Почему в трансформаторе на обоих обмотках мощность тока одинаковый

Обновлено: 09.05.2024

Чем автотрансформатор отличается от трансформатора и для чего он нужен

Для повышения или понижения напряжения и гальванической развязки цепей используются трансформаторы. Обычный трансформатор состоит из двух и более обмоток не соединённых друг с другом, расположенных на одном сердечнике.

Но изменить величину напряжения можно и с помощью другого устройства — автотрансформатора, принцип действия и сферы применения которого мы и рассмотрим сегодня.

Отличия от трансформатора

Прежде чем перейти к разговору об автотрансформаторе, давайте вспомним как устроен обычный трансформатор. Он состоит из сердечника, на котором расположены две или больше обмоток. Обмотка, которая подключается к источнику питания называется первичной (w1), а обмотка, к которой подключается нагрузка — вторичной (w2).

Рисунок 1 — электромагнитная схема трансформатора Рисунок 1 — электромагнитная схема трансформатора

При подключении первичной обмотки к источнику переменного тока, создаётся магнитный поток Ф и замыкается в сердечнике. Так как вторичная обмотка намотана на том же сердечнике, то магнитный поток, пересекая её витки, наводит в них ЭДС. При подключении ко вторичной обмотке нагрузки Zн индуцированная ЭДС порождает электрический ток. Ток вторичной обмотки влияет на ток первичной обмотки так, что при увеличении тока нагрузки (тока во вторичной обмотке) увеличивается ток в первичной.

Так как индуктированная ЭДС в каждом витке одинаковая, то напряжение первичной и вторичной обмоток зависят только от соотношения количества витков между ними, а это соотношение называется коэффициентом трансформации: k=w1/w2.

Первичная и вторичная обмотки трансформатора не имеют электрической связи и мощность из одной обмотки в другую передаётся электромагнитным путём, а магнитопровод (сердечник) на котором они расположены усиливает индуктивную связь между обмотками.

Рисунок 2 — схема трансформатора Рисунок 2 — схема трансформатора

Вернёмся к теме, согласно п. 2.25 ГОСТ 16110-82 автотрансформатор — это трансформатор, две или более обмоток которого гальванически связаны так, что они имеют общую часть.

Фраза «гальванически связаны» — значит, что между первичной и вторичной обмоткой есть электрический контакт. Для наглядности ещё раз изобразим обычный трансформатор и пронумеруем выводы его обмоток: начало и конец первичной — цифрами 1 и 2, а вторичной — цифрами 3 и 4.

Рисунок 3 — схема трансформатора Рисунок 3 — схема трансформатора

Если соединить вывод 2 с выводом 3 (рисунок 4 — а), то мы получим автотрансформатор. Но такого обозначения на схеме вы не встретите нигде, обычно их изображают как на рисунке 4 — б.

Рисунок 4 — автотрансформатор: а) соединение обмоток для сравнения с трансформатором; б) обозначение на схеме Рисунок 4 — автотрансформатор: а) соединение обмоток для сравнения с трансформатором; б) обозначение на схеме

На рисунке 5 видим, что обмотка 1-4 первичная, так как к ней подключён источник питания. А вот с обмоткой 3-4 дело обстоит интереснее: так как к ней подключена нагрузка то логично её называть вторичной, но при этом она является частью первичной обмотки.

Примечание. У автотрансформаторов часть от точки подключения к сети до точки подключения нагрузки называют «последовательной», потому что она фактически соединяется последовательно с нагрузкой, а часть обмотки к которой подключается нагрузка называют «общей». Но далее в статье предлагаю называть их «первичной» и «вторичной» обмотки для поддержания аналогии с обычными трансформаторами, по той логике, что нагрузка подключается ко вторичной обмотке, а питание к первичной.

В зависимости от конкретного случая источник переменного тока и нагрузку подключают к разным выводам, например, если подключить источник питания к выводам 1 и 4, а нагрузку к выводам 3 и 4 — мы получим понижающий автотрансформатор. Если подключить питание к выводам 3 и 4, а нагрузку к 1 и 4 — получим повышающий автотрансформатор.

Принцип действия

Рассмотрим принцип работы автотрансформатора, и предположим, что у нас понижающий автотрансформатор к которому питание и нагрузка подключены как изображено на рисунке 4 — в.

Электрический ток, протекая по обмотке 1-4 автотрансформатора, создаёт в сердечнике переменный магнитный поток, который индуктирует в обмотке ЭДС E. При этом ЭДС каждого витка одинакова, и ЭДС во вторичной обмотке E2 будет пропорциональна количеству её витков (w2), относительно полного количества витков автотрансформатора (w1+w2), то есть между точками 1 и 4.

Соотношения этих ЭДС можно записать так:

где E – ЭДС индуктированная во всей обмотке, E2 – ЭДС вторичной обмотки, W – общее количество витков первичной и вторичной обмотки (W=w1+w2).

Кстати отношение W/w2 называют коэффициентом трансформации и обозначают латинской буквой k, то есть k=W/w2.

То есть если у нашего автотрансформатора всего 100 витков, при этом нагрузка подключается к последним 30 виткам, то если мы подадим на концы катушки переменное напряжение U1=10 вольт, то на нагрузке будет U2=3 вольта.

Рисунок 5 — электромагнитная схема, напряжения и токи в обмотках автотрансформатора Рисунок 5 — электромагнитная схема, напряжения и токи в обмотках автотрансформатора

Особенности: ток первичной и вторичной обмоток, мощности

В трансформаторе мощность от источника питания и первичной обмотки передаётся во вторичную обмотку и нагрузку через магнитное поле, пронизывающее сердечник. Электрической связи между обмотками нет. У автотрансформатора обмотки связаны друг с другом, даже более того, «вторичная» обмотка – это часть первичной обмотки. Поэтому мощность от источника питания в нагрузку передаётся и через электрическую, и через магнитную связь.

Из этого вытекает несколько особенностей, и для начала рассмотрим токи в обмотках автотрансформатора. Ток первичной , вернее последовательной части обмотки обозначим как I1, ток нагрузки — I2, а ток, протекающий во вторичной обмотке — I12.

Если составить по первому правилу Кирхгофа уравнение токов, для точки соединения обмоток 2-3, то ток нагрузки I2 состоит из суммы токов I1 и I12:

Выразим ток вторичной обмотки I12:

То есть ток вторичной обмотки равен разницы тока нагрузки и тока первичной обмотки.

И что это нам даёт?

Допустим, к сети напряжением 220В нужно подключить нагрузку с номинальным напряжением 110В, мощность которой составляет 1 кВт.

Для этой задачи можно использовать трансформатор с коэффициентом трансформации 2, давайте рассчитаем номинальный ток нагрузки (вторичной обмотки):

Ток первичной обмотки, потребляемый трансформатором из сети 220В составит:

Таким образом ток вторичной обмотки составит 9,1А, а ток первичной – 4,34 А.

При использовании для этой задачи авто трансформатора с коэффициентом трансформации 2, из сети будет потребляться ток:

Ток нагрузки будет таким же, как и в предыдущем случае:

А вот ток вторичной обмотки:

То есть в этом конкретном случае и первичную и вторичную обмотки можно намотать одинаковым проводом, а при использовании трансформатора для вторичной обмотки понадобился бы провод, условно, в два раза большего сечения.

Для большей наглядности давайте посчитаем то же самое, только представим, что у нас есть нагрузка рассчитанная на другое напряжение, например, на U2=175 вольт (величина взята для примера). В этом случае коэффициент трансформации автотрансформатора будет меньше — 1,31. Потребляемый из сети ток останется таким же:

Рассчитаем ток нагрузки:

Тогда ток вторичной обмотки составит:

При использовании трансформатора для этой же задачи ток вторичной обмотки составил бы:

I2=I1×k= 5.6 А

Мы видим разницу между токами вторичной обмотки в 5 раз. Это позволяет намотать вторичную обмотку проводом меньшего сечения , чем пришлось бы использовать во вторичной обмотке обычного трансформатора. При этом чем меньше коэффициент трансформации, тем меньше ток во вторичной обмотке автотрансформатора. При коэффициентах трансформации больше 2 это преимущество нивелируется.

В этом и заключается первое преимущество автотрансформатора перед трансформатором.

Примечание — в расчетах я не учитывал потери, коэффициенты мощности и прочее, их цель проиллюстрировать разницу между устройствами, а не рассчитать реальную электрическую цепь.

Для автотрансформаторов выделяют проходную и расчётную мощности, давайте разберёмся в чём их отличие и на что они влияют.

Как уже неоднократно отмечалось, у трансформатора вся мощность из первичной обмотки во вторичную передаётся с помощью магнитного поля. При этом сердечник подбирается по мощности трансформатора, то есть чем мощнее трансформатор – тем больше должен быть сердечник.

У автотрансформатора мощность из сети передаётся в нагрузку не только за счёт магнитной связи, но и за счёт электрической связи между обмотками. Поэтому выделяют несколько видов мощности.

Проходная мощность Sпр — это произведение выходного напряжения на ток нагрузки:

Расчётная мощность Sрасч (она же трансформаторная или типовая) — это мощность, которая передаётся из сети в нагрузку магнитным полем, и составляет лишь часть от проходной. Оставшаяся часть от проходной мощности передаётся в нагрузку с помощью электрической связи, обозначим её как Sэ.

Разложим проходную мощность на составляющие. Так как I2=I1+I12, то формула проходной мощности примет вид:

Расчётная мощность так называется, потому что именно её используют при расчётах трансформатора. Что это нам даёт?

В рассмотренном выше примере через сердечник трансформатора передавался 1 кВт мощности, а у автотрансформатора через магнитное поле передавалось всего:

Что в 5 раз меньше, чем у трансформатора. Так как мощность — это основной критерий выбора сердечника, то площадь сердечника автотрансформатора будет меньше, чем у трансформатора аналогичной мощности.

Но как и в случае с сечением провода, чем больше коэффициент трансформации, тем большая мощность передаётся магнитным полем, и наоборот — при маленьких коэффициентах трансформации больше мощности передаётся через электрическую связь. Зависимость отношения Sэ к Sпр от коэффициента трансформации изображена на рисунке 6. Таким образом при больших коэффициентах трансформации выгода от использования автотрансформаторов вместо трансформаторов исчезает.

Рисунок 6 — зависимость Sэ/Sпр от коэффициента трансформации Рисунок 6 — зависимость Sэ/Sпр от коэффициента трансформации

То есть наиболее целесообразно применять автотрансформаторы вместо трансформаторов при коэффициенте преобразования меньше чем 2.

Подведём итоги

На практике с автотрансформаторами мы сталкиваемся довольно часто, например, в релейных и электронных (симисторных) стабилизаторах напряжения они используются для повышения и понижения напряжения.

Рисунок 7 — блок схема релейного стабилизатора Рисунок 7 — блок схема релейного стабилизатора

Трёхфазные автотрансформаторы нашли применение в сетях высокого напряжения для связи сетей с «соседними» напряжениями — 110 и 220, 220 и 500 кВ.

Для проведения испытаний, а также настройки электрооборудования используются лабораторные автотрансформаторы – ЛАТРы. Это автотрансформаторы, в которых вместо отвода от обмотки для подключения нагрузки используется скользящий контакт, на рисунке 8 он обведён зелёным цветом, типа токосъёмной щётки. Изменяя положение скользящего контакта, вы подключаете нагрузку к разным виткам обмотки, другими словами – вы можете регулировать напряжение.

При этом с помощью большинства ЛАТРов можно как понижать, так и повышать напряжение. Кстати ЛАТР – это основа электромеханических, или, как их ещё называют, сервоприводных стабилизаторов напряжения.

Рисунок 8 — ЛАТР: а) внешний вид, б) внутреннее устройство (красным выделен скользящий контакт, к которому подключается нагрузка) Рисунок 8 — ЛАТР: а) внешний вид, б) внутреннее устройство (красным выделен скользящий контакт, к которому подключается нагрузка)

При одинаковой мощности преимущества автотрансформаторов перед трансформаторами заключаются в пониженном расходе меди и электротехнической стали для сердечника. При этом КПД автотрансформаторов достигает 99,7%. Но преимущества тем больше выражены, чем больше Sэ, и меньше расчётная часть Sрасч проходной мощности, то есть при низких коэффициентах трансформации. И все преимущества исчезают при больших коэффициентах трансформации.

Применение автотрансформаторов для преобразования в сетях высокого напряжения улучшает КПД энергосистем, снижает стоимость передачи энергии, но приводит к увеличению токов короткого замыкания.

Кроме этого, у автотрансформаторов есть серьёзный недостаток — гальваническая связь с питающей сетью. Это значит, что напряжение на вторичной обмотке может оказаться таким же, как на первичной. Поэтому с целью обеспечения электробезопасности использование автотрансформаторов для питания переносных светильников сверхнизкого напряжения запрещается (ПТЭЭП п.2.12.6 и ряд других документов), а также для питания другого оборудования, на котором работают люди. По этой же причине нельзя использовать автотрансформаторы в качестве силовых для понижения 6-10 кВ до 0,4 кВ.

Из-за наличия электрической связи между обмотками вытекает ещё один недостаток – необходимо выполнять изоляции обеих обмоток на большее напряжение, по сравнению с обычными трансформаторами.

1. Изменится ли соотношение между напряжениями на клеммах первичной и вторичной катушек трансформатора, если железный сердечник заменить медным
2. Ток во вторичной катушке трансформатора зависит от сопротивления подключенных приборов. Изменится ли в связи с этим ток в первичной катушке, и если изменится, то как это происходит.
3. Почему ненагруженный трансформатор использует очень мало энергии?
4. Обмотки трансформатора изготовлены из проводов разной толщины. Почему?
5. Изменяется ли мощность тока при преобразовании его в трансформаторе?
Спасибо.

Лучший ответ

1. Коэффициент трансформации зависит только от соотношения витков - это для идеального трансформатора. В реальности, если заменить железо медью - сильно уменьшится индуктивность обмоток, возрастут токи холостого хода, потери. Поэтому и соотношение напряжений может уменьшиться - за счет потерь. А вообще - и сгореть этот трансформатор с медью может, если не уследить - от перегрева.
2. Конечно. Если ток во вторичной обмотке меняется, значит с нее снимается какая-то мощность, энергия. Это энергия поступает с первичной обмотки. Больше ток вторичной - больше энергопотребление - больше ток и в первичной обмотке.
3. Если трансформатор рассчитан и изготовлен правильно, на холостом ходу индуктивное сопротивление первичной обмотки достаточно велико, ток холостого хода очень мал, соответственно, энергопотребление мало. Когда подключена нагрузка - сопротивление обмотки падает из-за индуктивной связи.
4. Разная толщина проводов обмоток, поскольку различные по величине токи протекают через них. Если трансформатор сетевой понижающий, в первичной обмотке напряжение больше, ток меньше - толщина провода меньше. Во вторичной - напряжение меньше, ток больше - провод должен быть толще. А максимально допустимая сила тока через проводник ограничивается его сечением - с учетом материала проводника и возможностью теплоотвода.
5. Для идеального трансформатора мощность на выходе равна мощности на входе. В реальном есть потери, поэтому на выходе мощность меньше на величину потерь. Закон сохранения энергии в основе, трансформатор - пассивное устройство с этой точки зрения.

Почему в трансформаторе разные обмотки? в учебнике этого нет

12v, подаваемое на выпрямитель, имеет в соответствующее число раз меньше витков, зато сечение провода довольно большое - ведь через нее передаётся почти вся потребляемая прибором мощность, а напряжение мало. (Мощность равна произведению тока и напряжения - это в учебнике есть) . А еще может быть, например, отдельная вторичная обмотка, питающая одну только лампочку (указывающую, что прибор включен) - и напряжение мало (обычно 6,3 вольта) , и ток мал.

Пипец, в учебнике нет, а на практике есть. Мехаьботы поработят биомассу.
Может нужно хоть ОТКРЫТЬ учебник?

Почему в трансформаторе на обоих обмотках мощность тока одинаковый?

Ответ

ответ:Не равность напряжений по фазам, не качественная сборка, неравное количество пластин в кернах, короче много чего может влиять на это.

Ответ

Ответ разместил: Гость

1)t=30sec v1=10 m/s v2=55 m/c найти: а-? решение: а=v1-v2/t=10-55/30=-1,5m/s2 ответ: а=-1,5m/s2 2)v1=20m/s v2=40m/s a=2m/s2 найти: t-? решение: a=v1-v2/t=> t=v1-v2/a=20-40/2=10cек. ответ: t=10сек.

Ответ

Ответ разместил: Гость

1)дано δt=39 m=80 кг с=460 дж/кг с найти q-? решение q=cmδt q=460*80*39=1 435 200 дж=1 435,2 кдж 2)дано кпд=30%=0,3 а пол=6 кдж=6 000 дж найти q сгор-? решение q=a/η q=6 000/0.3=20 000 дж

Ответ

Ответ разместил: Гость

Плотность * объем * ускорение свободного падения * высоту= мощность*время (в секундах) ответ 1500 м^3держи)



Другие вопросы по Физике

Предмет

Физика, 01.03.2019 10:20, Angel4892

Трамвайный вагон массой 15 т движется по выпуклому мосту радиусом кривизны 50м опредилите скорость трамвая если его вес на середине моста равен 102 кн

Предмет

Физика, 10.03.2019 06:40, 5555Анастасия5555

На поверхность вольфрама падает излучение с длиной волны 220 нм. определить максимальную скорость вылетающего из него электронов, если поверхнностный скачок потенциала для вольфрама равен 4,56 в

Предмет

Физика, 09.03.2019 23:44, СЕРГЕЙ2288822

Знайти кут відхилення променя скляною призмою, заломлений кут якої 3° ,якщо кут падіння променя на передню грань призми рівне нулю.

Предмет

Физика, 13.03.2019 20:20, ayazhan10yearsold

Можно ли назвать движение по окружности с постоянным ускорением равноускоренным? почему?

Предмет

Физика, 14.03.2019 13:50, Voight

За какое время автомобиль, двигаясь из состояния покоя с ускорением 0,6м/с^2 пройдет 30 м

Предмет

Физика, 15.03.2019 12:20, oznobiseva2006

Мотоциклист при торможении с ускорением 0.4 м/с2 останавливается через 10с после начала торможения. какую скорость имел мотоциклист в момент начала торможения?

Знаешь правильный ответ?

Почему в трансформаторе на обоих обмотках мощность тока одинаковый.

Вопросы по предметам

Категория

Химия, 19.09.2021 01:49

Категория

Физика, 19.09.2021 01:49

Категория

Английский язык, 19.09.2021 01:49

Категория

История, 19.09.2021 01:49

Категория

Беларуская мова, 19.09.2021 01:49

Категория

Информатика, 19.09.2021 01:49

Категория

Английский язык, 19.09.2021 01:49

Категория

Физика, 19.09.2021 01:49

Категория

История, 19.09.2021 01:49

Категория

Математика, 19.09.2021 01:48


Математика


Литература



Русский язык



Английский язык





Другие предметы



Обществознание


Окружающий мир



Українська мова


Информатика


Українська література


Қазақ тiлi





Беларуская мова


Французский язык


Немецкий язык




Психология

Больше предметов

Вопросов на сайте - 18250717

Мгновенный доступ к ответу
в нашем приложении

app

Будь умнее, скачай сейчас!

.

Ваш вопрос

Слишком короткий вопрос

Неверный логин или пароль

Восстановление пароля

Новый пароль отправлен на почту

Задайте свой вопрос эксперту

Ваш вопрос слишком короток

Вопрос отправлен эксперту. Вы получите ответ на почту.

Как же все таки работает трансформатор? Или немного о мифах и парадоксах.

Если кратко, автор той статьи утверждал, что магнитный поток не принимает участия в передаче энергии через трансформатор, поскольку теория говорит, что он постоянен. Общий магнитный поток в трансформаторе, идеальном, действительно не зависит от тока нагрузки. В реальном трансформаторе общий магнитный поток имеет некоторую зависимость от тока нагрузки. Поэтому говорят, что он почти не зависит. Тем не менее, магнитный поток принимает самое непосредственного участие в работе трансформатора.

О том, как работает трансформатор, написано много статей. Но чаще всего трансформатор описывается с точки зрения электротехники. Я же опишу его работу с точки зрения и электротехники, и физики. Начнем с самого начала, хоть оно и кажется элементарным.

Электрический ток в направленное движение заряженных частиц. Это могут быть, например, электроны или ионы. А движение заряженных частиц порождает магнитное поле. Магнитное поле характеризуется двумя величинами, вектором напряженности магнитного поля Н и вектором магнитной индукции В. Эти величины связаны между собой

J это магнитный момент, или вектор намагниченности среды в данной точке Мы не будем принимать во внимание какие либо внешние магнитные поля и эффекты, поэтому J=0. μ это относительная магнитная проницаемость среды, а μ0 это магнитная постоянная. Для вакуума μ=1. Если μ не зависит от напряженности магнитного поля, то такую среду называют изотропной. Мы будем рассматривать именно такую среду, а про анизотропность поговорим позднее. Число в скобках это номер формулы, что бы было удобнее ссылаться на них в тексте.

Теперь переходим к рассмотрению катушки с током. Начнем с одного витка, или контура. Текущий по контуру ϒ электрический ток создает в каждой точке пространства r0 магнитное поле с индукцией (для вакуума)

Это закон Био-Савара-Лапласа. Здесь r это положение точек самого контура. Для примера, магнитная индукция поля катушки, длина которой намного больше ее диаметра, намотанная проводом, диаметр которого много меньше диаметра катушки, через которую течет постоянный ток хорошо известна и вовсе не столь устрашающая (с учетом магнитной проницаемости среды)

Обратите внимание на те условия, для которых эта формула применима. Именно эти ограничения позволяют формуле быть такой простой. Теперь введем понятие магнитного потока Ф, который является потоком вектора индукции В через через поверхность S.

При изменении магнитного потока, пронизывающего какой либо контур, в контуре наводится ЭДС. Эта ЭДС прямо пропорциональна скорости изменения потокосцепления контура ψ

Потокосцепление равно алгебраической сумме всех пронизывающих контур потоков. Если все витки обмотки w пронизываются потоком Ф, то ψ=wФ. Нужно отметить, что ψ это полное (результирующее) потокосцепление контура (обмотки). Оно создается не только внешним, по отношению к данному контуру потоком, но и собственным потоком пронизывающим контур при протекании по нему электрического тока.

Наведение ЭДС в контуре при изменении тока протекающего через этот контур называют самоиндукцией. Наведенную ЭДС называют ЭДС самоиндукции.

Формулу (4), с учетом того, что поверхность S у нас не изменяется, и заменив поток на потокосцепление, можно выразить как ψ=Li. Здесь L это коэффициент пропорциональности между ψ и i, который называют индуктивностью. Подставив это в формулу (5) получим

Следовательно, ЭДС самоиндукции в катушке пропорциональна скорости изменения тока в этой катушке. Если ток не меняется, то ЭДС самоиндукции равна 0. Минус означает, что ЭДС самоиндукции препятствует изменению тока в катушке.

Теперь возьмем вторую катушку и расположим ее так, что бы их магнитные потоки частично пересекались. Такие катушки называются магнитно связанными. Теперь у нас изменяющийся магнитный поток первой катушки, при изменении тока в ней, будет наводить ЭДС во второй. А изменяющийся магнитный поток второй катушки, при изменении тока в ней, будет наводить ЭДС в первой. Наведение ЭДС в каком либо контуре при изменении тока в другом контуре называют взаимоиндукцией. А наведенную ЭДС называют ЭДС взаимоиндукции.

Поток Ф1, создаваемый током первой катушки, частично замыкается (Ф11) не проходя через вторую, частично проходит через нее (Ф12). При этом Ф1=Ф11+Ф12. Аналогично для потока второй катушки Ф2=Ф22+Ф21. Полное потокосцепление катушек будет

Если поток взаимоиндукции для катушки направлен согласно потоку самоиндукции, то в формулах (7) ставят знак плюс. При встречном направлении, знак минус. При этом ψ21 пропорционально току i2, а ψ12 пропорционально току i1.

Коэффициенты пропорциональности численно равны друг другу М12=М21=М. Коэффициент М называют взаимной индуктивностью катушек. Полная ЭДС, индуцируемая в катушках будет суммой ЭДС самоиндукции и ЭДС взаимоиндукции.

Взаимная индуктивность М зависит только от взаимного расположения катушек, числа их витков, геометрических размеров и магнитной проницаемости среды.

Я назвал катушки магнитно связанными. Введем понятие коэффициента связи k

Коэффициент связи равен 1 только в том случае, когда весь поток создаваемый первой катушкой, сцепляется со второй, и наоборот.

Собственно говоря, две магнитно связанные катушки это и есть трансформатор. И мы получили все формулы, которые описывают его работу. А теперь рассмотрим частный случай использования трансформатора для передачи энергии из первичной цепи во вторичную. Да, это именно частный случай, но, обычно, трансформатор так и используется.

Мы рассматривали две катушки без сердечника, это так называемый воздушный трансформатор. Но большинство трансформаторов имеют сердечник. Мы, для упрощения, будем рассматривать сердечник магнитная проницаемость которого не зависит от напряженности магнитного поля. Фактически, в нашем случае, сердечник просто концентрирует магнитное поле внутри себя позволяя считать коэффициент связи, формула (10), равным 1.

К первой катушке, называемой первичной обмоткой, прикладывается напряжение u1, а вторичная обмотка (вторая катушка) подключается к нагрузке Z2 с, в общем случае, комплексным сопротивлением. Работа трансформатора описывается уже знакомыми нам формулами (9). При этом обмотки (катушки) включены встречно, то есть, в формулах будет стоять знак минус. Кроме того, вспомним второй закон Кирхгофа. Получим систему уравнений описывающих работу трансформатора

Приложенное к первичной обмотке напряжение вызывает в ней протекание тока i1, который вызывает сцепленный с ней поток Ф1 Этот поток индуцирует в ней ЭДС самоиндукции, а во вторичной обмотке ЭДС взаимоиндукции. ЭДС взаимоиндукции вторичной вызывает протекание в ней тока нагрузки i2. Протекающий по вторичной обмотке ток вызывает сцепленный с ней поток Ф2, который наводит в ней ЭДС самоиндукции, а в первичной обмотке ЭДС взаимоиндукции. Уравнения (11) отражают именно это. Суммарная ЭДС в каждой обмотке является алгебраической суммой ЭДС самоиндукции и ЭДС взаимоиндукции. То есть именно так, как мы ранее и видели. Однако, вместо двух потоков, Ф1 и Ф2, мы можем рассматривать суммарный поток, или общий, магнитный поток Ф равный алгебраической сумме потоков Ф1 и Ф2. С учетом их встречного направления Ф=Ф1-Ф2.

В трансформаторе работающем в установившемся режиме под нагрузкой ЭДС в обмотках индуцируются именно этим общим потоком.

Теперь посмотрим, что будет, если у нас изменится сопротивление нагрузки, например, уменьшится. При этом у нас увеличится ток i2, что вызовет увеличение магнитного потока Ф2 сцепленного с вторичной обмоткой. Это вызовет увеличение ЭДС взаимоиндукции для первичной обмотки, что приведет к увеличению тока i1 в первичной обмотке. Увеличение тока i1 в первичной обмотке вызовет увеличение сцепленного с ней потока Ф1. Если внимательно посмотреть на уравнения (11) и формулу (6), то будет видно, что увеличение потока Ф1 будет равно увеличению потока Ф2. То есть, общий поток у нас не изменится. Это одно из основных свойств трансформатора. Однако, обратите внимание, что не изменится именно общий, суммарный поток. Само изменение тока в цепи первичной обмотки было вызвано взаимоиндукцией, через изменение сцепленных с обмотками потоков. То есть, оба потока, и Ф1, и Ф2, увеличились, а вот их алгебраическая сумма осталась прежней. Нельзя считать, что общий поток это и есть сцепленный с каждой из обмоток поток, которые не меняются. Общий поток это лишь абстракция позволяющая описать установивший режим работы трансформатора, когда напряжение, подаваемое на первичную обмотку, когда неизменно сопротивление подключенной к вторичной обмотке нагрузки. То есть, только для случая постоянства протекающих по обмоткам токов. Это очень важный момент. И именно в этом допустил ошибку автор критикуемой мной статьи.

Чему же равен этот общий поток? Давайте рассмотрим работу трансформатора с не подключенной к вторичной обмотке нагрузке. Это называется режимом холостого хода. В этом случае вторичная обмотка не оказывает влияния на ток первичной обмотки, так как ток в ней отсутствует. Ток холостого хода первичной обмотки будет определяться формулой (6). Общий магнитный поток идеального трансформатора будет равен магнитному потоку холостого хода. И, для установившегося режима, не будет зависеть от тока нагрузки.

Многие не знают, но трансформатор работает именно так!

Трансформатор это одно из самых важных устройств для электрики и энергетики. Без него никакая дальняя передача электроэнергии была бы невозможна. Но как работает это замечательное устройство? Вы удивитесь, какой простой , но, в то же время, чудесный принцип лежит в основе его работы! Интересно? Тогда читайте дальше !

Превращения электричества: научная магия

Электрическая энергия может существовать в двух видах - электрического поля и магнитного . Поле - это невидимая сила , способная вызывать в предметах самые разные процессы. Например, поле гравитации притягивает ваш бутерброд к полу, когда вы, по неловкости, выпускаете его из рук. А электрическое и магнитное поле действуют на металлы . Когда магнитное поле пересекает металл, причём "в движении", в металле возникает упорядоченное движение зарядов, то есть электрический ток .

Действие магнитного поля на проводник из металла Действие магнитного поля на проводник из металла

Конечно, если убрать магнитное поле, заряды снова "разбредутся" и ток сойдёт на нет. Но при повторении этого процесса раз за разом, по кругу, на концах металлического предмета появится переменное напряжение - так работает генератор .

Трансформатор - превращатель: работаем с магнитным полем

Хорошо - скажете вы - но при чём тут трансформатор ? Да при всём! Что представляет собой любой трансформатор? Две катушки с проводом, надетые на железную рамку . И да - они не соединены друг с другом - вообще никак. Между ними пустота - но не совсем.

Принцип работы трансформатора Принцип работы трансформатора

Если подать на одну из катушек переменное напряжение , она породит магнитное поле - тоже переменное. Через железную рамку, которая вбирает в себя это поле, оно попадает на вторую катушку. А что происходит, когда через провод проходит движущееся магнитное поле? Правильно - в нём возникает ток .

Если на обоих катушках одинаковое количество оборотов (витков) провода, то и напряжение на выходе будет равно напряжению на входе, потому что магнитное поле порождается и впитывается одинаковым числом "рамок" из провода.

Повышающий трансформатор для линии электропередачи Повышающий трансформатор для линии электропередачи

Но при разном числе витков, напряжение изменится . Если на второй катушке витков в два раза больше, чем на первой - напряжение повысится в два раза. Это применяется в линиях электропередачи - при высоком напряжении сила тока становится небольшой и потери на тепло в проводах стремятся к нулю. Это повышающий трансформатор .

Понижающие трансформаторы в дорогом усилителе звука Понижающие трансформаторы в дорогом усилителе звука

А понижающий трансформатор, то есть тот, в котором вторая катушка имеет меньше витков, чем первая, используется в бытовой технике и так называемых подстанциях - домиках, внутри которых очень высокое напряжение, пришедшее издалека, становится нормальным - 380/220 Вольт и подаётся в наши дома.

Заключение

Трансформатор

Трансформатор напряжения

Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

трансформатор напряжения

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

трансформатор в разборе

а с другой катушки два красных провода

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

трансформатор однофазный

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

ПЭТВ-2

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

трансформатор напряжения

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

шильдик трансформатора

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

как работает трансформатор

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

Главная формула трансформатора выглядит так.

формула трансформатора

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

закон сохранения мощности

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

однофазный трансформатор

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

однофазный трансформатор обозначение на схеме

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

вторичные обмотки трансформатора

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

трехфазный трансформатор

На схемах трехфазные трансформаторы обозначаются вот так:

виды соединений обмоток трехфазного трансформатора

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Повышающий трансформатор

Это трансформатор, который повышает напряжение. Допустим, на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Итак, имеем простой однофазный понижающий трансформатор.

трансформатор напряжения

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

работа трансформатора на холостом ходу

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

работа трансформатора на нагрузку

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

потребление тока лампочкой накаливания

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток

Хотя обмотки прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток

При обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

Читайте также: