Расстояние между электродами заземления

Обновлено: 29.04.2024

Заземление по правилам: главное, что нужно знать

Для сооружения хорошего заземления , которое будет надёжно защищать ваш дом и вас самих долгие годы, действовать нужно не "на глаз", а по правилам , которые разрабатывались долгие десятилетия. Одним из самых ценных документов является ГОСТ Р 50571.5.54-2013 , целиком посвящённый заземлению, его сооружению и проверке. Кроме этого документа, стоит иметь в виду ПУЭ , а точнее их раздел 1.7 , также рассказывающий про заземление (и всё, что с ним связано).

Мы подобрали для вас 5 самых главных правил , выполнение которых обязательно при сооружении заземления . Помните - заземление не должно быть не дорогим, а лишь эффективным !

Правило 1: Заземлители должны быть достаточно толстыми

Стальные профили - одни из лучших заземлителей Стальные профили - одни из лучших заземлителей

После того, как вы вкопаете трубу, уголок или другой заземлитель в почву, они начнут разрушаться под действием химических веществ и воды. Для того, чтобы заземление прослужило нужный срок - 30 лет , металл должен быть достаточно толстым . Вот что об этом говорит ГОСТ:

Таблица 54.1 - Минимальные размеры проложенных в земле заземляющих электродов из наиболее распространенных материалов с точки зрения коррозионной и механической стойкости
сталь оцинкованная: диаметр 16 мм или поперечное сечение 90 кв. мм ;
сталь нержавеющая: диаметр 16 мм или поперечное сечение 90 кв. мм;
медь : диаметр 12 мм или поперечное сечение 50 кв. мм .

Мы можете использовать арматуру, трубы, уголки, профиля любого сечения и вообще любой металлолом - главное, чтобы толщина каждого заземлителя была не меньше указанной выше.

Правило 2: Заземлители должны всегда быть во влажной почве

Лучший проводник тока - влажный чернозём Лучший проводник тока - влажный чернозём

Электрический ток, который, в случае аварии, передаёт заземление, протекает только по влажной почве . Поэтому, глубина погружения электродов должна быть такой, чтобы зимой или в сухие летние дни, хотя бы метр заземлителя был во влажной среде.

Согласно ГОСТ (Приложение D.1):

Мороз значительно увеличивает удельное сопротивление почвы, которое может достигать нескольких тысяч Ом в замороженном слое. Толщина этого замороженного слоя в некоторых областях может составить один метр и более .
Засуха также увеличивает удельное сопротивление почвы. Эффект засухи может наблюдаться в некоторых областях до глубины 2 м . Значения удельного сопротивления при таких условиях могут быть такого же порядка как и во время мороза.

А также, по пункту 542.2.4:

При выборе типа и глубины установки заземляющих электродов должны быть учтены возможности механического повреждения и минимизации воздействия высыхания или промерзания грунта.

Правило 3: Следите за хорошим контактом между заземлением и проводом!

Если у вас идеальное заземление, с десятком медных электродов, но место, где к нему присоединяется провод загрязнено или разболтано , толку от этого не будет. ГОСТ говорит нам следующее:

542.3.2 Соединение заземляющего проводника с заземлителем должно быть надежным и с соответствующими электрическими характеристиками. Соединение может быть выполнено с помощью сварки, опрессовки, соединительного зажима или другим механическим соединителем.

Провод должен иметь наконечник , притянутый к заземлению болтом . Не стоит закапывать это место в землю, лучше поставьте колодец заземления , внутри которого будет находиться соединительный зажим. Покройте зажим внутри и снаружи контактной проводящей смазкой : она не только улучшит контакт, но и защитит место соединения от коррозии.

Правило 4: Измерьте сопротивление заземления!

Замер сопротивления заземления специальным прибором Замер сопротивления заземления специальным прибором

Для того, чтобы измерить сопротивление заземления , вы можете использовать специальный прибор , либо замерить его косвенно, используя токоизмерительные клещи по нашей методике . В любом случае, это сопротивление не должно быть больше 30 Ом при хорошей линии электропередачи и не больше 4 Ом при старой и изношенной (ПУЭ 7, 1.7.101).

Если это сопротивление будет выше , на корпусах приборов, в которых образовалась утечка тока, будет образовывать слишком большое напряжение , что опасно и весьма неприятно.

Правило 5: Соедините ваше заземление с нулём на вводе

Соединение земли с нулём на вводе в частный дом Соединение земли с нулём на вводе в частный дом
1.7.145. . разделение PEN -проводника на PE- и N-проводники должно быть выполнено до вводного защитно-коммутационного аппарата.

Ноль в частном доме обязательно должен быть соединён с нулём - главное, чтобы место соединения находилось до вводного автомата , чтобы заземление в любом случае оставалось подключенным. Важно помнить, что наше, частное заземление - лишь часть общей системы электроснабжения, изолировать которую нежелательно, а иногда - опасно.

Заключение

Заземление - это несложно. Всё сводится к выбору правильного заземлителя нужной длины и толщины и к надёжному присоединению заземляющего устройства к шине заземления в щитке. Помните о правилах и не бойтесь сделать всё своими руками!

Почему вертикальные заземлители нельзя располагать близко друг к другу?

вертикальные заземлители небольшой длины

При использовании вертикальных заземлителей небольшой длины (порядка нескольких метров) для обеспечения необходимого заземления в землю устанавливают несколько штырей, которые соединяют между собой параллельно. Естественно, поскольку такой массив занимает определённую площадь, возникает соблазн сэкономить пространство и разместить штыри ближе друг к другу. Но, на самом деле, этого не следует делать — есть определённое расстояние, ближе которого размещать штыри друг относительно друга не следует. О том, чему равно это расстояние и почему слишком близко расположенные штыри — это плохо, пойдёт речь в данной статье.

Взаимное экранирование электродов

В том случае, если два электрода (штыря) находятся на бесконечно большом расстоянии друг от друга, то при их параллельном соединении идеальным проводником с нулевым сопротивлением общая проводимость такого заземлителя относительно земли будет равна сумме проводимостей обоих штырей относительно земли (напомним, что проводимость — это величина, обратная сопротивлению). Данное правило может быть обобщено и на большее количество электродов, тогда суммируются их проводимости.

Но что мы будем наблюдать, если расстояние между параллельно соединенными электродами меньше их длин или сопоставимо с ними? Проводимость такого заземления будет меньше суммы проводимостей двух отдельных штырей относительно земли. Такое явление называется взаимным экранированием электродов. В свою очередь, оно обусловлено так называемым отталкиванием токов.

Основным фактором, определяющим электропроводность почвы, является наличие в ней влаги, в которой растворены соли. В результате получается электролит. При прохождении электрического тока через электролит положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы — к положительному электроду (аноду). Например, при использовании электродов из меди они будут выполнять роль анода. При этом, поскольку электроды соединены между собой проводником с низким сопротивлением, потенциалы на них относительно земли будут практически одинаковы.

Ионная проводимость в электролите

Ионная проводимость в электролите

Ионная проводимость в электролите

Электрический ток связан с физическим переносом ионов. При близком расположении электродов одноименно заряженные ионы будут отталкиваться, что уменьшит интенсивность их движения. Это и есть явление отталкивания токов. В итоге оно уменьшает общую проводимость системы из параллельно соединенных электродов.

Определение минимального расстояния между вертикальными заземлителями

Слишком большое расстояние между вертикальными электродами — это не только нерациональное использование земли, но и большая длина проводов, соединяющих электроды. Чем длиннее провода, тем выше их сопротивление. С другой стороны, если мы размещаем штыри слишком близко друг к другу, это снизит их эффективность. Отсюда следует, что должен быть некий оптимальный диапазон значений расстояния между вертикальными электродами заземления, в пределах которого обеспечиваются наилучшие технико-экономические показатели.

Защита сооружений от попадания молнии — крайне ответственная задача, поэтому для нее параметры заземления, состоящего из нескольких электродов, жестко прописаны, в том числе и расстояние между электродами. К примеру, согласно действующей Инструкции РД 34.21.122-87, п. 2.2 для отдельно стоящих молниеотводов приемлемым является «искусственный заземлитель, состоящий из трех и более вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м».

При использовании заземления только для обеспечения безопасности эксплуатации электрических установок, целевым показателем является достижение нужного сопротивления заземления. Методика расчета на основании так называемого коэффициента использования приведена здесь. Чем выше значение коэффициента использования, тем заземление эффективнее. Следует отметить, что значение коэффициента использования зависит не только от расстояния между электродами, но и от количества электродов, а также от топологии их размещения (при одном и том же минимальном расстоянии между электродами расположение их в ряд дает больший коэффициент использования, чем при размещении в виде замкнутого контура).

Электричество установки заземления, часть подземного металлического каркаса

Электричество установки заземления, часть подземного металлического каркаса

Размещение электродов по замкнутому контуру более удобно с точки зрения использования пространства, но при этом несколько снижается эффективность заземления по сравнению с электродами, расположенными в ряд

Эксперименты показали, что взаимное экранирование параллельно соединенных вертикальных электродов в земле наблюдается на уровне, оказывающим влияние на свойства заземления, при расстоянии менее 2,2L, где L – длина электрода. Дальнейшее увеличение расстояния между электродами не дает уже ощутимой выгоды. С другой стороны, при расстоянии между электродами, не превышающим 0,033L, добавление новых электродов не уменьшает сопротивление заземления.

Выводы

В реальности сопротивление заземления меняется в широких пределах в зависимости от времени года и погодных условий. Поэтому на практике для многоэлектродных вертикальных заземлителей часто используют эмпирическое правило — расстояние между электродами должно составлять не менее длины одного электрода. Максимальное значение расстояния, чтобы заземление не было слишком громоздким и дорогим - удвоенное значения длины электрода. Поскольку длина электродов для многоэлектродного вертикального заземления обычно составляет 3 — 5 м, нормы Инструкции РД 34.21.122-87 в диапазон 1 — 2 длины электрода вполне укладываются.

Расчёт заземления

Расчёт заземления (расчёт сопротивления заземления) для одиночного глубинного заземлителя на основе модульного заземления производится как расчёт обычного вертикального заземлителя из металлического стержня диаметром 14,2 мм.

Формула расчёта сопротивления заземления одиночного вертикального заземлителя:

формула расчета зазмления модульного


где:
ρ – удельное сопротивление грунта (Ом* м )
L – длина заземлителя (м)
d – диаметр заземлителя (м)
T - заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)
π - математическая константа Пи (3,141592)
ln - натуральный логарифм

Для готовых комплектов модульного заземления ZANDZ формула расчёта сопротивления упрощается до вида:

- для комплекта ZZ-000-015
- для комплекта ZZ-000-030

где:
ρ – удельное сопротивление грунта (Ом* м )

Для расчета взяты следующие величины:
L = 15 (30) метров
d = 0,014 метра = 14 мм
T = 8 (15,5) метров: с учетом заглубления электрода на глубине 0,5 метра

Расчёт электролитического заземления

Электролитическое заземление

Расчёт электролитического заземления (расчёт сопротивления заземления) производится как расчет обычного горизонтального электрода в виде трубы, имеющей длину 2,4 метра с учетом влияния электролита на окружающий грунт (коэффициент С).

Формула расчёта сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:


где:
ρ – удельное сопротивление грунта (Ом* м )
L – длина заземлителя (м)
d – диаметр заземлителя (м)
T - заглубление (расстояние от поверхности земли до заземлителя) (м)
π - математическая константа Пи (3,141592)
ln - натуральный логарифм
С – коэффициент содержания электролита в окружающем грунте

Коэффициент C варьируется от 0,5 до 0,05.
Со временем он уменьшается, т.к. электролит проникает в грунт на бОльший объем, при это повышая свою концентрацию. Как правило, он составляет 0,125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0,5 - 1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

Для электролитического заземления ZANDZ формула расчёта сопротивления заземления упрощается до вида:

- для комплекта ZZ-100-102

где:
ρ – удельное электрическое сопротивление грунта (Ом* м )

Для расчёта взяты следующие величины:
L = 2,4 метра
d = 0,065 метра = 65 мм
T = 0,6 метра
С = 0,125

Расчёт заземления: практические данные

Стоит обратить внимание на тот факт, что получаемые практически результаты ВСЕГДА отличаются от теоретических расчетов заземления.

В случае глубинного / модульного заземления - разница связана с тем, что в формуле расчёта чаще всего используется НЕИЗМЕННОЕ ОЦЕНОЧНОЕ удельное сопротивление грунта НА ВСЕЙ глубине электрода. Хотя в реальности, такого никогда не наблюдается.

Даже если характер грунта не меняется - его удельное сопротивление уменьшается с глубиной: грунт становится более плотным, более влажным; на глубине от 5 метров часто находятся водоносные слои.

Фактически, получаемое сопротивление заземления будет ниже расчётного в разы (в 90% случаев получается сопротивление заземления в 2-3 раза меньше).

В случае электролитического заземления - разница связана с тем, что в формуле расчета используется коэффициент "С" , берущийся в расчёт как усредненная поправочная величина, которую нельзя описать в виде формул и зависимостей. Определяется он исходя из множества характеристик грунта (температура, влажность, рыхлость, диаметр частиц, гигроскопичность, концентрации солей и т.п.)

Процесс выщелачивания длителен и относительно постоянен. Со временем концентрация электролита в окружающем грунте растёт. Также растёт объём грунта с присутствием электролита вокруг электрода. Через 3-5 лет после монтажа этот получившийся "полезный" объём можно описать трёхметровым радиусом вокруг электрода.

Из-за этого, сопротивление электролитического заземления ZANDZ со временем существенно падает . Замеры показали уменьшение в разы:

  • 4 Ома сразу после монтажа
  • 3 Ома через 1 год
  • 1,9 Ома спустя 4 года

Расчёт заземления в виде нескольких электродов

Расчёт заземления (расчёт сопротивления заземления) для нескольких электродов модульного заземления производится как расчёт параллельно-соединенных одиночных заземлителей.

Формула расчёта с учетом взаимного влияния электродов - коэффициента использования:


где:
R1 – сопротивление одиночного заземлителя/электрода (Ом)
Ки – коэффициент использования
N – количество электродов в заземлителе

Вклад соединительного заземляющего проводника здесь не учитывается.

Расчёт необходимого количества заземляющих электродов

Проведя обратное вычисление получим формулу расчёта количества электродов для необходимой величины итогового сопротивления сопротивления (R):


где:
] [ - округление результата в бОльшую сторону.
R – необходимое сопротивление многоэлектродного заземлителя (Ом)
R1 – сопротивление одиночного заземлителя/электрода (Ом)
Ки – коэффициент использования

Вклад соединительного заземляющего проводника здесь не учитывается.

Расстояние между заземляющими электродами

При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор - расстояние между заземляющими электродами. В формулах расчёта заземления этот фактор описывается величиной "коэффициент использования".

Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:

  • не менее глубины погружения электродов - для модульного
  • не менее 7 метров - для электролитического

Соединение электродов в заземлитель

Для соединения заземляющих электродов между собой и с объектом в качестве заземляющего проводника используется медная катанка или стальная полоса.

Сечение проводника часто выбирается - 50 мм² для меди и 150 мм² для стали. Распространено использование обычной стальной полосы 5*30 мм.

Для частного дома без молниеприёмников достаточно медного провода сечением 16-25 мм² .

Подробнее о прокладке заземляющего проводника можно ознакомиться на отдельной странице "Монтаж заземления".

Сервис расчёта вероятности удара молнии в объект

Если помимо заземляющего устройства Вам предстоит установить систему внешней молниезащиты, Вы можете воспользоваться уникальным сервисом расчета вероятности удара молнии в объект, защищённый молниеприёмниками. Сервис разработан командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)

Этот инструмент позволяет не просто проверить надёжность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:

  • меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
  • меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).

Функционал сервиса позволяет рассчитать эффективность запланированной молниезащиты в виде понятных параметров:

  • вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
  • число ударов молнии в систему в год;
  • число прорывов молнии, минуя защиту, в год.

Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.

Делаем правильное заземление в частном доме своими руками: инструкция от А до Я

Важность вопроса

Если Вы задаетесь вопросом, обязательно ли нужно делать заземление в своем дачном домике либо коттедже, то сразу же говорим, что без защитного контура нельзя обойтись. Даже по нормативам ПУЭ, СНиП и ГОСТу требуется делать специальный отвод, который обезопасит Вас от поражения электрическим током. Организация системы TN-S (ее правильное название) в сети 220 и 380 Вольт должна производиться еще при строительстве, т.к. потом это делать более затратно (необходимо будет менять двухжильный кабель на трех- либо пятижильный по всему дому).

Если вы приобрели дом, в котором отсутствует заземление, то необходимо его смонтировать и подключить. Монтаж системы заземления достаточно простой. Помимо заземления, необходимо создать молниезащиту. О том, как сделать громоотвод своими руками , мы рассказывали в отдельной статье.

Устройство контура заземления

Требования к заземлению и занулению определяются в ПУЭ Глава 1.7 . Также перед организацией защитного контура рекомендуем изучить ГОСТ Р 50571.5.54-2013 .

Контур заземляющего устройства представляет из себя электроды, вкопанные в землю и соединенные между собой электродом - стержнем из металла или металлической полосой. Обычно заземляющий контур делают в форме треугольника или квадрата. На фото показано, как устанавливать заземлители в траншею.

При устройстве заземления вертикальные заземлители должны закладываться на глубину 0,5-0,6 м от уровня планировочной отметки земли и выступать от дна траншеи на 0,1-0,2 м. Расстояние между электродами 2,5-3 м. Горизонтальные заземлители и соединительные полосы между вертикальными заземлителями укладывают в траншеи глубиной 0,6-0,7 м от уровня планировочной отметки земли.

Пример расчета сопротивления заземления по методу Ю.Г. Барыбина

Заземляющее устройство расположено во второй климатической зоне России и состоит из горизонтальной сетки (размер каждой ячейки 5х5 м), и вертикальных электродов (заземлителей), забитых в грунт в местах расположения узлов сетки.

Сетка и вертикальные электроды выполнены из круглой стали диаметром 25 мм. Все соединения выполнены с помощью сварки.

Конфигурация заземляющего устройства:

Обозначения и исходные данные:

  • Lг = 5 м – размер ячейки горизонтальной сетки (расстояние между вертикальными электродами);
  • Lсум.г = 110 м – общая длина горизонтальных заземлителей;
  • Lв = 5 м – высота вертикального электрода;
  • L1в – часть высоты вертикального электрода, находящаяся в верхнем слое (слой 1) грунта;
  • L2в – часть высоты вертикального электрода, находящаяся в нижнем слое (слой 2) грунта;
  • n=15 шт. – количество вертикальных заземлителей;
  • T=0,7 м – глубина расположения горизонтальной сетки;
  • H1=2 м – толщина верхнего слоя грунта;
  • H2=∞ — толщина нижнего слоя грунта.
  • d=0,025 м – диаметр круглой стали, из которой изготовлены сетка и вертикальные заземлители;
  • ρ=ρ1=150 Ом*м – удельное сопротивление грунта (для двухслойного грунта – удельное сопротивление верхнего слоя);
  • ρ2=100 Ом*м – удельное сопротивление нижнего слоя грунта (для двухслойного грунта);
  • A=20 м – габарит «длины» заземляющего устройства (см. рис.1);
  • B=10 м – габарит «ширины» заземляющего устройства (см. рис.1);
  • S=200 кв.м. (AxB) – площадь, занимаемая заземляющим устройством.

Расчет заземляющего устройства в однослойном грунте

Сопротивление заземляющего устройства Rз складывается из сопротивлений растеканию отдельных электродов заземлителя (труб, уголков, полос) и сопротивлений заземляющих проводников. В данной статье при сравнении различных методик сопротивление заземляющих проводников не учитывается. Собственно, это сопротивление не учитывается и в расчетах, приведенных в справочнике.

Сопротивление растеканию каждого электрода (вертикального или горизонтального) зависит от удельного сопротивления грунта с учетом его сезонных изменений; формы, размеров и материала электрода; расположения электрода и глубины погружения его в землю, а также наличия вблизи него других электродов, электрически соединенных с ним.

Удельное сопротивление грунта в справочнике рекомендуется принимать по данным замеров, а при отсутствии таких данных – воспользоваться табличными значениями. Чтобы сравнение методик было более корректным и не зависело от различий табличных данных, примем удельное сопротивления грунта ρ=150 Ом*м (см. постановку задачи). Удельное сопротивление промерзшего грунта получается умножением удельного сопротивления, измеренного в нормальных условиях (15 град.С и 10­20% влажности), на поправочные коэффициенты (табличные данные).

Таким образом, в справочнике предлагается рассчитать сопротивление растекания отдельно для горизонтальных электродов (сетки) и вертикальных электродов, применив соответствующие коэффициенты. Результирующее сопротивление заземляющего устройства рассчитывается из предпосылки, что данную конфигурацию системы электродов можно рассматривать, как параллельное соединение проводников.

Сопротивление одного вертикального электрода Rв определяется по формуле:

Расчет контура заземления

Заземление — одна из основных мер безопасности при использовании электрических приборов. В случае износа внутренней изоляции под напряжением может оказаться внешний корпус техники, при касании к которому может случится поражение электрическим током. Именно для предотвращения таких происшествий и организуется монтаж заземления. А чтобы защитная конструкция была максимально эффективной, необходимо провести её расчёт заземления, который может отличаться в зависимости от множества исходных факторов.

Виды заземляющих конструкций

Для организации заземления используются проводники из металлоконструкций различной формы (балка, труба, уголок и так далее). Эти базисные элементы могут быть использованы в одной из трёх основных систем:

  • С использование одиночного глубинного заземлителя;
  • Монтаж комплексной модульной конструкции;
  • Организация электролитического заземления.

Заземление 1

Вне зависимости от типа выбранной конструкции, её сопротивление должно укладываться в определённые рамки. Для трёхфазной сети на 380 Вольт сопротивление заземления должно составлять не более 4 Ом. Более распространённая однофазная сеть на 220 Вольт потребует не более 8 Ом. Также предварительные расчёты позволяют заранее определиться с количеством необходимых материалов, что даёт возможность существенно сэкономить.

Формула расчёта одиночного заземлителя

Существует ряд факторов, влияющих на окончательный результат расчёта заземляющей конструкции, а именно:

  • Используемые материалы (решающие значение имеет вид металла, но немаловажным могут быть и показатели электролита);
  • Форма элементов-электродов (влияет незначительно);
  • Расстояние между элементами электродами;
  • Глубина, на которую погружается монтируемый контур.

Необходимо отметить, что для получения системы, имеющий сопротивление в 4–8 Ом, применяемые металлические элементы должны обладать определёнными минимальными параметрами:

  • Плоская балка — 12 мм в ширину, 4 мм в высоту;
  • Уголок — 4 мм в высоту
  • Шест — диаметр не менее 10 мм;
  • Труба — толщина не менее 3.5 мм.

Расчёт защитного заземления можно провести при помощи специализированного программного обеспечения или онлайн-калькуляторов. Но для их правильного использования необходимо знать общую формулу, по которой проводятся вычисления и значение всех переменных. Традиционно в рассматриваемой формуле используются следующие обозначения:

  • R — расчётное заземление (Ом);
  • L — протяжённость заземляющего элемента-заземлителя (м);
  • d — диаметр элемента (м);
  • T — заглубление: расстояние между от середины каждого заземляющего элемента до поверхности грунта (м);
  • ρ — сопротивление грунта (Ом×м). Смотрите таблицу.
  • π — число Пи (3.14)

Расчёт такого типа контура заземления производится по такой формуле:

Формула 1

Заземление 2

Измерить все перечисленные значения не составить большой трудности, за исключением разве что параметра ρ. Произвести эту процедуру можно самостоятельно при помощи Омметра, но нужно понимать, что полученные данные могут существенно изменяться при изменении температуры, влажности и других параметров окружающей среды. Поэтому гораздо удобнее будет воспользоваться усреднёнными табличными данными:

Тип грунта Параметр сопротивление грунта в диапазоне от –5 до –20°С
Песок 5000–11000
Супесь 1100–1500
Влажная глина 550–3000
Каменистая глина 1000–12000
Известняк 3000–12500
Торф 500–1000
Суглинок 1200–3500

Формула расчёта системы заземлителей

С целью достижения оптимального значения сопротивления создаваемой конструкции одиночные заземлители можно расположить в ряд или сформировать из них замкнутый контур (круг, прямоугольник или любую другую фигуру). Для расчёта такого заземления в указанную выше формула войдут дополнительные параметры:

  • R1 — искомое сопротивление (Ом);
  • R — сопротивление, вычисленное по базовой формуле (Ом);
  • N — число элементов в системе заземлителей;
  • Ки — коэффициент использования.

О последнем параметре необходимо рассказать подробнее. Вокруг каждого электрода, используемого для заземления электрического тока, можно представить воображаемую зону, в которой его эффективность достигает 90 %. Она формируется из всех точек, удалённых от поверхности электрода на расстояние, равное его длине. При расчёте заземление необходимо избегать пересечения этих зон, что позволяет достичь максимального коэффициента полезного действия формируемой системы.

Заземление 3

Для подсчётов удобнее всего пользоваться табличными значениями, полученных в результате практического применения формулы.

Система заземления при расположении электродов последовательно
Расстояние между электродами (где L это длинна используемого электрода) Количество заземляющих элементов в системе Коэффициент использования
L 5 0.7
L 10 0.6
L 15 0.53
L 20 0.5
2L 5 0.81
2L 10 0.75
2L 15 0.7
2L 20 0.67

Система заземления при размещении электродов в замкнутый контур
Расстояние между электродами (где L это длинна используемого электрода) Количество заземляющих элементов в системе Коэффициент использования
L 5 0.65
L 10 0.55
L 15 0.51
L 20 0.45
2L 5 0.75
2L 10 0.69
2L 15 0.66
2L 20 0.63

Сама же формула выглядит следующим образом:

Таким образом, если предварительно вычислить переменную и взять её за константу, то по данной формуле можно вычислить оптимальный набор электродов, необходимый для создания заземляющей конструкции:

При это стоит учитывать, что скорее всего полученное значение будет дробным, поэтому его необходимо будет округлить в большую сторону.

Формула расчёта электролитического заземления

В упрощённой модели электролитическую систему заземления можно описать как металлическую трубу, заполненную веществом-электролитом. Это вещество повышает сопротивление всей конструкции и, что более важно, способствует сохранению её параметров с течением времени. Это достигается за счёт того, что со временем электролит проникает в почву и накапливается в ней.

Помимо описанных выше параметров в формуле расчёта электролитического заземления используется параметр C, который описывает концентрацию электролита в почве. Его допустимые значения могут колебаться в промежутке между 0.5 и 0.05. Чем дольше рассматриваемая система находится в грунте, тем меньше становится значение этого параметра: если при начале установки он равнялся 0.5, то через полгода он составить всего 0.125 (но дальнейшее его падение прекратиться).

В этом случае требуемая формула будет такой:

Формула 4

Если в монтируемой системе присутствует несколько электродов электролитического типа, тогда её сопротивление может быть рассчитано по формуле из предыдущего раздела. С той лишь разницей, что коэффициент использования тут будет несколько иной:

Система заземления при использовании электролитических электродов
Количество электродов Коэффициент использования
2 1
5 0.99
10 0.93
20 0.8

В данной статье мы рассмотрели основные типы электрического заземления и все необходимые формулы для их расчёта. Очевидно, что в основе всех вычислений лежит расчёт контура одиночного заземления, в то время как два основных вида получаются при помощи его расширения и доработки. Стоит ещё раз указать на то, что большую одну из ключевых ролей в организации эффективного заземления играет расстояние между электродами, которое не должно быть меньше их отдельной длинны. Все приведённые выше вычисления можно существенно упростить, если воспользоваться специализированным программным обеспечением или онлайн-инструментами. Обладая минимум знаний о том, какие параметры участвуют в расчёте заземления, эти утилиты позволят существенно сократить время проведения работ, при этом обеспечивая довольно высокую точность.

Заземление в частном доме своими руками

Заземление в частном доме своими руками

Собственный контур заземления — отличительный признак действительно продуманной и качественной системы электроснабжения. Его устройство весьма примитивно, практическая же польза — неоценима. Монтаж своими руками не займёт много времени, а правильное исполнение контура гарантирует его многолетнюю исправную работу.

Заземление в частном доме своими руками

Выбор места для размещения контура

Чтобы определить место, подходящее для забивки электродов заземления, нужно пройти процедуру, именуемую согласованием трасс инженерных коммуникаций. Поскольку длина электродов, как правило, больше глубины залегания линий электропередач, связи и трубопроводов, риск их повреждения абсолютно реален при работе в черте города. Поэтому сначала ознакомьтесь с планами прокладки трасс коммуникаций, запрос можно оставить в местной городской администрации.

Выбор места для заземляющего контура

Это может быть связано с небольшими денежными издержками, однако получать ордер на земляные работы почти никогда не требуется. С согласованием связан один интересный момент: вы снимаете с себя ответственность за повреждение линии, если её нет в реестре подземных коммуникаций. При этом даже если в идеально подходящем месте уже проложены подземные трассы, вы сможете легко их обойти, пользуясь указанными значениями защитных зон и точками привязки.

Для предприятий рекомендуется хранить в архиве заверенные копии планов.

Располагая контур, обратите внимание на параметры грунта. Обладателям отчёта по геоморфологии местности рекомендуется располагать основные заземлители в как можно более низкой точке верхнего водоупора, насыщенной влагой. Также предпочтительны места затенённые, вблизи сливных ям или дренажных колодцев, в мелиорационных канавах. Вода с растворёнными ионами солей (в умеренном количестве) придаёт хорошую проводимость грунтам даже тех категорий, в которых она начисто отсутствует при иссушенном их состоянии.

Ещё один критерий оценки местности — отношение уровня грунтовых вод к глубине погружения основных заземлителей. Если есть возможность устроить контур на дне подвала или смотровой ямы — лучше ей воспользоваться. Исключение составляют участки, насыщенные агрессивными жидкостями: септики, сливные и компостные ямы. Также следует избегать близости с деревьями, активно поглощающими воду, например, берёзой или ивой.

Удельное сопротивление грунта и расчёт электродов

Передача электрического потенциала литосфере происходит со всей поверхности металлических электродов через металлизированные частицы почвы и содержащуюся в грунте влагу. Учитываться должно всё: от шероховатости поверхности металла до пористости грунта и плотности посадки в нём стальных заземлителей.

Шина заземления в щитке

Геоморфологический профиль и таблица удельных сопротивлений грунтов — вот что берётся за основу расчёта сопротивления распространению тока через основные заземлители. Рекомендуется пользоваться пособием «Нормы устройства сетей заземления» за авторством Р.Н. Карякина, где есть исчерпывающая информация для вычисления нужных параметров, а также описана техника использования естественных заземлителей (обсадок скважин, свай или трубопроводов).

В реальности подробный расчёт выполняется редко, обычно исходные данные принимаются худшими из возможных для конкретных условий размещения. Требуемые характеристики достигаются увеличением либо длины электродов (что более предпочтительно), либо их числа. Запасом прочности обеспечивается длительный срок эксплуатации контура: покрываясь ржавчиной, электроды сильно теряют в проводимости, поэтому к ним периодически добивают новые.

Контур заземления для дома

Расчёт начинают с допустимого сечения элементов системы заземления, их проводимость должна соответствовать мощности электрического подключения заземляемой системы. В большинстве случаев используется профили из углеродистой стали, их сечение не должно быть меньше 80 мм 2 . Для нержавеющей стали этот показатель составляет 60–70 мм 2 . Сечение принято заведомо завышать для компенсации коррозионного воздействия почвы.

Второй вопрос — общая площадь поверхности. В качестве основных заземлителей следует использовать угловую сталь, тавр или двутавр — изделия с сечением незамкнутой формы, контактирующие с грунтом всеми сторонами. Сопротивление одиночного заземлителя или его участка определяется как удельное сопротивление грунта, его окружающего, делённое на π — кратное значение основного линейного размера (для вертикально стержня это его длина).

Уголки из углеродистой стали

Результат нужно умножить на безразмерный коэффициент формы (для вертикального стержня это половина натурального логарифма от четырёхкратной длины, поделённая на периметр сечения). Для примера, вертикальный электрод длиной 2,5 метра из угловой стали 50х50 мм коэффициент составит почти 1,25, сопротивление растеканию (при залегании заземлителей целиком в суглинке) составит 8,3 Ом.

Общее сопротивление вертикальных заземлителей описывается как сумма их обратных значений:

  • 1 / R = 1 / R1 + 1 / R2 + . + 1 / Rn

Таким образом, для достижения нормативного значения в 4–6 Ом потребуется не менее двух электродов по 2,5 метра, по аналогии можно рассчитать варианты с другим подходящим числом или длиной заземлителей.

Как быстро забить основные заземлители

Когда требуемые расчёты выполнены, наступает очередь монтажа. Тривиальная, на первый взгляд, задача забить электроды в землю может обернуться испорченным металлопрокатом просто из-за незнания механики процесса.

Грунт на глубине более метра достаточно плотный и находится под давлением. Почва плотно обжимает стальной стержень, при этом силы трения препятствуют погружению и растут вместе с площадью соприкосновения при каждом ударе. Мороки добавляют встречающиеся на пути обломки твёрдой породы, иногда электрод разумнее выдернуть и вбить в новом месте.

Монтаж электродов заземления

Заземлители нужно правильно заточить перед забивкой. Общий угол скоса острия должен быть порядка 30–35º. От края острия нужно отступить около 40 мм и свести спуск под более тупым углом, около 45–50º. Тавр, двутавр и швеллер могут иметь несколько спусков, прутья до 24 мм рекомендуется острить ковкой с медленным отпуском.

Электроды заземления из уголков

Перед забивкой электродов их нужно удалить друг от друга не менее чем на 230 см, более двух (N) вертикальных заземлителей располагают на вершинах равностороннего N-угольника. Под каждый электрод нужно выкопать или пробурить лунку глубиной 35–50 см чтобы основное тело проводника находилось как можно глубже. Бурить лунки в полную глубину не рекомендуется. Откопанные приямки соединяются между собой траншеями, по которым будет скрыто проложена обвязка электродов.

Монтаж контура заземления

Забивать стальные стержни лучше всего вручную, кувалдой около 7–10 кг. Да, вибрационное погружение работает лучше, но соответствующее оборудование не так просто достать и допускается его использовать не везде. Основная проблема при забивании — деформация хвостовика от частых ударов, поэтому бить нужно через бабку специальной формы, надевающуюся сверху на электрод и не позволяющую ему согнуться или расплескаться сверх меры. Также можно периодически обрезать УШМ край электрода по мере сплющивания или подливать в приямок воду небольшими порциями.

Обвязка контура, вывод шины

Вертикальные электроды должны полностью находиться под слоем почвы не менее 20–30 см, на этом же уровне располагаются все горизонтальные заземлители. Для связки используется стальная полоса 4х40 мм или выше, поставленная на ребро. С электродами она соединяется дуговой сваркой, суммарная длина шва должна составлять не менее половины периметра сечения.

Изготовление контура заземления

Контур заземления для частного дома

От контура остаток полосы прокладывается под грунтом до стены здания с ВРУ. Чтобы не разрушать отмостку фундамента, полосу можно проложить поверх неё, закрепив дюбелями быстрого монтажа, либо устроить подкоп и проход через огильзованное отверстие. Шину заземления нужно закрепить к стационарной конструкции как минимум в двух точках, к концу приваривается болт М10 с двумя шайбами и гайкой.

Контур заземления для частного дома

Монтаж контура завершается нанесением защитного покрытия на места сварки, это может быть краска или обычный битум. После заземлители засыпают грунтом, тщательно его трамбуя.

Проверка нормативных параметров, обслуживание контура

Под болт на выводе шины зажимают медный однопроволочный провод (ПВ-1) сечением не ниже 6 мм 2 . Он следует как основной защитный проводник к ВРУ и далее разделяется по всей системе заземления к каждому потребителю электроэнергии, который нуждается в уравнивании потенциалов.

Обычно сопротивление линий системы заземления считается удовлетворяющим нормативному при использовании на ответвлениях медного провода от 2,5 мм 2 , а также стального прутка или полосы сечением от 50 мм 2 . Система заземления обычно не предусматривает разрывов при ветвлении, общее сопротивление между ВРУ и самой удалённой точкой должно находиться в районе 4–6 Ом.

Измерение сопротивления заземления

Растекание тока по основным заземлителям проверяется с помощью грунтового мегаомметра: он меряет сопротивление между металлическими частями системы заземления и временными электродами, забитыми в почву на 50 см в 15 и 20 метрах от контура. Результаты измерений служат основанием для подписания технических условий и допуска электросети к эксплуатации.

Измерение сопротивления заземления

Замер сопротивления заземления: 1 — измеритель сопротивления заземления; 2 — контур заземления; 3 — временные электроды

Обслуживания, как такового, контур заземления не требует. Достаточно исключить ведение земляных работ в месте его расположения и следить, чтобы грунт не пересыхал. Также следует исключить попадание агрессивных жидкостей на почву. Это замечание связано с тем, что часто перед периодическими (и нормируемые ПУЭ и ПБЭЭ) замерами сопротивления почву поливают, например, раствором поваренной соли. Это временно улучшает проводимость почвы и, как следствие, сопротивление растеканию снижается. Но в таких условиях контур просуществует физически всего 1,5–2 года.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Читайте также: