему-то в квартирном щитке выбивает УЗО.

А возможно что в этой линии N подмыкает на PE.

20.09.2017 в 12:15

bc---- написал:
Я даже теоретически не могу понять, в чем может быть косяк, прошу совета.

Проверьте, куда приходит ноль от этой линии. Как пить дать, не на то УЗО где ее фаза.

20.09.2017 в 12:16

bc---- , лента подключена напрямую к кабелю или через розетку? Если второй вариант, то действительно РЕ и N смотреть - не соединены ли?…

Разработка и сборка электрощитов

20.09.2017 в 13:23

Там в щитке черт ногу сломает. Как я понял, все провода земли и нейтрали объеденены в две шины. Т.е., теоретически, при замыкании нейтрали и земли и розетка бы не работала. Насчет стартового тока - там 8Вт, какой, нафиг, ток. Но лампу накаливания на всякий случай тоже втыкал, выбивает. С телефона не получается выложить фото щитка, выложу вечером, как до дома доберусь.

20.09.2017 в 15:13

bc---- написал:
Там в щитке черт ногу сломает. Как я понял, все провода земли и нейтрали объеденены в две шины

Провод нуля от этой линии должен идти от дифа (клема N со стороны нагрузки) а не от общей шины. Это и есть ответ загадки

20.09.2017 в 15:20

линк , ясно, спасибо!

20.09.2017 в 17:23

В итоге оказалось, земля и нейтраль где-то накоротко замкнуты, сопротивление 0. Не совсем, правда, понятно, почему при этом работает розетка в щитке.

20.09.2017 в 17:52 20.09.2017 в 17:59

bc---- написал:
оказалось, земля и нейтраль где-то накоротко замкнуты, сопротивление 0

Меряли, надеюсь, отключив один из проводов в щите? Народ тут регулярно меряет не отключая, и очень удивляется короткому замыканию между нулём и землёй.

20.09.2017 в 18:01

bc---- написал:
В итоге оказалось, земля и нейтраль где-то накоротко замкнуты, сопротивление 0

Так это правильно: в идеале сопротивление 0 там и должно быть. Если только вы УЗО не отключили конечно.

20.09.2017 в 18:21

Земля и нейтраль на вводе в дом коротко замкнуты до вводного автомата в системах TN-. и замкнуты (через землю, или через путь как СУП-водопровод-TN в соседнем доме) в ТТ

Земля и нейтраль которая на выходе дифа, когда диф в отключенном положении, не должны быть замкнуты

Для начала, найдите в щитке провода нейтрали и земли от этой лампы, и убедитесь что они всамом деле замкнуты гдето вдоль линии :

Отключите из розеток в доме любые электроприборы которые подключены к коммуникациям или стоякам : компы, тв, интернет и прочие устройства слаботочки, газовую плиту, стиралку/посудомойку и.т.п

Подключите любую нагрузку к проводам из потолка на месте светильника, например тот же самый светильник. Подключите провода земли и нейтрали вместе в клемму нейтрали светильника

Отсоедините все провода нейтрали от шины и от дифов (отметьте кто из проводов на дифах шел куда, или просто не отгибайте их далеко), и все провода земли сечением 1.5мм2 и 2.5мм2 от шины земли. (Не те что более толстые, что бы вы не отключили возможные СУП)

Включите только вводной автомат и диф на котором эта точка освещения и включите свет. Может быть светильник не будет гореть вообще или будет мигать, а может быть выбъет диф

Если не выбило диф : Отверткой-индикатором (с неонкой) проверьте все концы проводов которые поотключали в щитке, и посмотрите кто из них светится. Отметьте их. Должны найтись 1 провод земли и 1 провод нейтрали, причем именно тот что шел в тот диф. Если находятся другие кол-ва проводов, сколько и чего есть ?

Неисправности светильников с люминесцентными лампами и их ремонт

Люминесцентные лампы (ЛЛ) используют для освещения и сейчас, несмотря на то, что светодиодные светильники составляют им сильную конкуренцию. Линейные трубчатые лампы чаще устанавливают в офисах, гаражах, на предприятиях, компактные люминесцентные лампы (КЛЛ) устанавливают в быту и в тех же видах помещений что перечислены выше. Для них есть характерные неисправности, поэтому в этой статье мы рассмотрим, как починить люминесцентные светильник.

Описание конструкции

Люминесцентные лампы различаются формой трубчатой колбы, они бывают:

Характерно для КЛЛ, где колба представляет собой трубку, закрученную в спираль или П-образной формы. Это нужно для уменьшения размеров при сохранении длины и площади излучаемой поверхности.

В общем случае колба люминесцентной лампы представляет собой стеклянную трубку внутрь которой закачаны пары ртути и инертные газы. В колбе установлены две спирали, по одной на каждом из ее концов.

При горении разряда в лампе излучается ультрафиолет, чтобы преобразовать его в видимый свет внутренняя поверхность колбы покрыта слоями люминофора.

Трубки бывают разных диаметров и длин. Обычно чем длиннее лампа - тем она мощнее.

Как уже было сказано - у таких ламп есть две спирали. Они нужны для разогрева газов и питания лампы после её запуска. Из колбы выходят по два штыревых контакта от спиралей с каждой из сторон.

Такой способ подключения называется штырьковый цоколь типа G. В зависимости от расстояния между выводами различают цоколи типа G13 и G5. У которых штырьки расположены на расстоянии 13 и 5 мм соответственно.

Схема питания и нормальный режим работы

Люминесцентные лампы отличаются от обычных тем, что для их работы недостаточно просто так подключить её выводы к сети переменного тока 220В. Схема питания предполагает работу люминесцентной лампы с так называемым ПРА - пускоругелирующий аппарат. Они бывают двух типов:

Электромагнитные ПРА считаются устаревшими, но все равно часто используются и по сей день. Они не столь эффективны и дают свет с едва заметными мерцаниями (низкий коэффициент пульсаций), но надежны и просты в ремонте. Поэтому рассмотрим для начала их.

Чтобы зажечь лампу нужно пробить её газовый промежуток для этого нужно создать импульс повышенного напряжения. Поэтому последовательно лампе устанавливают накопитель энергии - дроссель.

Но такая схема работать все равно не будет, нужно управлять процессом разогрева спиралей и накоплением энергии. Спирали разогревают чтобы спровоцировать эмиссию электронов, в результате чего должен возникнуть разряд в ионизированном газе. В трубчатых люминесцентных лампах разряд является тлеющим.

Поэтому параллельно лампе устанавливается стартер. Внутри стартера расположена неоновая лампочка (типа той, что в вашей индикаторной отвёртке или в подсветке выключателя) внутри которой в качестве электродов выступают биметаллические контактные пластины.

Когда вы подаете на схему напряжение холодные биметаллические контакты замкнуты, через них и две спирали, с которыми он соединен последовательно, протекает ток.

Спирали разогреваются, и биметалл нагревается, до тех пор, пока не разомкнутся контакты стартера. Тогда энергия, накопленная в дросселе будет стремиться поддерживать протекание тока, в результате чего напряжение на лампе начинает расти до тех пор, пока не произойдёт пробой, либо не остынут контакты стартера, они замкнутся и процесс разогрева спиралей начнётся заново.

Кроме стартера и дросселя в светильниках устанавливают конденсаторы для подавления помех, но не всегда.

Схема растрового светильника с 4 лампами, где к одному дросселю подключено по две люминесцентных лампы.

Схема светильника с одной люминесцентной лампой:

Электронный ПРА устроен сложнее. В нем используется явление резонанса напряжений. В основе его схемотехники лежит высокочастотный импульсный блок питания, который нагружен на дроссель последовательно, и конденсатор, подключенный параллельно лампе. Принцип действия ЭПРА достоин описания в отдельной статье - Как устроены и работают ЭПРА люминесцентных ламп.

Подключается он проще чем ЭмПРА, схема нанесена на корпусе эпра и подключение заключается в подаче питания на клеммы, обозначенные буквами L1 и L2. А лампа подключается к оставшимся двум парам клемм.

Типовые неисправности ЭмПРА и их ремонт

Давайте ознакомился какие неисправности могут возникать в схеме со стартером и дросселем:

1. Лампа не включается.

2. Лампа тускло светится по краям, но не загорается.

3. Лампа начинает тускло светится по краям, ярко вспыхивает и снова гаснет.

4. Лампа тускло светит или заметны мерцания.

5. Вдоль трубки «бегает» свет, неравномерная засветка или подобные явления.

6. Лампа светится, но края трубки чёрные.

Это основные проблемы с люминесцентными лампами, рассмотрим способы их устранения. Если лампа совсем не включается проверьте:

1. Приходит ли вообще напряжение на светильник. Если нет – ищите обрыв на линии питания.

2. Извлеките лампу из патронов для проверки спиралей. Для этого проверните её вдоль своей оси и выведете штыри из зацепления патронов. Теперь нужно проверить не оборваны ли спирали прозвонкой или тестером. Если они не «звонятся» - значит они перегорели, то есть оборваны. В этом случае нужно заменить лампу.

3. Проверьте есть ли контакты в патроне и в каком они состоянии.

4. Извлеките стартер и установите заведомо исправный. Если его контакты разрушились – процесса прогрева происходить не будет, лампа не включится.

5. Измерьте сопротивление дросселя:

Если оно бесконечно – он сгорел, под замену.

Если оно ниже 40 Ом – межвитковое замыкание. В таком случае лампы могут и работать, но быстро сгорать – дроссель нужно заменить.

Если сопротивление вообще нулевое – значит в дросселе КЗ. Лампы включаться не будут, а процесс поджига люминесцентной лампы стартер будет повторять вновь и вновь – под замену.

Если омметра нет под рукой, можно частично проверить обычной прозвонкой – если цепь в норме (пищит/светится индикатор), тогда дроссель точно не в обрыве, но КЗ не исключено. А если прозвнока не звенит или не горит – дроссель в обрыве. Теперь можно проверить КЗ обмотки на корпус, его быть не должно.

Электронный дроссель для люминесцентной лампы: схема, устройство и неисправности

Большинство ЭПРА которые используют для питания люминесцентных ламп построены по простой схеме на основе автогенератора.

Аналогичная схема, но на плате круглой формы стоит в энергосберегайках (КЛЛ).

На рисунке ниже выделены элементы которые сгорают чаще всего.

Диоды обычно используют типа 1n4007 и подобные маломощные. Транзисторы, в зависимости от мощности лампы, обычно это линейка MJE13001, 13003, 13009 и подобные.

Во многих ситуациях, когда нужно быстро починить светильник – проще заменить ЭПРА полностью, а сгоревшее забрать домой для проверки и ремонта «про запас».

Заключение

Схема питания и ремонт люминесцентных светильников не столь сложен как может показаться и легко поддается ремонту. Если вы используете такие светильники в гараже или мастерской – советую держать несколько рабочих стартеров, на всякий случай. Они выходят из строя чаще всего.

Читайте также: