На каком токе работают стабилизирующие трансформаторы

Обновлено: 02.05.2024

Зачем нужен разделительный трансформатор 220/220 и как он работает

Разделительный трансформатор Разделительный трансформатор

Принцип работы разделительного трансформатора

На самом деле разделительный трансформатор (далее РТ) мало чем отличается от обычных понижающих или же повышающих трансформаторов. И в РТ, все так же происходит процесс трансформации электрической энергии.

Единственное различие заключено в том, что на общем магнитопроводе размещаются абсолютно идентичные обмотки. То есть у них полностью совпадают такие параметры как:

Толщина провода, количество витков, изоляция.

А проходящая электрическая мощность через первичную обмотку, за счет электромагнитной индукции преобразуется во вторичной обмотке, при этом вектора напряжений во вторичной и первичной обмотках полностью совпадают.

Назначение разделительного трансформатора

Главная задача РТ заключена в том, чтобы отделить цепи напряжения электроприборов от основной электрической сети за счет использования изолированных автономных силовых обмоток.

РТ нужен для того чтобы максимально повысить уровень безопасности электроприборов, а значит призван снизить электротравматизм.

Как подключается разделительный трансформатор

Если рассмотреть стандартную домашнюю проводку, то она должна быть реализована (по современным стандартам) трехпроводным кабелем, где кроме фазного провода и нуля есть заземляющий провод.

Типовая схема трехпроводной проводки Типовая схема трехпроводной проводки

Таким образом, подключаемые к такой сети электроприборы заземляются и в случае возникновения тока утечки, УЗО (которое должно быть установлено в вашем распределительном щите) отключает линию с поврежденным электроприбором.

Но есть электроприборы, которые не имеют заземления.

Вот в таком случае и нужен разделительный трансформатор, ведь через него не только можно, но и нужно подключать приборы без заземления. Ведь во вторичной обмотке РТ как раз формируется собственная полностью изолированная от земли электрическая цепочка.

А это значит, что разность потенциалов присутствует только между клеммами разделительного трансформатора. И если произойдет повреждение изоляции электроприбора, или самой линии подключенной через разделительный трансформатор, то электрический потенциал, конечно, будет присутствовать на поврежденном приборе.

Вот только если человек его коснется, то никакого повреждения электрическим током не произойдет. Так как будет отсутствовать цепь протекания тока из-за отсутствия соединения схемы с потенциалом земли.

Вроде все замечательно, но даже при использовании разделительного трансформатора есть риск поражения электрическим током.

Правила безопасности при использовании Разделительного трансформатора

  1. Запрещено касаться одновременно выводных клемм трансформатора.
  2. Первичная обмотка подключена в общую сеть, поэтому должна быть защищена УЗО.
  3. Запрещено заземлять корпуса электрических приборов, которые подключены к сети через РТ.
  4. Подключать через РТ допустимо только один электроприбор. Если же нужно подключить еще несколько приборов, то использование приборов контроля напряжения обязательно.

КПД Разделительного трансформатора и область применения

У любого трансформатора во время работы происходит потеря части энергии. Так вот коэффициент полезного действия РТ в зависимости от модификации может варьироваться от 75% до 85-90 %.

Используют РТ в основном в местах, где предъявляются повышенные требования к электробезопасности, а именно:

  • Комнаты с повышенной влажностью.
  • Подвальные помещения
  • Кабельные колодцы.
  • При работах с электроинструментом относящимся к 1-ому классу электробезопасности.
  • Питание медицинских приборов стационарной установки и т.п.

Заключение

Разделительный трансформатор это крайне полезный прибор повышающий общую электробезопасность. Если вам понравился материал, тогда ставим лайк и подписываемся. Спасибо за ваше внимание!

Большая Энциклопедия Нефти и Газа

Стабилизирующие трансформаторы могут включаться в электрические цепи последовательно или параллельно. Когда сопротивление нагрузки ZH велико по сравнению с сопротивлением вторичной обмотки Za, можно считать, что трансформатор работает в режиме холостого хода.  [1]

Стабилизирующий трансформатор 7 с магнитопроводом 8 имеет обмотки: первичную 9, вторичную 10 и компенсирующую 11, которая размещена сверху первичной. Когда первичная обмотка находится под напряжением, правый керн с малым сечением магнитопро-вода оказывается насыщенным, и колебания напряжения в первичной обмотке относительно слабо сказываются на напряжении вторичной обмотки. Начала вторичной и компенсирующей обмоток соединены встречно для компенсации небольших изменений напряжения, а концы этих обмоток подключены к схеме реле осевого сдвига.  [2]

Стабилизирующие трансформаторы предназначены для повышения устойчивости работы регуляторов напряжения в переходных режимах.  [3]

Стабилизирующие трансформаторы используются только для лифтов с приводом постоянного тока при электромашинкой управлении. Они предназначены для демпфирования нестационарных процессов в контурах постоянного тока в периоды неустановившихся режимов. Магнитопровод стабилизирующих трансформаторов имеет регулируемый зазор для настройки в процессе наладки.  [4]

Стабилизирующий трансформатор подключается в начале первого этапа после определения полярности вторичной обмотки и не должен отключаться на протяжении всей работы.  [5]

Стабилизирующий трансформатор является дифференцирующим звеном, обеспечивающим введение в закон регулирования воздействия по скорости изменения регулируемого параметра и ускорение процесса регулирования, так как форсирует нарастание напряжения усилителя в начале регулирования и ускоряет его затухание в конце.  [7]

Стабилизирующий трансформатор , работающий на индуктивную нагрузку, можно считать апериодическим звеном второго порядка, соединенным последовательно с чисто дифференцирующим звеном.  [8]

Стабилизирующие трансформаторы предназначены для повышения устойчивости работы регуляторов напряжения в переходных режимах.  [9]

Стабилизирующие трансформаторы находят применение в системах автоматического управления и служат для получения изменяющихся сигналов в цепях постоянного тока. Стабилизирующие трансформаторы в отличие от обычных имеют регулируемый воздушный зазор в магнитопроводе, посредством которого можно плавно изменять индуктивность обмоток трансформатора, производя настройку цепи стабилизации.  [10]

Стабилизирующие трансформаторы ( СТ) служат для успокоения колебательных и иных нестационарных процессов в схемах автоматического управления и регулирования. Стандартный СТ представляет собой однофазный трансформатор с двумя обмотками и регулируемым воздушным зазором.  [11]

Стабилизирующие трансформаторы ТС-72-60 и ТС-144-110 имеют регулируемый зазор между сердечником и якорем. С помощью, регулировки этого зазора может быть произведена настройка индуктивности в пределах, указанных в пп.  [13]

Стабилизирующий трансформатор СТ на выходе потенциометра сравнения играет ту же роль, что и в схеме АР, выделяя первую производную сигнала рассогласования и тем самым способствуя форсированию переходных процессов.  [14]

Стабилизирующий трансформатор снабжен магнитным шунтом, который перемещают относительно сердечника. Магнитный шунт служит для настройки стабилизации преобразователя на заводе.  [15]

Большая Энциклопедия Нефти и Газа

Стабилизирующий трансформатор тока ( СТТ) включается последовательно с нагрузкой электрической машины, магнитного усилителя или другого элемента и вырабатывает сигнал, пропорциональный скорости изменения тока нагрузки элемента.  [16]

Стабилизирующий трансформатор ТС ( см. рис. 92, б) двух-обмоточный: на ст. ержень его магнитопровода надета вторичная обмотка, а поверх нее - первичная. Концы обмоток выведены и присоединены к зажимам на щитке трансформатора.  [17]

Стабилизирующие трансформаторы типов ТС-72-60 и ТС-144-НО помещены в настоящем разделе, так как они обычно ( за редким исключением) используются в схемах управления электромашинными усилителями в качестве звена обратной связи.  [19]

Поскольку стабилизирующие трансформаторы предназначены для систем с различными величинами напряжений постоянного тока, то в их паспортные данные эти параметры не входят.  [20]

Для стабилизирующего трансформатора была получена передаточная функция ( VII.  [22]

Действие стабилизирующего трансформатора поясняется рис. 44, на котором показано включение стабилизирующего трансформатора для сглаживания колебаний напряжения электромашинного усилителя. Первичная обмотка стабилизирующего трансформатора включена на напряжение усилителя, а ко вторичной обмотке подключена обмотка управления усилителя.  [24]

Включение стабилизирующего трансформатора изменяет эквивалентную индуктивность на величину.  [25]

Работа стабилизирующего трансформатора заключается в том, что с увеличением нагрузки токи, проходящие по первичным обмоткам, также увеличиваются и создают более сильный магнитный поток в сердечнике трансформатора.  [26]

Так, стабилизирующие трансформаторы в качестве корректирующих элементов применяются в системах автоматического регулирования напряжения бортовых генераторов постоянного тока.  [27]

Расчет феррорезонансного стабилизирующего трансформатора для инвертора выполняется в соответствии с методикой, рассмотренной в гл.  [28]

Схема включения стабилизирующего трансформатора представлена на рис. 1.18, в.  [29]

Практически идеальных стабилизирующих трансформаторов не существует, так как L и / 2 никогда не будут в точности равны нулю. Так, если входное напряжение синусоидально UB UU sinut, то выходное напряжение вых м cos ( t / a), где a - малый угол.  [30]

Главным компонентом стабилизатора является трансформатор, который соединяется через сеть переменного тока с диодным мостом. Иногда в разных схемах применяют до 5 трансформаторов. В итоге они в конструкции прибора образуют своеобразный мост. За диодами расположен транзистор и настроечный резистор. Также в стабилизаторах участвуют в работе конденсаторы. Автоматическая система выключается замыкающим механизмом.

Стабилизатор напряжения с трансформатором

  • Стабилизатор напряжения трансформаторного типа действует по способу обратной связи.
  • Напряжение на первом этапе поступает на трансформатор. При этом если его наибольшая величина больше нормы, то подключаются к работе диоды. Они соединены непосредственно с транзистором.
  • В системе переменного напряжения происходит дополнительная фильтрация. В нашем случае емкость играет роль преобразователя.
  • Далее ток протекает по резистору, затем возвращается в трансформатор. В итоге номинальная нагрузка меняется.
  • Чтобы процесс был устойчивым, стабилизатор оснащен системой автоматики, с помощью которой конденсаторы не нагреваются до критической температуры в цепи коллектора.
  • Сетевой ток на выходе протекает по обмотке по другому фильтру. В результате напряжение выпрямляется.

Стабилизатор напряжения с трансформатором

Трансформаторные модели стабилизаторов 220 вольт

Схема таких бытовых стабилизаторов имеет отличия от других устройств. В них управляющий блок соединяется непосредственно с регулятором. За фильтрующей системой есть диодный мост. Для выравнивания колебаний предусмотрена транзисторная цепь. После обмотки на выходе находится конденсатор.

Трансформатор справляется с системными перегрузками. Ток преобразовывается также с помощью трансформатора. В общем, интервал мощности у таких приборов значительно выше, по сравнению с другими устройствами. Такой стабилизатор напряжения могжет функционировать даже на морозе. По созданию шума они не имеют особых отличий от других подобных моделей. Чувствительность во многом зависит от изготовителя и вида установленного регулятора.

Импульсные трансформаторные стабилизаторы

Стабилизатор напряжения с трансформатором

Электросхема стабилизатора на трансформаторе импульсного типа подобна с релейным прибором. Но есть свои отличия. Основным компонентом здесь считается модулятор. Он считывает величину напряжения, затем сигнал переходит на трансформатор, где и происходит обработка информации.

Трансформаторные стабилизаторы высокой частоты

Если эти модели сравнивать с релейным видом, то стабилизатор напряжения высокочастотный имеет более сложное устройство, имеет более двух диодов. Он отличается повышенной мощностью.

Трансформаторы в таком стабилизаторе рассчитаны на значительные помехи. В итоге такие приборы могут защищать различные бытовые устройства в доме. Фильтрующая система настраивается на разные скачки и перепады питания. С помощью контроля напряжения значение тока способно изменяться. Величина наибольшей частоты в этом случае будет повышаться на входе, и снижаться на выходе. Изменение тока в такой цепи выполняется за два этапа.

Стабилизатор напряжения с трансформатором

  1. В первую очередь начинает работать транзистор и выходной фильтр.
  2. Далее подключается к работе диодный мост.
  3. Для завершения процесса изменения тока для системы нужен усилитель. Он монтируется чаще всего между резисторами.

В результате температура в приборе удерживается на одном уровне. В системе дополнительно ведется учет источника питания, который влияет на защитный блок.

Мощный трансформаторный стабилизатор напряжения

Старые ламповые телевизоры имеют в устройстве силовые трансформаторы, из которых можно сделать мощный стабилизатор напряжения. Их необходимо соединить по специальной схеме.

Сначала из старых телевизоров надо вытащить силовые трансформаторы. Выпаивают или откусывают подходящие провода к трансформатору. Затем первичные обмотки соединяют с обмотками накаливания по последовательной схеме, чтобы обмотки накаливания были соединены в противоположную сторону от сетевой обмотки. Чтобы это выполнить, нужно соединить начало и конец.

Стабилизатор напряжения с трансформатором

На корпусе трансформаторов сбоку обозначены все маркировки обмоток и их выводы. Начало обмотки маркируется вверху штрихом возле цифры.

Стабилизатор напряжения с трансформатором

Соединенные вместе трансформаторы нужно поместить в изолированный ящик, а провода соединенных трансформаторов соединить с внешними клеммами. Потребитель подключается со стабилизатором по последовательной схеме.

Таким же методом можно регулировать мощность прибора, путем уменьшения или увеличения числа силовых трансформаторов. Этот метод эффективен, если нагрузка подходит для мощности трансформатора. При незначительной мощности выбирают соответствующую мощность трансформаторов.

Стабилизаторы напряжения

Решением этой проблемы является установка на весь дом или для конкретного прибора стабилизатора напряжения.

Для чего нужны стабилизаторы напряжения?

Стабилизатор напряжения — это устройство, имеющее вход и выход, предназначенное для поддержания выходного напряжения в заданных пределах, при существенном изменении величины входного напряжения.

В отличие от реле напряжения, которые просто отключают сеть при выходе значения напряжения за допустимые пределы, стабилизаторы выравнивают величину напряжения в сети обеспечивая тем самым бесперебойность ее работы.

синусоида со стабилизатором напряжения

Нормы кратковременного максимального отклонения от номинального напряжения в электросети лежат в пределах ±10% (согласно ГОСТ 29322-2014). Это значит, что допустимое напряжение в 1ф розетке находится в диапазоне от 207 до 253 Вольта. Однако даже 250 вольт могут быть губительны для некоторой техники, а в частном секторе, в посёлках и деревнях оно бывает часто и ниже 200 вольт, особенно в домах находящихся в конце линий электропередач (ЛЭП).

низкое напряжение в розетке

Давайте разберемся, что мы называем пониженным или повышенным напряжением — это напряжение отличное от номинального (220/380 Вольт) в течении длительного промежутка времени. Такое случается при чрезмерной нагрузке на слабый трансформатор ЛЭП с малой пропускной способностью.

Также встречается при переключениях или частичном выводе из работы высоковольтных линий, так как оставшиеся линии не справляются с возросшей нагрузкой в должной мере. Величина отклонения обычно зависит от нагрузки в сети. Возможно вы замечали, что ночью, когда все спят, напряжение повышается, как и днём, когда все находятся на работе и дома не включено мощных электроприемников. Вечером же по приходу с работы включают обогреватели или кондиционеры, электроплиты, нагрузка повышается, а напряжение понижается. Пример суточного изменения потребления мощности в 62 квартирном доме с газовыми плитами вы видите ниже.

график суточных нагрузок в многоквартирном доме

перекос фаз

Отдельное внимание следует уделить импульсным перенапряжениям (скачкам в сети). В народе импульсные перенапряжения называют всплески или скачки напряжения. Они происходят в результате аварийных ситуаций на ЛЭП, при коммутации мощных электроприборов и установок, грозовых разрядов в линии электропередач и других случаях.

Отличительная черта скачков или импульсных перенапряжений заключается в том, что это происходит быстро, за доли секунды, тогда как повышенное или пониженное напряжение может наблюдаться как минутами, так и месяцами. При этом величины импульсного перенапряжения обычно достигает единиц и десятков киловольт.

синусоида при импульсе напряжения

В результате такого всплеска часто выходит из строя входной каскад импульсного блока питания, которые применяются во всей современной электронике, а в некоторых случаях – перенапряжение поступает и на питаемую плату с последующим выходом и её элементов.

ВАЖНО ЗНАТЬ! Стабилизаторы напряжения не могут обеспечить надежную защиту от импульсных перенапряжений, более того сами стабилизаторы при этом могут выйти из строя. Для защиты от импульсных перенапряжений следует применять УЗИПы.

Виды стабилизаторов напряжения и их устройство

Стабилизаторы напряжения бывают как однофазными (220В), так и трёхфазными (380В), далее мы сделаем акцент на однофазных приборах, но все нижесказанное абсолютно справедливо и для трёхфазных.

Стабилизаторы напряжения бывают разных видов, большинство из них построено на базе автотрансформатора. Если говорить простым языком, то от обычного трансформатора автотрансформатор отличается тем, что у него только 1 обмотка.

К условно первичной стороне подключается источник питания, при этом одна из точек подключения к источнику питания не является концом вторичной обмотки, что указано на схеме ниже. Нагрузка подключается также между концом обмотки и отводам от неё. Подключившись к определенному из витков, мы можем получить как пониженное, так и повышенное напряжение относительно источника питания.

устройство автотрансформатора

Итак, различают 5 основных видов стабилизаторов напряжения:

  • Релейные;
  • Электронные;
  • Электромеханические;
  • Феррорезонансные;
  • Инверторные или стабилизаторы напряжения двойного преобразования.

Деление при этом происходит по принципу действия исполнительных регулирующих органов. Автотрансформаторы лежат в основе первых трёх видов стабилизаторов.

Прежде чем перейти к обзору стабилизаторов поговорим о других функциях, которые они выполняют, кроме основного назначения – поддерживать стабильные 220В. Анализ рынка показал, что независимо от принципа действия и исполнительных элементов современные стабилизаторы напряжения имеют ряд защит:

Учтите, что функционал может отличаться в зависимости от модели и производителя, наличие данных функций необходимо уточнять в паспорте устройства.

Стоит отметить, что диапазон регулировки напрямую связан с типом используемого автотрансформатора, а не с принципом действия прибора. Обычно он находится в пределах 130-270 вольт, в продвинутых моделях может расширятся — 100-295 вольт.

Большинство стабилизаторов могут работать в режиме байпас (транзит, обход) при нормальном напряжении в сети. Что снижает потери (у любого аппарата есть определенный КПД) и повышает срок службы устройства.

режимы работы стабилизаторов напряжения

2.1 Релейные стабилизаторы

Пожалуй, самым дешевым и распространенными в быту являются релейные стабилизаторы напряжения. Такое название они получили из-за того, что отводы обмоток автотрансформатора переключаются с помощью обычных электромагнитных реле.

В настоящее время аналоговые схемы или схемы на дискретных логических элементах почти не используются в цепях измерения и контроля бытовых стабилизаторов напряжения. В них используются микроконтроллеры, например, семейства PIC12 и других.

Структурную схему такого стабилизатора вы видите ниже.

структурная схема релейного стабилизатора напряжения

Принцип действия заключается в следующем: плата управления анализирует уровень напряжения в сети и переключает реле подключая нужную часть обмотки для повышения или понижения напряжения соответственно.

Внутреннее устройство такого стабилизатора вы видите ниже.

устройство релейного стабилизатора напряжения

Недостатки релейного стабилизатора:

  1. Быстродействие ниже чем у электронных (реакция на изменение напряжения);
  2. Срок службы меньше аналогово из-за механического износа контактов, который происходит в первую очередь из-за образования дуг в момент включения/выключения реле.
  3. Мало ступеней регулировки (обычно от 4 до 6), значит выходное напряжение всё же будет отклоняться от номинальных 220В.
  4. В момент переключения реле издают щелчки, и создают помехи в сети.

Преимущества релейного стабилизатора:

  1. Стоимость.
  2. Высокий КПД.
  3. Ремонтопригодность.

Тем не менее быстродействие распространенных моделей релейных стабилизаторов составляет порядка 100-200 миллисекунд и более, реже — до 35 мс,чего достаточно в большинстве случаев для питания бытовой техники.

Но стоит учесть, из-за недостаточного быстродействия не может обеспечить качественную защиту от резкого повышения напряжения.

В зависимости от модели шаг регулирования может быть разным, чем больше шагов регулирования, тем больше точность и стабильность поддержания уровня напряжения на выходе.

2.2 Электронные (симисторные и тиристорные) стабилизаторы.

Принимая во внимание недостатки релейных стабилизаторов, их можно избежать – заменив электромагнитные реле на полупроводниковые ключи. Вторым по популярности видом стабилизаторов являются электронные. В качестве коммутационных элементов в них используются симисторы или тиристоры.

Такие стабилизаторы напряжения обладают большим быстродействием(10-20 миллисекунд, в редких случаях больше) и сроком службы.

Однако симисторы могут выйти из строя и значительно раньше, чем реле. Например, если произойдет сильный всплеск напряжения любой полупроводниковый ключ может пробить накоротко. Если при этом не пострадали другие элементы схемы, то достаточно замены ключей, в противном случае диагностика и ремонт значительно усложняются.

Пример блочной схемы электронного стабилизатора приведен ниже.

структурная схема электронного (тиристорного) стабилизатора

Из схемы видно, что и у релейного и у электронного стабилизатора регулировка происходит ступенчато с количеством шагов равным количеству отводов обмотки.

Преимущества электронных стабилизаторов:

  1. Бесшумность.
  2. Быстродействие.
  3. Долговечность.
  4. Много ступеней регулировки — от 9 до 16, в редких случаях может бытьи 36. За счет этого достигается большая точность регулировки

Недостатки электронных стабилизаторов:

  1. Полупроводниковые ключи, в отличие от электромагнитных реле греются, что снижает КПД.
  2. Стоимость больше чем у релейных.
  3. При переключении создают помехи в сети.

2.3 Электромеханические стабилизаторы

Если предыдущие два типа в сущности представляли вариации одного решения, то в случае электромеханического стабилизатора напряжения принцип регулировки существенно отличается. Такие стабилизаторы часто называют сервоприводными.

Основной особенностью является плавная регулировка выходного напряжения. Она обеспечивается с помощью скользящего по виткам автотрансформатора графитового электрода, подобно щётке в электродвигателе.Им управляет сервопривод.

Если говорить простым языком, то сервоприводом называется устройство на основе электродвигателя предназначенное для управления и позиционирования рабочего органа. Ниже изображен внешний вид внутренностей электромеханического стабилизатора.

Устройство электромеханического стабилизатора

Такой же принцип работы и у лабораторных автотрансформаторов, один из них вы видите на фотографии ниже.

лабораторный автотрансформатор (латор)

Из этого следует, что понятия количества ступеней нет, как и точности регулировки как таковой, а скорость реакции на изменение питающего напряжения ограничена только параметрами сервопривода. Здесь она измеряется не в миллисекундах, а в вольтах на секунду(В/с)— что отражает угол, на который повернется траверса, на которой закреплен графитовый электрод за определенный отрезок времени.

Сервоприводные стабилизаторы хорошо подходят там, где наблюдаются периодические сезонные или суточные изменения напряжения, но из-за невысокого быстродействия они не спасут технику от резкого повышения на пару десятков вольт.

Преимущества сервоприводных стабилизаторов:

  1. Плавная бесступенчатая регулировка.
  2. Не создают помехи в сети

Недостатки сервоприводных стабилизаторов:

  1. Шумят во время перемещения щетки по обмотке, что может быть неприемлемо при использовании в небольшом замкнутом помещении.
  2. При загрязнении быстро выходят из строя.
  3. Быстродействие.
  4. Обмотки загрязняются от графитовой пыли, которая образуется со временем от износа щетки. Это нарушает работоспособность.

2.4 Инверторные стабилизаторы

Самый дорогой и совершенный тип стабилизаторов инверторные, или как их еще называют «с двойным преобразованием». Это устройство представляет собой преобразователь напряжения на базе импульсного трансформатора. Здесь в отличии от предыдущих вариантов первичная и вторичная цепи гальванически развязаны, то есть не имеют электрического контакта.

Название «с двойным преобразованием» — связано со схемотехники и принципом работы. Сначала переменный ток из сети выпрямляется, затем подаётся на инвертор, и преобразовывается обратно в переменный синусоидальный ток.

структурная схема работы инверторного стабилизатора напряжения

Инверторные стабилизаторы с двойным преобразованием обеспечивают высшую точность и плавность регулировки, однако из-за сложности их цена значительно выше релейных и симисторных аналогов. Такие устройства подходят там, где нужна высокая надежность и безотказность оборудования.Например, для питания средств производственной автоматизации или дорогих устройств.

Преимущества инверторных стабилизаторов:

  • Быстродействие;
  • Точность;
  • Бесшумность;
  • Синусоида на выходе без искажений.

Главный недостаток — высокая стоимость

2.5 Феррорезонансные стабилизаторы

Нельзя не сказать о феррорезонансных стабилизаторах. Они состоят из двух дросселей и конденсаторов. Принцип работы заключается на основе феррорезонанса, подробное его описание достаточно сложное, поэтому я его приводить не буду.

принципиальная схема феррорезонансного стабилизатора

Об этих приборах стоит знать лишь то, что в них нет движущихся или переключающих элементов, по своей сути это полностью пассивный прибор, который в большей степени фильтрует скачки напряжения и помехи, а не выравнивает его до номинальной величины. Такие приборы использовались раньше, во времена СССР для защиты телерадиоаппаратуры.

феррорезонансный стабилизатор, устройство, внешний вид

Преимущества феррорезонансных стабилизаторов:

  • большой срок службы;
  • невысокая стоимость;
  • быстродействие.

Недостатки феррорезонансных стабилизаторов:

  • шумят во время работы;
  • искаженная синусоида на выходе;
  • узкий диапазон стабилизации.

Сравнение стабилизаторов напряжения

Подведем итоги и сравним основные параметры распространённых моделей современных стабилизаторов напряжения разных типов. Таблица ниже поможет сравнить стоимость приборов и сделать выбор. Преимущества и недостатки каждого из них мы описали выше.

сравнение различных стабилизаторов напряжения

Как выбрать стабилизатор напряжения

Есть разные способы подбора стабилизатора напряжения, но мы предлагаем вам воспользоваться следующим алгоритмом.

мощность стабилизатора напряжения для защиты электроприборов

  • Для того чтобы правильно рассчитать стабилизатор на весь дома или квартиру часто советуют суммировать мощность всех электроприборов. На самом деле сделать это можно проще. Вы должны знать сколько выделено мощности на ваше жильё. Если вы не знаете – посмотрите на сколько ампер установлен вводной автомат.

Допустим, что у вас стоит однофазный вводной автомат на 25А. Чтобы узнать мощность – умножьте ток на напряжение в сети – 220В.

25*220=5500Вт=5.5 кВт

Рассчитав мощность следует добавить 20-30% запаса по мощности (защита от пусковых токов и перегрузок). В нашем случае сделаем запас 20% для этого полученную мощность умножим на 1,2:

5.5*1,2=6,6 кВт

После этого выбираем ближайшее большее стандартное значение мощности стабилизатора напряжения, в нашем случае необходимо будет приобрести стабилизатор 7-7,5кВт.

Если у вас трёхфазный ввод, и вы обнаружили автомат на 25А, например, то мощность считают по следующей формуле:

P=U*I*1.73=380*25*1.73=16435Вт = 16.44кВт

Далее, как и в предыдущем случае, добавляем запас мощности 20-30% и выбираем стабилизатор с ближайшим большим значением мощности.

Примечание: расчет мощности вы так же можете произвести с помощью нашего онлайн калькулятора расчета мощности сети.

Схемы подключения стабилизаторов

Если стабилизатор маломощный, то к сети он подключается вилкой в розетку. На корпусе самого прибора есть розетка, в которой уже стабилизированное напряжение – к ней подключают защищаемый прибор.

подключение электроприбора к стабилизатору напряжения

В моделях большой мощности, которые устанавливают на всю квартиру или на дом, обычно есть и розетка для подключения и клеммная колодка с болтами и шпильками для подключения жил кабеля или другими видами клемм (винтовые, рычажные и пр.). При этом на клеммной колодке обычно находится контакт для заземляющего проводника, но не на всех моделях. Клеммы куда подключается фаза в однофазных моделях всегда 2 их подписывают как L1 и L2.Нулевых клеммы может быть, как 2, так и одна.

Ниже представлены два варианта клеммных колодок стабилизаторов:

клеммы подключения стабилизатора напряжения

Схема подключения стабилизатора к однофазному вводному щиту будет выглядеть так:

схема подключения однофазного стабилизатора в водном электрощите

Если у вас трёхфазный ввод, схема будет отличаться только количеством проводов, логика подключения остаётся неизменной. При этом как именно подключать зависит от самого стабилизаторы, многие модели имеют блочное исполнение и колодки для каждой из фаз разделены. Также можно использовать по одному однофазному стабилизатору на каждую из фаз.

Схема подключения трехфазного стабилизатора напряжения

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

общий вид трансформатора

Рис.1 Общий вид трансформатора

Значение трансформаторов как в электроэнергетике в целом, так и в повседневной жизни каждого человека трудно переоценить, они применяются повсеместно: на подстанциях, в городах и поселках, стоят силовые трансформаторы, понижающие высокое напряжение в тысячи и даже десятки тысяч Вольт до привычных нам 380/220 Вольт, на предприятиях стоят сварочные трансформаторы которые совершенно незаменимы на производстве, трансформаторы так же применяются и у нас дома в бытовой технике: в СВЧ-печах, блоках питания компьютеров и даже зарядных устройствах для телефонов.

В этой статье мы разберемся в том как устроены и как работают трансформаторы, какие бывают виды трансформаторов, а так же приведем их общие характеристики.

Общее устройство и принцип работы трансформаторов

В общем виде трансформатор представляет собой две обмотки расположенных на общем магнитопроводе. Обмотки выполняются из медного или алюминиевого провода в эмалевой изоляции, а магнитопровод изготовлен из тонких изолированных лаком пластин электротехнической стали, для уменьшения потерь электроэнергии на вихревые токи (так называемые токи Фуко).

Общее устройство трансформатора

Рис.2 Схема общего устройства трансформатора

Металлическая часть находящаяся на которой располагается электрическая обмотка (катушка), т.е. которая находится в ее центре, называется сердечником, в трансформаторах этот сердечник имеет замкнутое исполнение и является общим для всех обмоток трансформатора, такой сердечник называется магнитопроводом.

Теперь подадим напряжение 1 Вольт на первую обмотку, ее единственный виток условно создаст магнитный поток величиной в 1 Вб (Справочно: Вебер (Вб) — единица измерения магнитного потока) в магнитопроводе, так как магнитопровод имеет замкнутое исполнение магнитный поток будет протекать в нем по кругу при этом пересекая 2 витка второй обмотки, при этом в каждом из этих витков за счет электромагнитной индукции наводит (индуктирует) электродвижущую силу (ЭДС) в 1 Вольт, ЭДС этих двух витков складывается и на выходе со второй обмотки мы получаем 2 Вольта.

Таким образом, подав на первичную обмотку 1 Вольт на вторичной обмотке мы получили 2 Вольта, т.е. в данном случае трансформатор будет называться повышающим, т.к. он повышает поданное на него напряжение.

Но этот трансформатор может работать и в обратную сторону, т.е. если на вторую обмотку (с двумя витками) подать 2 Вольта, то с первой обмотки по тому же принципу мы получим 1 Вольт, в этом случае трансформатор будет называться понижающим.

Общие характеристики трансформаторов

К основным техническим характеристиками трансформаторов можно отнести:

  • номинальную мощность;
  • номинальное напряжение обмоток;
  • номинальный ток обмоток;
  • коэффициент трансформации;
  • коэффициент полезного действия;
  • число обмоток;
  • рабочую частоту;
  • количество фаз.

Мощность является одним из главных параметров трансформаторов. В паспортных (заводских) данных трансформатора указывается его полная мощность (обозначается буквой S), она зависит от типа используемого магнитопровода, количества и диаметра витков в обмотках, то есть от массогабаритных показателей электромагнитного аппарата.

Формулы расчета мощности:

Следует помнить, что полная мощность состоит из активной (P) и реактивной (Q) мощностей:

  • Активная мощность определяется по формуле: P=U х I х cosφ ,Ватт (Вт)
  • Реактивная мощность определяется по формуле: Q=U х I х sinφ ,вольт-ампер реактивный (Вар)
  • Коэффициент мощности: cosφ=P/S;
  • Коэффициент реактивной мощности:sinφ=Q/S

Формулы расчета КПД (η) трансформатора:

Как уже было указано выше КПД определяет величину потерь в трансформаторе или иными словами эффективность работы трансформатора и определяется оно отношением выходной мощности (P2) к входной (P1):

Это хорошо видно из так называемой энергетической диаграммы трансформатора (рис.3):

энергетическая диаграмма трансформатора

Зависимость КПД от нагрузки представлена на следующем графике (рис.4):

график зависимости КПД отт нагрузки трансформатора

Так же kт определяется как отношение напряжений на зажимах обмоток: kт=U1н/U2н.

Примечание: для трансформаторов тока kт определяется как отношение номинальных значений первичного и вторичного токов kт=I1н/I2н

Число обмоток у однофазных трансформаторов чаще две, но может быть и больше. На первичную обмотку подают одно значение напряжения, а с вторичной обмотки снимают другое значение.

Когда требуются различные напряжения для питания нескольких приборов, то в этом случае вторичных обмоток может быть несколько. Также есть трансформаторы с общей точкой на вторичной обмотке для двуполярного питания.

Рабочая частота трансформаторов может быть различной. Но при одинаковых напряжениях первичной обмотки, трансформатор, разработанный для частоты 50 Гц, может использоваться при частоте сети 60 Гц, но не наоборот. При частоте меньше номинальной увеличивается индукция в магнитопроводе, что может повлечь его насыщение и как следствие резкое увеличение тока холостого хода и изменение его формы. При частоте больше номинальной повышается величина паразитных токов в магнитопроводе, повышается нагрев магнитопровода и обмоток, приводящий к ускоренному старению и разрушению изоляции.

Габариты трансформатора напрямую зависят от частоты тока в цепи, в которой он будет установлен. Конечно, трансформатор должен быть рассчитан на эту частоту. Зависимость эта обратная, т.е. с увеличением частоты габариты трансформатора значительно уменьшаются. Именно поэтому, импульсные блоки питания (с импульсными высокочастотными трансформаторами) намного компактнее.

В зависимости от назначения трансформаторы изготавливают однофазными и трехфазными.

Однофазный трансформатор представляет собой устройство для трансформирования электрической энергии в однофазной цепи. В основном имеет две обмотки, первичную и вторичную, но вторичных обмоток может быть и несколько.

Трехфазный трансформатор представляет собой устройство для трансформирования электрической энергии в трёхфазной цепи. Конструктивно состоит из трёх стержней магнитопровода, соединённых верхним и нижним ярмом. На каждый стержень надеты обмотки W1 и W2 высшего (U1) и низшего (U2) напряжений каждой фазы (рис.5).

схема общего устройства трехфазного трансформатора

Виды трансформаторов

Все трансформаторы можно разделить на следующие виды:

  1. силовые;
  2. автотрансформаторы;
  3. измерительные;
  4. разделительные;
  5. согласующие;
  6. импульсные;
  7. пик-трансформаторы;
  8. сварочные.

Силовые трансформаторы являются наиболее распространенным типом промышленных трансформаторов. Они применяются для повышения или понижения напряжения. Являются неотъемлемой частью сети электроснабжения предприятий, населенных пунктов и т.д.

Общий вид силового трансформатора

Автотрансформатором называется такой трансформатор, у которого имеется только одна обмотка с числом витков W1. Часть этой обмотки с числом витков W2 принадлежит одновременно первичной и вторичной цепям:

схема однофазного автотрансформатора

Данный тип трансформаторов применяется в приборах автоматического регулирования напряжения. Эти устройства используются, например, в образовательных учреждениях для проведения лабораторных работ, их можно встретить в электролабораториях различных предприятий для проведения тестовых работ.

Внешний вид автотрансформаторов:


Пример измерительных трансформаторов:

внешний вид измерительных трансформаторов

Разделительные трансформаторы, данные устройства мало чем отличается от обычных понижающих или повышающих трансформаторов. Единственное различие заключено в том, что на общем магнитопроводе размещаются абсолютно идентичные обмотки. То есть у них полностью совпадают такие параметры как сечение провода, количество витков, изоляция. Поэтому коэффициент трансформации у них равен единице.

Задачей этих устройств является обеспечение гальванической развязки, т.е. исключение непосредственной электрической связи между электрической сетью и подключаемому к ней, через данный трансформатор, оборудованию.

Применяются в тех областях где предъявляются повышенные требования к электробезопасности, например подключение медицинского оборудования.


Согласующие трансформаторы применяются для согласования сопротивления различных частей каскадов электронных схем, а также для подключения нагрузки, не соответствующей по сопротивлению допустимым значениям источника сигнала, что позволяют передать максимум мощности в такую нагрузку. При этом само непосредственное изменение показателей силы тока и напряжения не имеет значения.

Они применяются в усилителях низкой частоты в качестве входных, межкаскадных и выходных трансформаторов.

В качестве входных, согласующие трансформаоры применяются в звуковоспроизводящей аппаратуре для подключения микрофонов и звукоснимателей различных типов.

Трансформаторы этого типа используются для согласования сигнала при подключении антенн к приёмным и передающим устройствам.


внешний вид импульсных трансформаторов

Незаменимы там, где для запуска исполнительного устройства требуется единичный импульс с установленной амплитудой напряжения. Это, например, управляющие электронные схемы, собранные на тиристорах. Так же применяются в качестве генераторов импульсов, главным образом в высоковольтных исследовательских установках, в технике связи и радиолокации. Наибольшее применение пиковые трансформаторы получили в автоматизации технологических процессов.

внешний вид пик-трансформаторов

внешний вид сварочных трансформаторов

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Читайте также: