Напряжение между двумя точками на поверхности земли на расстоянии 1 м в поле растекания тока

Обновлено: 27.04.2024

Общий характер растекания тока в земле. Напряжение шага и напряжение прикосновения. Способы выравнивания потенциалов.

Поэтому из зоны растекания токов замыкания человек должен выходить так, чтобы его шаги были небольшими, в пределах 25 — 30 см, тогда он будет подвергнут наименьшему напряжению и избежит поражения электрическим током. [3]

Поэтому из зоны растекания токов замыкания человек должен выходить так, чтобы его шаги были небольшими, в пределах 25 — 30 см, тогда он будет подвергнут наименьшему напряжению и избежит поражения электри — ческим током. [4]

Потенциалы земли в зоне растекания тока определяются характером изменения напряженности электричес-кого поля, определяемой в свою очередь конструкцией заземляющих устройств и параметрами электрической структуры земли. Очевидно, что потенциал земли при прочих равных условиях убывает по мере удаления от заземлителей. [5]

При этом выходить из зоны растекания тока рекомендуется, перемещаясь прыжками на одной ноге и располагая ступню вдоль линии равного потенциала. [6]

Если человек окажется в зоне растекания тока и будет стоять а поверхности земли, имеющей разные потенциалы в местах, где расположены ступни ног, то на длине шага возникнет напряжение шага, соответствующее разности этих потенциалов. Через тело человека будет проходить электрический ток, опасность которого зависит от его значения. Чтобы исключить попадание человека под Напряжение шага, не следует приближаться к месту повреждения на ( расстояние менее 4 — 5 м в закрытых помещениях и 8 — 10 м яа открытых подстанциях. Только в крайнем случае для ликвидации аварии или для оказания первой помощи пострадавшему можно приблизиться к месту повреждения на меньшее рассто-яние — Лри этом следует использовать защитные средства: боты, галоши, коврики, деревянные лестницы, доски или другие плохо проводящие электрический ток предметы. [7]

Что такое шаговое напряжение

Шаговое напряжение – это разность потенциалов (напряжения) на участке в токовой цепи. Показатель шагового напряжения зависит от силы тока и удельного сопротивления почвы. Он представляет собой расстояние (разность потенциалов) между двух ног человека. Величина шагового напряжения используется при создании зануления и заземления, измерении опасности в местах аварий. На значение влияет форма кривой напряжения.

Возле упавшего провода находящегося под напряжением, возникает область рассеивания электричества. На расстоянии от 20 метров до места падения провода, напряжение может не ощущаться, плотность тока становится минимальной.

Опасное для жизни шаговое напряжение наблюдается в местах падения электрического провода высокой мощности на голый грунт. К этому объекту запрещается приближаться на расстояния менее 8 метров. Угроза присутствует и на расстоянии одного метра от заземлителя (металлоконструкции труб, забор из арматуры). Человек рискует, стоя в месте растекания шагового напряжения прикоснуться к металлокострукциям (естественному заземлителю). Опасность кроется в поражении нервной системы – возникают судороги и падение человека на землю.

Действие шагового напряжения прекращается, но внутри тела возникает новый путь электричества. Ток протекает от рук к ногам, в результате возникает реальная угроза смерти. При попадании в такую ситуацию человек должен выходить с опасной зоны гусиным шагом. Минимальное расстояние между ногами – это залог безопасности и благополучного выхода.

Угроза исчезает через 20 метров от источника напряжения высокого потенциала. Категорически запрещается выпрыгивать из области действия высоких потенциалов. При падении на конечности уровень шагового напряжения возрастет, после чего человека ждет смерть.

РАСТЕКАНИЕ ТОКА ЗАМЫКАНИЯ НА ЗЕМЛЮ

РАСТЕКАНИЕ ТОКА ЗАМЫКАНИЯ НА ЗЕМЛЮ

2.1 Общие сведения

Опасность поражения электрическим током создается напряжением прикосновения или напряжением шага.

Напряжение прикосновения

. Это напряжение между двумя точками цепи тока, которых одновременно касается человек.

Напряжение прикосновения приложено только к телу человека и оно определяется как падение напряжения в теле человека по (2.1)

где Ih – ток через человека, А; Rh – сопротивление человека, Ом.

При однофазном прикосновении, напряжение прикосновения зависит от напряжения на корпусе относительно земли. При двухфазном прикосновении — напряжение прикосновения равно рабочему напряжению сети.

При протекании тока по пути тока нога-нога в зоне вблизи заземлителя создается напряжение шага.

Напряжение шага

или шаговое напряжение – это напряжение между двумя точками, находящимися на расстоянии шага, на которых одновременно стоит человек.

Ток через человека также зависит от тока замыкания на землю. Для расчета напряжений прикосновения и напряжения шага рассмотрим физические основы их возникновения. Их возникновение объясняется природой растекания тока замыкания на землю.

2.2 Природа растекания тока замыкания на землю

Замыкание на землю может произойти при контакте токоведущей части с заземленным корпусом, пробое изоляции высоковольтного оборудования, падении оборванного провода и ряде других причин.

Заземленный корпус имеет соединение с заземлителем заземляющего устройства. При замыкании на корпус ток проходит через заземлитель на землю, рисунок 2.1. Происходит стекание тока заземления в грунт и вокруг заземлителя создается поле растекания тока. Параметры поля растекания зависят от разных условий. К ним можно отнести форму и размеры заземлителя, состав грунта, влажность грунта, время года и так далее.

Для определения параметров принимаются некоторые допущения и упрощения, с тем чтобы получить общую картину растекания тока.

В качестве заземлителя принимается одиночный заземлитель полусферической формы. Грунт считается однородным с удельным сопротивлением r. Линии тока растекания направлены по радиусам от центра полусферического заземлителя и перпендикулярны его поверхности.

Рисунок 2.1 — Растекание тока замыкания на землю

Если грунт однородный, то ток замыкания равномерно распределяется по его поверхности, с определенной плотностью тока d.

Вокруг заземлителя образуются концентрические сферы. Точкам каждой сферы соответствует одна и та же плотность тока и напряженность. Такая поверхность называется эквипотенциальной

поверхностью, рисунок 2.1.

Плотность тока по поверхности грунта с удалением от заземлителя снижается, что видно из формулы (2.2)

где – расстояние от центра заземлителя до любой точки «А» поверхности грунта, м; IЗ — ток замыкания, А.

Чем дальше от заземлителя, тем ниже плотность тока. На большом удалении плотность тока практически равна нулю.

Каждая точка грунта имея определенную плотность тока, обладает электрическим потенциалом jА=UА.

Для определения потенциала в точке А, выделим элементарный слой грунта толщиной на расстоянии от заземлителя, разность потенциалов или падение напряжения в этом слое равно (2.3)

где Е – напряженность электрического поля.

Напряженность электрического тока в точке А определится из (2.4)

Потенциал точки jА=UА равен суммарному падению напряжения от точки А до бесконечно удаленной точки с нулевым потенциалом (2.5). Нулевым потенциалом обладают все точки, плотность тока в которых равна нулю. Подставив в (2.5) формулы (2.2) и (2.4) получим выражение (2.6) для расчета потенциала точки А.

Чтобы определить общую зависимость изменения потенциалов области растекания тока замыкания, учитывается, что и (2.6) примет вид (2.7)

Это гиперболическая зависимость распределения потенциалов в зоне растекания сферического заземлителя, рисунок 2.2. По мере удаления рассматриваемой точки от заземлителя, потенциал снижается и практически достигает нуля. Если расположить исследуемую точку на поверхности заземлителя с радиусом , потенциал будет наибольшим, равным по (2.8)

L_r_5

ЛАБОРАТОРНАЯ РАБОТА №5

ИССЛЕДОВАНИЕ РАСТЕКАНИЯ ТОКА В ЗЕМЛЕ. НАПРЯЖЕНИЕ ПРИКОСНОВЕНИЯ И ШАГА

Исследовать закон распределения потенциала на поверхности земли при стекании тока с заземлителя; определить величины напряжения прикосновения, шага и выявить опасные зоны.

Растекание тока в грунте может произойти при замыкании находящихся под напряжением частей электроустановок и проводов на землю.

Стеканием тока в землю сопровождается возникновением на заземлителе и окружающей его поверхности земли потенциала. в зависимости от формы заземлителя может быть достаточно сложным. Наиболее просто оценить закон распределения потенциала на поверхности земли, если рассмотреть случай стекания тока в грунт через одиночный заземлитель полусферической формы при повреждении изоляции и пробое фазы на корпус заземлительного электрооборудования (рисунок 1).

Плотность тока в точке А на поверхности земли на расстоянии х от заземления выразится зависимостью:

где /3 — ток, стекающий с заземлителя в грунт; 8=2лх 2 -площадь поверхности полусферы радиусом х (сечение слоя земли по которому проходит ток).

Падение напряжения в элементарном слое грунта толщиной dx

можно выразить через напряженность поля E и толщину этого слоя:

Напряженность поля определяется законом Ома в дифференциальной форме:

Потенциал точки А равен падению напряжения от точки А до бесконечно удаленной точки с нулевым потенциалом. Поэтому


Таким образом, потенциал на поверхности грунта вокруг данного типа заземлителя распределяется по закону гиперболы, уменьшаясь от своего максимального значения φ3 до нуля по мере удаления от заземлителя (рисунок 1).

Первая помощь при поражении током

Постоянно думай о собственной безопасности!

  1. Начать оказание первой помощи необходимо немедленно. Первым делом нужно обязательно освободить пострадавшего от действия электрического тока.
  2. Затем сразу же вызвать скорую помощь!
  3. При отсутствии дыхания и сердцебиения приступить к искусственному дыханию и массажу сердца.
  4. По возможности наложить стерильную повязку на место электрического ожога.
  5. Обеспечить покой пострадавшему.

Что нельзя делать с пострадавшим и почему:

  • Закапывать в землю (будет затруднено дыхание, что повлияет на работу сердца)
  • Обливать водой (происходит охлаждение организма)
  • Загрязнять поверхность ожога (начинает развиваться столбняк или гангрена)

Расчет шагового напряжения

Для расчета шагового напряжения необходимо знать особенности распределения тока в месте аварии. Электричество растекается в толще земли и кругами на ее поверхности. Для нахождения значения учитывается величина сопротивления грунта. Напряжение зависит от ряда факторов:

  • расстояние между точками контактов;
  • напряжение воздушной линии;
  • мощность;
  • состояние и удельное сопротивление грунта;
  • состав почвы в опасной зоне.

При расчете шагового напряжения применяются средние величины. Сначала определяется короткое замыкание по формуле:

ICS=UPHASE/(R0+RKONT)

где UPHASE – это напряжение фазы;

RKONT и R0- величина сопротивления для электрического контура (заземления и растекания тока вместе аварии);

ICS – это ток короткого замыкания в сети.

Длину шага принято считать за 0,8 метра. Для нахождения шагового напряжения применяют соотношение:

Где, р – сопротивление поверхности земли удельное;

х- расстояния от оголенного контура;

а – это длина шага.

В промышленных условиях расчетом показателей занимаются отдельные специалисты. Они периодически проводят замеры и находят средние значения для подведения итогов об уровне безопасности.

Выход из зоны шагового напряжения

При выходе из зоны шагового напряжения стоит придерживаться осторожности. Нельзя допускать падения на поверхность земли – такая ситуация может привести к летальному исходу. На грунте влияние электричества повышается, у человека возникают судороги. При отсутствии своевременной помощи, поражение нервной системы приводит к параличу. В этот момент человек испытывает сильную боль и не может шевелить конечностями.

Выбор способа выхода из опасной зоны зависит от конкретной ситуации. После идентификации проблемы необходимо быстро сомкнуть обе ноги вместе, что снизит разницу электрических потенциалов. При передвижении нужно стараться не отрывать нижние конечности от земли.

Помощь могут оказать сухие доски, оказавшиеся по пути выхода с опасной территории. Сухая древесина – это отличный диэлектрик, поэтому смело ступайте на нее во время движения. По пути избегайте кирпичных и железобетонных конструкций.


В некоторых ситуациях целесообразно перемещаться на одной ноге. Выбирать этот способ надо только при полной уверенности в адекватности своего состояния. Напуганный человек может потерять ориентацию и упасть на поверхность земли, что приведет к летальному исходу. Самый надежный способ – это перемещение «гусиным шагом». Не делайте резких движений, не ускоряйте шаг и не бегите. Действуйте спокойно и принимайте взвешенные решения.

При выходе стоит исключить вариант с шагом по спирали и в направлении другого кабеля. При соблюдении правил, у человека есть большие шансы покинуть опасную зону без последствий для здоровья, такие ситуации встречаются в 80% случаев.

Тема 4. Заземление и защитные меры электробезопасности. Молниезащита.

Способы выполнения заземления. Изоляция электроустановок. Основные меры по обеспечению электробезопасности. Молниезащита.

1. 1Начало формы

1.Что в соответствии с Правилами устройства электроустановок входит в понятие "Прямое прикосновение"?

· Электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции

· Электрический контакт людей или животных с токоведущими частями, находящимися под напряжением

· Опасное для жизни прикосновение к токоведущим частям, находящимся под напряжением

2.Что в соответствии с Правилами устройства электроустановок входит в понятие "Косвенное прикосновение"?

· Электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции

· Электрический контакт людей или животных с токоведущими частями, находящимися под напряжением

· Опасное для жизни прикосновение к токоведущим частям, находящимся под напряжением

3.Что понимается под напряжением прикосновения?

· Напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного

· Напряжение между двумя точками земли, обусловленное растеканием тока замыкания на землю, при одновременном касании их ногами человека

· Напряжение, возникающее при протекании тока по проводнику между двумя точками

· Напряжение между двумя точками на поверхности земли на расстоянии 1 м одна от другой, которое принимается равным длине шага человека

· Напряжение между двумя точками электрической цепи с разным потенциалом

4.Что понимается под напряжением шага?

· Напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного

· Напряжение между двумя точками земли, обусловленное растеканием тока замыкания на землю, при одновременном касании их ногами человека

· Напряжение, возникающее при протекании тока по проводнику между двумя точками

· Напряжение между двумя точками на поверхности земли на расстоянии 1 м одна от другой, которое принимается равным длине шага человека

· Напряжение между двумя точками электрической цепи с разным потенциалом

5.Что называется защитным заземлением?

· Преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством

· Заземление, выполняемое в целях электробезопасности

· Заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности)

6.Что называется рабочим заземлением?

· Преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством

· Заземление, выполняемое в целях электробезопасности

· Заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности)

7.Что называется заземлителем?

· Проводящая часть, не являющаяся частью электроустановки

· Проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду

· Сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления

8.Какие защитные меры применяются для защиты людей от поражения электрическим током при косвенном прикосновении в случае повреждения изоляции?

· Защитное заземление

· Ограждения и оболочки

· Основная изоляция токоведущих частей

· Любая из перечисленных мер в отдельности или в сочетании

9.В каких случаях из перечисленных защита от прямого прикосновения не требуется?

· Если электрооборудование имеет наибольшее рабочее напряжение во всех помещениях 40 В переменного или 70 В постоянного тока

· Если электрооборудование находится в зоне системы уравнивания потенциалов, а наибольшее рабочее напряжение не превышает 6 В переменного или 15 В постоянного тока в помещениях без повышенной опасности и 5 В переменного или 10 В постоянного тока во всех случаях

· Если электрооборудование находится в зоне системы уравнивания потенциалов, а наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока во всех случаях

· Если электрооборудование находится в зоне системы уравнивания потенциалов, а наибольшее рабочее напряжение во всех помещениях превышает 50 В переменного и 120 В постоянного тока

10.Когда следует выполнять защиту при косвенном прикосновении?

· Во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока

· Во всех случаях, если напряжение в электроустановке превышает 24 В переменного и 90 В постоянного тока

· Во всех случаях, если напряжение в электроустановке превышает 12 В переменного и 60 В постоянного тока

· Во всех случаях, если напряжение в электроустановке превышает 127 В переменного и 400 В постоянного тока

11.Что может быть использовано в качестве естественных заземлителей?

· Металлические трубы водопровода, проложенные в земле

· Трубопроводы центрального отопления

· Любые из перечисленных трубопроводов

12.Из какого материала должны изготавливаться искусственные заземлители?

· Из черной или оцинкованной стали или меди

· Из меди и алюминия

· Из стали, меди и алюминия

· Из оцинкованной стали и алюминия

13.Какой цвет окраски должны иметь искусственные заземлители?

· Искусственные заземлители не должны иметь окраски

· Черный или темно-синий

· Серый или светло-зеленый

14.В какой цвет должны быть окрашены открыто проложенные заземляющие проводники?

· В коричневый цвет

· В черный цвет

15.Какой знак должен быть нанесен у мест ввода заземляющих проводников в здания?


· правильный ответ

16.Какие шины не допускается применять в качестве главной заземляющей шины?

· Алюминиевые шины

17.Каким образом производится присоединение заземляющих проводников к заземлителю и заземляющим конструкциям?

· Сваркой

· Любым подручным способом

18.С какой периодичностью следует проводить визуальный осмотр видимой части заземляющего устройства?

· Не реже одного раза в месяц в соответствии с графиком

· Не реже одного раза в три месяца в соответствии с графиком

· Не реже одного раза в шесть месяцев в соответствии с графиком

· Не реже одного раза в девять месяцев в соответствии с графиком

· Не реже одного раза в год в соответствии с графиком

19.С какой периодичностью следует проводить осмотр заземляющих устройств с выборочным вскрытием грунта?

· Не реже одного раза в двенадцать лет в соответствии с графиком

· Не реже одного раза в три года в соответствии с графиком

· Не реже одного раза в шесть лет в соответствии с графиком

· Не реже одного раза в девять лет в соответствии с графиком

· Не реже одного раза в год в соответствии с графиком

20.В каком случае элемент заземлителя должен быть заменен?

· Если разрушено 20-30 % его сечения

· Если разрушено 30-40 % его сечения

· Если разрушено 35-50 % его сечения

· Если разрушено более 50 % его сечения

21.Можно ли использовать землю в качестве фазного или нулевого провода в электроустановках до 1000 В?

· Разрешается без ограничений

· ПТЭЭП запрещается

· Разрешается только в единичных случаях с разрешения органов энергонадзора

22.Какие объекты относятся к специальным объектам по степени опасности поражения молнией?

· Жилые и административные строения

· Объекты, представляющие опасность для непосредственного окружения, социальной и физической окружающей среды

· Здания высотой не более 60 м, предназначенные для торговли и промышленного производства

23.Какие объекты относятся к обычным объектам по степени опасности поражения молнией?

· Жилые и административные строения высотой более 60 м

· Объекты, представляющие опасность для непосредственного окружения, социальной и физической окружающей среды

· Здания высотой не более 60 м, предназначенные для торговли и промышленного производства, а также жилые и административные строения

· Все перечисленные объекты

24.Какие из перечисленных конструктивных элементов зданий и сооружений могут рассматриваться как естественные молниеприемники?

· Только металлические конструкции крыши (фермы, соединенная между собой стальная арматура)

· Только металлические элементы типа водосточных труб, если их сечение не меньше значений, предписанных для обычных молниеприемников

· Только технологические металлические трубы и резервуары, выполненные из металла толщиной не менее 2,5 мм и проплавление или прожог этого металла не приведет к опасным или недопустимым последствиям

· Любые из перечисленных конструктивных элементов

25.Какие из перечисленных конструктивных элементов зданий и сооружений могут рассматриваться как естественные молниеприемники?

· Только металлические конструкции крыши (фермы, соединенная между собой стальная арматура)

· Только металлические элементы типа водосточных труб, если их сечение не меньше значений, предписанных для обычных молниеприемников

· Только технологические металлические трубы и резервуары, выполненные из металла толщиной не менее 2,5 мм и проплавление или прожог этого металла не приведет к опасным или недопустимым последствиям

Растекание тока в земле

Замыкание на землю может произойти из-за контакта ме­жду токоведущими частями и заземленным корпусом при по­вреждении электрической изоляции оборудования, падении на землю оборванного провода и др. В этих случаях ток сте­кает в землю через электрод, который контактирует с грун­том. Металлический проводник (электрод), погруженный в грунт, называется заземлителем.

Ток, стекая с заземлителя в землю, распределяется по значительному ее объему. Пространство вокруг заземлителя, где потенциалы не равны нулю, называется полем растекания тока. Если человек находится в поле растекания тока, то ток проходит через его ноги.

Напряжение между двумя точками электрической цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек, называется напряжени­ем шага или шаговым напряжением.

Закон распределения потенциалов в электрическом поле заземлителя описывается сложной зависимостью, определяе­мой размерами, формой заземлителя и электрическими свой­ствами грунта.

Для выявления закона распределения потенциалов грун­та в поле растекания тока сделаем следующее допущение: ток IЗ стекает в землю через одиночный полусферический заземлитель радиуса r0 погруженный в однородный изо­тропный грунт с удельным электрическим сопротивлением r (рис. 1).

Линии растекающегося тока направлены по радиусам от заземлителя, как от центра, а сечения земли как проводника представляют собой полусферы с радиусами r<r1<r2<. <rn.


Рис. 1 Растекание тока в грунте с полусферического

Поверхности этих сечений соответственно равны:

Ток распределяется по этим поверхностям равномерно, так как грунт однородный и изотропный. Плотность тока d на поверхности грунта в точке А, находящейся на расстоя­нии x от центра заземлителя, определяется как отношение то­ка замыкания на землю IЗ к площади поверхности полусфе­ры радиусом х:

Для определения потенциала точки А, лежащей на по­верхности радиусом X. выделим элементарный слой толщи­ной dx (см. рис. 1). Падение напряжения в этом слое:

гдеЕ = dr – напряженность электрического поля.

Потенциал точки А или напряжение этой точки относи­тельно земли равен суммарному падению напряжения от точки А до бесконечно удаленной точки с нулевым потенци­алом:

Подставив в выражение (3) соответствующие значения из выражений (1) и (2), а также значение Е. получим

Проинтегрировав выражение (4) по х, получаем выражение для потенциала точки А, или напряжения этой точки отно­сительно земли, в следующем виде:

Так как , то (5) принимает вид:

Из полученного выражения видно, что по мере удаления от заземлителя потенциал точек снижается, и имеет место ги­перболическая зависимость потенциала точки от расстояния (рис. 2).

Рис. 2Кривые распределения потенциалов полусферического заземлителя

Потенциал заземлителя радиусом r0или напряжение заземлителя относительно земли:

Заземлитель обладает наибольшим потенциалом. Точки, лежащие на поверхности грунта, имеют тем меньший потен­циал, чем дальше они находятся от заземлителя. В пределе потенциал удаленных точек грунта стремится к нулю. Причи­на подобного распределения потенциалов кроется в своеоб­разной форме проводника (земли), сечение которого возрас­тает пропорционально второй степени радиуса полусферы (рис. 3).

Ток, стекая с заземлителя, растекается по земле, которая оказывает сопротивление протеканию тока. Сопротивление растеканию тока заземлителя определяется, как суммарное сопротивление грунта от заземлителя до точки с нулевым по­тенциалом. Для полусферического заземлителя, находящего­ся в однородном изотропном грунте, сопротивление растека­нию RРАС имеет вид:

Наибольшее сопротивление растеканию тока оказывают слои земли (грунта) лежащие вблизи заземлителя, так как ток протекает здесь по малому сечению. В этих точках име­ют место наибольшие падения напряжения.


Рис. 3Упрошенная модель проводника земли

По мере удале­ния от заземлителя сечение проводника (земли) увеличива­ется и сопротивление растеканию тока уменьшается, а сле­довательно, уменьшается и падение напряжения. На расстоя­нии 10¸20 м от заземлителя сечение проводника (земли) становится настолько большим, что земля практически не оказывает сопротивления проходящему току. Таким образом, потенциал точек грунта, находящихся на расстоянии 10¸20 м от одиночного полусферического заземлителя, практически равен нулю.




Шаговое напряжение определяется, как разность потенци­алов между точками, например А и Б (см. рис. 4).


Так как точка А удалена от заземлителя на расстояние r, то ее потенциал, исходя из (5) при полусферическом заземлителе получим в виде :

Точка Б находится от заземлителя на расстоянии r+a, т. е. точка Б отстоит от точки А на величину шага человека a. Потенциал точки Б:

Рис. 4Возникновение шагового

Наибольшее значение шаговое напряжение имеет вблизи заземлителя. По мере удаления от заземлителя шаговое на­пряжение уменьшается. Если ноги человека находятся на оди­наковом расстоянии от заземлителя, т. е. на линии равного потенциала (на эквипотенциали), то шаговое напряжение равно нулю. Пусть расстояние от заземлителя до эквипотенциали, на которой находится человек, равно r, тогда шаго­вое напряжение равно нулю.

Значение шагового напряжения зависит от размера шага. Уменьшение его приводит к снижению шагового напряжения. Шаговое напряжение зависит от напряжения заземлителя:

где – коэффициент напряжения шага, учитывающий форму потенциальной кривой.

Коэффициент напряжения шага bШ зависит от формы и конфигурации заземлителя и положения относительно зазем­лителя точки, в которой он определяется. Чем ближе к заземлителю, тем больше bШ и, следовательно, больше шаговое напряжение. Человек, находящийся вне поля растекания то­ка (на расстоянии 10–20 м от заземлителя), не попадает под действие шагового напряжения, так как bШ = 0. Как вид­но из выражения для определения коэффициента шага, его значение меньше единицы. Таким образом, шаговое напряже­ние составляет часть напряжения на заземлителе. Получен­ное выражение для определения bШ справедливо только для полусферического заземлителя.

Для другой формы заземлителей, а также для заземлителей, состоящих из нескольких электрически соединенных ме­жду собой электродов, распределение потенциалов определя­ется сложными зависимостями. Следовательно, и коэффици­ент напряжения шага в различных случаях определяется очень сложными выражениями. Для одиночного протяженного заземлителя длиной l >20 м bШ=0,14, а для заземлителя, состоящего из ряда стержней, соединен­ных полосой, bШ= 0,10.

Нахождение человека в поле растекания тока может при­вести к поражению, если шаговое напряжение UШпревыша­ет допустимое по условиям электробезопасности значение UДОП. Зона вокруг заземлителя, в которой UШ>UДОП, на­зывается опасной зоной. Радиус опасной зоны зависит от на­пряжения на заземлителе и удельного сопротивления грунта.


Рис. 5Кривые распределения потенциалов

Пусть заземлитель состоит из двух полусферических элек­тродов. Картина распределения потенциалов для такого заземлителя представлена на рис. 5. Поля растекания зазем­лителей накладываются друг на друга, и любая точка поверх­ности грунта между электродами имеет значительный потен­циал. Вследствие этого шаговое напряжение снижается.

Для снижения шаговых напряжений заземлители распо­лагают по контуру на небольшом расстоянии друг от друга, что приводит к выравниванию потенциалов за счет наложе­ния полей растекания. Иногда при выполнении контурного заземления внутри контура прокладывают горизонтальные полосы, которые дополнительно выравнивают потенциалы внутри контура (рис. 6).


Рис. 6Заземлитель с выравниванием потенциалов:

вид в плане (вверху); форма потенциальной кривой (внизу)

Контурное заземление обеспечивает безопасность работ в зоне заземления, так как шаговое на­пряжение UШ < UДОП, т. е. опасная зона отсутствует. Чтобы уменьшить шаговые напряжения за пределами контура, в грунте укладывают специальные металлические шины, соеди­ненные с заземлителем (см. рис. 7). При этом спад потенци­алов происходит по пологой кривой, и шаговые напряжения снижаются.

Все о шаговом напряжении


Обсудим причины его возникновения, риски, связанные с попаданием под воздействие шагового напряжения, расскажу как избежать поражения током и не только.

Эту информацию необходимо знать каждому!

Содержание статьи:

  • Что такое шаговое напряжение
  • Причины возникновения шагового напряжения
  • В чем заключается опасность
  • Зона шагового напряжения
  • Правила перемещения в зоне опасности
  • Расчет шагового напряжения
  • Выход из зоны шагового напряжения
  • Первая помощь при поражении током
  • Средства защиты

Что такое шаговое напряжение

Как часто вы видите ток, протекающий по проводам? Всем известно, что ток невидим. Увидеть его, значит столкнуться с аварийной ситуацией лицом к лицу.

Если оголенный провод падает на землю, такой реакции не происходит, но вокруг места касания этого провода будет напряжение. На расстоянии шага оно представляет большую опасность.

В этой и подобных ситуациях: разницу потенциалов между двумя точками электрической цепи тока, находящимися на расстоянии шага одна от другой, на которых одновременно стоит человек, называют шаговым напряжением или напряжением шага.

шаговое напряжение

Чтобы разобраться откуда возникает данное напряжение рассмотрим причины.

Причины возникновения шагового напряжения

По принципу проводимости электрического тока все материалы делятся на проводники и диэлектрики. Так, например, земля являет проводником, особенно в сырую погоду. Если при обрыве провода линии электропередачи, он касается земли, то там образуется опасная зона, в которой и возникает напряжение шага.

Подобная ситуация происходит, когда молния попадает в молниеотвод, который соединён с электроустановкой. В этом случае образуется контакт между токопроводящими элементами установки и землей, на которой образуется зона под напряжением.

Причиной для образования зоны опасного напряжения шага может послужить:

Все вышеперечисленные случаи представляют опасность для людей и животных.

В чем заключается опасность

Представьте ситуацию: на земле лежит оборванный провод и как может показаться на первый взгляд не представляет никаких признаков угрозы, а ведь он может быть под напряжением.

Попадая под воздействие электрического тока, человек пытается сделать шире шаг, а в этот момент разница потенциалов становится выше. В итоге непроизвольные судорожные сокращения мышц приводят к падению человека на землю.

При падении происходит увеличение расстояния между точками касания земли, что в свою очередь представляет повышенною опасность.

Когда мы говорим про оборванный провод, касающийся земли своим оголенным концом, то и не задумываемся какую опасность он может представлять. Чем выше напряжение поврежденной линии, тем более опасна зона действия этого напряжения.

Целые воздушные линии или кабельные системы не представляют опасности, но при аварийной ситуации природного или технического характера они представляют большую угрозу.

Например попадание молнии в молниеотвод, опору электропередач или просто в дерево, вызывает растекание электрического тока через проводники на землю. В этом месте и образуется опасная зона шагового напряжения.

Правило выживания гласит:

Во время грозы и молнии нужно подальше находиться от высоких деревьев, зданий и строений.

В сырую погоду вообще старайтесь не приближаться к открытым (неизолированным) электроприборам и технике. Помните, если одной ногой стоять на заземлителе, а второй на расстоянии шага от него, то к добру это не приведет. И учитывайте, что среднестатистическая длина шага мужчины, равна 0,81 м.

Тело человека включается в электрическую цепь, как нагрузка, и происходит вредное воздействие электрического тока на организм. Но если обувь человека сделана из не проводящих ток материалов, например в резиновых сапогах – вероятность получения травмы меньше.

Риском в данной ситуации может стать наличие алкоголя в крови и наличие открытых ран на ногах. Потому что данный факт влияет на проводимость человека. А так как кожа является защитным диэлектриком, то нарушение кожного покрова снимает вашу защиту.

Помимо проводимости, риском может стать температура окружающей среды. Ведь чем она выше, тем более опасно находиться в зоне риска.

Во всех ранее перечисленных случаях представлена опасность шагового напряжения для жизни человека, животных и особенно детей. Поэтому ограничьте игру ваших детей вблизи электроустановок.

Зона опасности шагового напряжения

Зона растекания тока может быть в радиусе порядка 10 и более метров от места касания земли оборванного провода. Радиус зоны опасности, которая находится под напряжением, зависит от нескольких факторов.

Во-первых: расстояние от источника опасности. Чем удаленнее, тем опасность меньше.

Во-вторых: напряжение линии оборванного провода: 0,4; 1; 3; 6; 10; 35; 110; 220 кВ.

зона опасности шагового напряжения

Правила перемещения в зоне шагового напряжения

В радиусе действия напряжения необходимо передвигаться соблюдая технику безопасности.

Передвигаться нужно не отрывая ног от земли с шагом не более длины стопы. Ни в коем случае не касайтесь руками оголенных проводов и кабелей, пока не убедитесь, что напряжение снято!

Запрещается!

Бежать или двигаться по спирали в радиусе действия шагового напряжения.

перемещение в зоне шагового напряжения

Согласно правилам, передвижение ремонтного персонала в радиусе поражения током должно выполняться после проведения расчета предельного шагового напряжения и его радиуса.

Расчет шагового напряжения

Рассчитывают величину напряжения по формуле:


Из формулы видно, что напряжение шага напрямую зависит от тока короткого замыкания, удельного сопротивления грунта и обратно пропорционально разнице потенциалов между двух точек грунта, умноженной на 2π.

Под двумя точками подразумевают разность соотношений между длиной до места аварии и суммой расстояний от места повреждения до субъекта и расчетную длину шага. При расчетах, шаг человека или животного принимают значение равное 0,7-1 метр.

Так как шаговое напряжение протекает сквозь землю, а она в свою очередь состоит из разных слоев грунта, то для проведения точных расчетов необходимо умножить сопротивление грунта на соответствующий коэффициент.

Пример расчета.

При токе замыкания на землю в 400 Ампер, сопротивлении грунта 150 Ом*м (суглинок), расстоянии от человека до места касания проводом земли в 15 метров и расстоянии шага 0,50 м мы получаем напряжение 20,5 Вольт.

Ток замыкания будет зависеть от напряжения сети и соответственно, чем он выше, тем больше напряжение шага. Отсюда и вытекает рекомендация по сокращению расстояния при ходьбе в опасной зоне. Но чем ближе к источнику опасности, тем напряжение больше в несколько раз.

На расстоянии от источника 10 метров напряжение шага, при тех же параметрах, будет уже 45 Вольт, что в свою очередь является небезопасным для человека.

Выход из зоны шагового напряжения

Когда вы поздно заметили оголенный провод, касающийся земли, то есть оказались в зоне действия, то передвигаться нужно «гусиным шагом», направляясь прямо от места касания провода в противоположную сторону.

Так как при падении все ваше тело окажется под действием того напряжения, от которого вы хотели уйти. В таком случае поражение будет нанесено всему организму. Будьте внимательны!

выход из зоны шагового напряжения

Первая помощь при поражении током

Постоянно думай о собственной безопасности!

  1. Начать оказание первой помощи необходимо немедленно. Первым делом нужно обязательно освободить пострадавшего от действия электрического тока.
  2. Затем сразу же вызвать скорую помощь!
  3. При отсутствии дыхания и сердцебиения приступить к искусственному дыханию и массажу сердца.
  4. По возможности наложить стерильную повязку на место электрического ожога.
  5. Обеспечить покой пострадавшему.

Что нельзя делать с пострадавшим и почему:

  • Закапывать в землю (будет затруднено дыхание, что повлияет на работу сердца)
  • Обливать водой (происходит охлаждение организма)
  • Загрязнять поверхность ожога (начинает развиваться столбняк или гангрена)

Средства защиты

По регламенту «Охраны труда» рабочие должны соблюдать меры защиты и передвигаться по зоне в диэлектрических ботах, иметь при себе диэлектрические перчатки, изолирующие штанги, измерители напряжения, монтажные инструменты с изолирующими рукоятками.

Что касается работников электрических профессий самым основным риском является работа без наряда допуска. Когда вы знаете, что должно быть отключено и где заземлено, вы можете работать безопасно.

Похожие материалы:

В завершении жизненная мудрость. Будьте осторожны и соблюдайте технику безопасности, это поможет вам спасти вашу жизнь. Всегда смотрите не только по сторонам, но и под ноги, тем более, если находитесь в знакомой вам местности, порой за ночь может все измениться.

Читайте также: