Можно ли заменить светодиоды в светильнике

Обновлено: 15.05.2024

Как правильно перепаять светодиод

Лампочки со светодиодами потребляют меньше энергии, чем лампы накаливания. Также они служат гораздо дольше, поэтому владельцы домов и квартир постепенно переходят на экономичное освещение. Но несмотря на продолжительный срок службы, LED-лампочки постепенно могут выходить из строя из-за перегорания установленных внутри светодиодов.

Когда один из чипов портится, это не повод выбрасывать лампочку, её можно починить. Для этого понадобится тестер, чтобы определить поломку, затем можно заменить испорченный элемент или соединить цепь. В последнем случае ремонт негативно отразится на сроке службы лампы, она станет светить тусклее. Поэтому лучше заменить чип на другой. Для этого нужно знать, как паять светодиоды.

Как устроены диодные элементы

Внутри светодиодных ламп установлены диоды. Также их монтируют в линейки и ленты, которые часто используются в рекламных баннерах. Выводы контактов здесь отсутствует. Диоды установлены на пластиковую или алюминиевую печатную ленту и соединяются друг с другом специальной дорожкой во время пайки. Снять светодиод или установить новый не сложно, если под рукой есть газовая горелка паяльник и флюс.

лампочки LED

Строение лампочки LED.

В большинстве случаев светодиодные лампы изготавливают из алюминия, который способен обеспечить эффективный теплоотвод на радиатор. Внутри устанавливается разное количество светодиодов, что определяет мощность. Контактные выводы диодной ленты имеют с обратной стороны подложку для отвода тепла. Она припаивается к теплоотводящей площадке. Снимая один из диодов, её также придется отпаять.

Соблюдение техники безопасности

В процессе ремонта любого прибора, который запитывается от электросети, необходимо соблюдать технику безопасности. Осветительные приборы LED, как и лампочки накаливания, подключены к сети 220 вольт. Поэтому мастер должен быть внимательным и учитывать рекомендации:

  • после выключения лампы необходимо вручную выполнить разрядку конденсаторов. Для этого выводы закорачиваются металлическим прибором с ручкой из диэлектрика.
  • в процессе выпаивания нельзя оставлять паяльную станцию без присмотра, это может спровоцировать пожар;
  • включая установленную лампочку лучше отвернуться, так как есть вероятность, что из-за возможных ошибок она взорвется.

Пайка светодиодов непростой процесс для новичка. К ремонту следует приступать только в том случае, если вы имеете опыт работы с паяльником, знакомы с конструкцией и принципом работы чипов.

Как отпаять и припаять заново светодиод

Перед тем как приступить к пайке, необходимо изучить инструкцию и обзавестись материалами и инструментами для работы. Не стоит забывать о проверке приобретённых светодиодов. Иногда мастера пренебрегают этим правилом, из-за чего работу приходится выполнять дважды.

Что необходимо для работы

Для выпаивания светодиода из алюминиевой платы необходимы:

  • пинцет;
  • лезвие;
  • паяльник (рекомендуется с тонким жалом);
  • флюс;
  • держатель.

Если нет паяльника с тонким лезвием, можно сделать насадку из медной проволоки.

паяльник

Паяльник с самодельной тонкой насадкой из медной проволоки.

Температура пайки

Индикаторный диод, который устанавливается на печатную плату состоит из токопроводящих ножек и стеклянной колбы. Внешне он напоминает маленькую лампочку. Для пайки необходимо использовать паяльник с мощностью не более 60 Вт. Допустимая температура жала – 260 градусов. SMD-диоды не имеют токоведущих элементов. Их заменяют специальные контактные площадки на плате. В данном случае для пайки используют паяльник мощностью 12 Вт.

Пошаговая инструкция отпайки

На первом этапе снимают алюминиевую плату. Для этого корпус лампы отделяется от плафона. Здесь можно использовать нож, аккуратно, чтобы не повредить элементы. К основанию площадка крепится с помощью пары проводов (плюс и минус). Их следует отпаять, закрепив плату на держателе. С алюминиевого основания плату можно снять без помощи инструментов.

Отсоединённая плата со светодиодами

Отсоединённая плата со светодиодами.

Перед тем, как начать выпаивать светодиод, нужно взять тестер и пройтись по всем чипам, чтобы проверить их работоспособность. В большинстве случаев повреждённые элементы можно заметить визуально. На прогоревшем светодиоде появляется черная точка.

Внешний вид прогоревшего диода.

Внешний вид прогоревшего диода.

Проверку лучше выполнять с помощью тестера, так как иногда поломка не влечет за собой видимых изменений.

Проверка тестером

Проверка диодов тестером.

Особое внимание рекомендуется уделять качеству пайки. Если брак был допущен на производстве, это отразится на функциональности чипов.

Схема пайки

Когда будут определены все сгоревшие диоды, можно приступить к пайке. Плата закрепляется на держателе. После горелку аккуратно подносят к обратной стороне платы. Через 3-5 секунд пайка должна ослабнуть, что даст возможность отсоединить диод. Исправный элемент должен быть закреплён до того, как остынет основание. Для этого на контактную площадку нужно поместить каплю флюса. Чип устанавливается сверху с учётом полярности.

Далее снова нагревают, при этом на кристалл нужно слегка надавить. Диод держать до того момента, пока контактные «ножки» надёжно не закрепятся в припое. Если светодиода нет, на его место можно припаять небольшой отрезок проволоки. Лампа продолжит работать, но светить будет тусклее. Такой вариант подойдёт, только если на плате установлено более 10-ти чипов.

Снятие повреждённого

Снятие повреждённого светодиода.

По такой же схеме отпаиваются диоды из ламп «кукуруза». Это можно сделать, если лампочка небольшого размера и собрана по классической схеме. Вместо паяльника иногда используется фен, но уходит больше времени на работу.

Перед пайкой чипов линейку следует закрепить для предотвращения повреждения токоотводящих дорожек. Олово плавят паяльником, между платой и выводом одновременно продвигается лезвие. Когда будут освобождены все выводы, подложка от платы отсоединяется.

Видеопример: Замена светодиодов в лампе с помощью утюга.

Частые ошибки при пайке

Неопытные мастера часто допускают следующие ошибки:

  • установка коннектора на токоведущие контакты. Это приведёт к плохому соединению;
  • работа паяльником, разогретым до 300 °C и выше. Это спровоцирует сжигание токоведущих нитей;
  • использование агрессивного раствора приведёт к разъеданию контактов;
  • несоблюдение полярности при установке диода на плату.

Чтобы новый диод работал долго и не перегорел, перед установкой на плату с неё следует удалить остатки припоя. Для этого рекомендуется использовать проволочную оплётку от экранированного провода. Допущенные в процессе работы ошибки могут спровоцировать мгновенное перегорание или взрыв лампы при включении.

Ремонт светодиодных ламп - замена светодиода в неисправной лампе

Можно ли отремонтировать покупные светодиодные лампы? Вопрос этот, с учетом дороговизны ламп, достаточно актуальный, по этому поводу на интернет-форумах написано уже немало. Чаще всего обсуждаются вопросы ремонта ламп, купленных на Алиэкспресс.

В статье «Покупки на Алиэкспресс - личный опыт покупок в китайском интернет-магазине» в числе прочего было рассказано и о покупке столь популярных в последнее время светодиодных ламп. Собственно, с этих ламп статья и начиналась: качество этих ламп оставляло желать лучшего, в основном привлекала низкая цена. Но в некоторых местах, где не требуется слишком большой освещенности, эти лампы пришлись как нельзя кстати.

При дальнейшей эксплуатации выяснилось, что эти лампы не столь долговечны, как обещано в рекламе. Если лампы торговой марки «Навигатор» у автора статьи работают безотказно уже почти два года, то лампы, купленные на «Алиэкспресс» выходят из строя через месяц – другой, а то и раньше. Показателен случай, когда замененная вечером лампа, на другой день уже просто не включилась. В итоге две неисправных одинаковых лампы.

Кто-нибудь другой просто выбросил бы негодную лампу, но только не радиолюбитель. Поэтому радиолюбители, сначала пытаются выяснить масштаб катастрофы, и, если есть возможность, устранить дефект. Так было и на этот раз. Не то чтобы китайские лампы слишком дорогие, но если получится восстановить, то другую лампу покупать не придется. Как говорится, экономия налицо.

Внешний вид этих ламп показан на рисунке.

светодиодная лампа

Этот рисунок взят с сайта «Алиэкспресс». Видимо, продавцы предполагали, что такие лампы будет кто-то разбирать и ремонтировать, причем, ремонт, как говорится, не за горами. Более крупно плата показана на рисунке ниже. Из надписи на плате нетрудно понять, что лампа собрана из 34 светодиодов типоразмера SMD2835 (2,8*3,5 мм).

светодиоды в лампе

Разборка лампы показала, что внутри находится небольшая плата источника питания. На фото видны только конденсаторы, все остальные детали выполнены SMD монтажом и находятся на обратной стороне платы.

разобранная светодиодная лампа

Схема, собранная на плате, показана на рисунке ниже. Проще придумать невозможно: обычный бестрансформаторный блок питания с гасящим конденсатором.

схема светодиодной лампы

Назначение деталей понятно: резисторы R1, R3 разряжают конденсаторы после отключения от сети. Делается это для того, чтобы не щипало током при касании руками этих конденсаторов. В отношении конденсатора C1 все понятно. Если вывернуть лампу из патрона, то прикосновение к цоколю может быть не очень приятным. Все зависит от того, какой заряд останется на конденсаторе C1.

Заряд на электролитическом конденсаторе может остаться лишь в случае, если оборвется хотя бы один светодиод. Этот заряд можно будет «пощупать» только разобрав лампу. Хотя резистор R3 имеет еще одно назначение.

В случае перегорания светодиодной цепочки (хотя бы одного светодиода) напряжение на электролитическом конденсаторе остается на уровне, не превышающем рабочее напряжение электролитического конденсатора.

На схеме рабочее напряжение электролита 250В. Если предположить, что падение напряжения на одном светодиоде составляет 3В, то на 34-х светодиодах упадет 34*3=102В. Получается что-то вроде параметрического стабилизатора напряжения. Поэтому 250В, теоретически более, чем достаточно.

Подобным образом, видимо, рассуждали и китайские разработчики: встречаются лампы, у которых рабочее напряжение электролитического конденсатора всего 100В. В основном это малогабаритные лампы мощностью 3…5Вт, куда трудно спрятать высоковольтный конденсатор. В показанной на фото лампе, рабочее напряжение электролитического конденсатора 400В. Но резистор R3, скорей всего, лишним не будет.

Резистор R2 предназначен для ограничения тока через светодиоды. Но это только на схеме. На самом деле, на печатной плате внутри лампы его просто нет. Функцию ограничения тока через светодиодную цепочку с успехом выполняет конденсатор C1. Это как вариант схемы. Может быть, другие производители этот резистор все-таки ставят.

Итак, как было написано чуть выше, в наличии оказались сразу две неисправных лампы, у каждой сгорел всего-навсего один светодиод. Причем, видимых дефектов в виде копоти на плате, разрушения или почернения самого светодиода не было. Поэтому неисправный светодиод пришлось отыскивать. Сделать это достаточно просто: при прозвонке цифровым мультиметром светодиоды слабо засвечиваются. Естественно, если щупы мультиметра подключены в прямом направлении.

Было решено пустить одну лампу на запчасти, снять с нее светодиод и перепаять на другую. Попытки отпаять светодиод с помощью термофена не увенчались успехом: светодиод никак не хотел отпаиваться.

Дело в том, что с обратной стороны печатной платы находится алюминиевый радиатор, ведь светодиоды, как и все полупроводниковые приборы, очень не любят высокой температуры. Но даже и без радиатора, процесс отпаивания деталей с печатной платы намного сложнее и драматичней, нежели припаивание на плату новых деталей.

ремонт светодиодной лампы

Начинать ремонт с поиска неисправного светодиода следует в том случае, если лампа погасла совсем и сразу. Если же лампа начинает мигать, или просто слабо светит, то неисправность кроется в блоке питания. Чаще всего это происходит по причине неисправности конденсатора C1.

Самый простой вариант ремонта - заменить конденсатор C1 заведомо исправным. Неисправный электролитический конденсатор почти всегда можно определить на глаз по вспухшему донышку. Именно так ведут себя современные взрывобезопасные электролиты.

После обнаружения неисправного светодиода отпаять его проще всего следующим образом. Первое, что надо сделать, это убрать желтый эластичный светофильтр с помощью тонкой отвертки или иглы. Под ним окажется металлическая поверхность с кристаллом. На эту поверхность положить кусочек припоя и небольшое количество гелеобразного флюса. Хорошо разогретым паяльником мощностью не менее 60…80Вт прогревать этот «бутерброд» до тех пор, пока светодиод не отпаяется от платы.

Несколько лучших результатов можно добиться, если вместо припоя положить легкоплавкий сплав, например, сплав Вуда. Такой сплав в виде небольших лепешечек продается на радиорынках. Смешиваясь с основным припоем, как правило, бессвинцовым, сплав Вуда снижает температуру плавления бессвинцового припоя. Поэтому процесс отпаивания становится более легким и быстрым, вероятность перегреть печатную плату существенно снижается.

Еще один способ отпаять неисправный светодиод это термопинцет. Но этот инструмент есть не у всех, да и покупать его ради одноразового применения вряд ли стоит. Поэтому, лучше изготовить П-образное жало, или воспользоваться самодельным жалом, показанным на рисунке ниже.

самодельное жало

После того, как неисправный светодиод отпаян, остается заменить его на новый. Светодиоды типоразмеров 2835 или 5730 можно заказать там же, где были куплены лампы, на Алиэкспресс. Стоят они там совсем недорого, порядка 250 рублей за сто штук.

светодиоды с алиэкспресс

Судя по цене, это не самые лучшие светодиоды, но лампы были все-таки отремонтированы, и свечение этих светодиодов ничуть не хуже, чем тех, что были изначально.

Припаять новый светодиод на плату особого труда не составит. Это можно сделать обычным паяльником. Остатки старого бессвинцового припоя с платы следует удалить. Лучше всего это сделать с помощью проволочной оплетки с экранированного провода.

Оплетку надо пропитать флюсом, в простейшем случае канифолью. Затем хорошо нагретым паяльником через оплетку провести по контактным площадкам, припой впитается в оплетку. После чего облудить контакты платы припоем ПОС 61 или подобным.

Теперь осталось только припаять установленный на контактные площадки светодиод. Контакты светодиода обязательно покрыть слоем флюса, лучше гелеобразного. После этого достаточно коснуться паяльником торцов светодиода, чтобы расплавить оставшийся на контактах платы припой. Пайка происходит настолько быстро, что палец, придерживающий светодиод на плате не ощущает никакого повышения температуры.

Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь

На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.

Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.

Всё описанное ниже справедливо и для светильников и для ламп.

Содержание статьи

Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер

В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:

1. Отсутствие стабилизации по напряжению или току.

2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.

Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.

Схема светодиодной лампы с гасящим конденсатором:

А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» - это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:

Импульсные драйвера для светодиодов

В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.

Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.

Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:

1. Бестрансформаторный, соответственно без гальванической развязки.

2. Трансформаторный – с гальванической развязкой.

Гальваническая развязка – это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.

Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.

Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.

Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.

В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.

Во втором – выгорит предохранитель или дорожка печатной платы.

Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.

Защита светодиодных ламп: схемы и способы

Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:

1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.

2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.

3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.

Варистор для защиты ламп и другой бытовой техники

Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.

Внешний вид варисторов

Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;

Um - максимально допустимое действующее переменное напряжение (среднеквадратичное);

Um= — максимально допустимое постоянное напряжение;

Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.

Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.

Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.

Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.

Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим – защита не будет эффективной.

Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые УЗИП.

Вот схема его подключения для трёхфазной сети, для однофазной – аналогично.

Эти схемы с использованием дифавтомата и защитой от высокого потенциала на одном или двух проводах однофазной цепи не менее интересны.

Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.

Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.

В этом видео ролике автор интересно рассказывает о таком способе защиты.

Готовые решения

Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.

На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.

Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.

Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.

Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).

Внутри расположено три детали, одну из которых мы рассмотрели выше:

Вот принципиальная схема. Вы можете её повторить.

Заключение

Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.

Как сделать ремонт драйверов светодиодных ламп

Светодиоды экономичны и долговечны. Но люстра или фонарь часто перестают гореть, хотя все элементы целы. Чтобы восстановить работоспособность различных устройств, необходим ремонт драйвера светодиодного светильника. В большинстве случаев он и является основной причиной неисправности.

Ремонт драйвера (LED) лампы

Иногда источник света отказывается работать в самый неподходящий момент. Это может произойти из-за его неправильной эксплуатации или по вине производителя (так часто бывает с китайской низкокачественной продукцией).

Самый простой драйвер для светодиодной лампы 220 В часто выполняют на обычных элементах (диодах, резисторах и т. д.). В этой схеме один или несколько светодиодов сразу выходят из строя при пробое конденсатора или одного из диодов моста. Поэтому сначала проверяют эти радиодетали.

Вместо светодиодов временно подключают обычную лампочку на 15-20 ватт (например, от холодильника). Если все детали кроме светодиода целы, она слабо горит.

Второй вариант представляет собой выпрямитель с делителем напряжения, импульсным стабилизатором на микросхеме и разделительным трансформатором. При неисправности люстры проверяют последовательно все элементы. Схема может отличаться от приведенной, но алгоритм поиска такой же.

Схема драйвера светодиодной лампы

Схема драйвера светодиодной лампы
  1. Сначала проверяют, поступает ли на светодиодные матрицы напряжение. Если оно есть, ищут неисправные LED детали и меняют их. Если с напряжением все в порядке, проверяют диоды моста и входные конденсаторы.
  2. Если они тоже целы, измеряют напряжение питания микросхемы (4-я ножка). При его отличии от 15-17 В этот элемент скорее всего неисправен, его следует заменить.
  3. Если микросхема целая и на ее 5 и 6-й ножках есть импульсы (проверяют осциллографом), то «виноваты» трансформатор и его цепи – конденсатор или диоды, подключенные к нему.

Замена электролитических конденсаторов в драйвере для светодиодных светильников.

Многие люди приобретают длинные цепочки светодиодов, укрепленных на гибких подложках. Это LED ленты.

Есть два варианта таких источников:

  • только LED приборы без дополнительных деталей;
  • изделия с подпаянными к каждому элементу или цепочкам из 4-6 светодиодов резисторами, которые рассчитаны так, чтобы при напряжении 12-36 В и номинальном токе осветительные элементы не сгорали.

В обоих случаях часто применяют драйвера, которые уже были рассмотрены выше. Но иногда питание второго варианта LED лент осуществляется с помощью модуля, представляющего собой трансформаторный блок питания.

Cхема источника питания

Cхема простого источника питания.

При ремонте драйвера светодиодного светильника 36 ватт, если ни один светодиод или цепочка не горят, сначала проверяют трансформатор на обрыв. Затем диоды и конденсатор выпрямителя. Детали R1 и C1 в такой схеме портятся очень редко.

Если хоть один или несколько элементов зажглись – напряжение питания поступает. В этом случае проверяют светодиоды и меняют их.

Будет полезно ознакомиться: Ремонт драйвера для светодиодной ленты 12 В 100 Вт.

4 способа ремонта светодиодной ленты

Ремонт драйвера (LED) фонарей

Ремонт переносного источника света зависит от его схемотехнического решения. Если фонарь не горит или светит слабо, сначала проверяют элементы питания и меняют их, если это нужно.

После этого в драйверах с аккумуляторами проверяют тестером или мультиметром детали модуля зарядки: диоды моста, входной конденсатор, резистор и кнопку или переключатель. Если все исправно, проверяют светодиоды. Их подключают к любому источнику питания напряжением 2-3 В через резистор 30-100 Ом.

Рассмотрим четыре типичные схемы фонарей и неисправности, возникающие в них. Первые два работают от аккумуляторов, в них вставлен модуль зарядки от сети 220 В.

Как сделать ремонт драйверов светодиодных ламп

Как сделать ремонт драйверов светодиодных ламп

Схемы аккумуляторного фонарика с вставленным модулем зарядки 220 В.

В первых двух вариантах светодиоды часто перегорают как по вине потребителей, так и из-за неправильного схемотехнического решения. При извлечении фонаря из розетки после зарядки от сети палец иногда соскальзывает и нажимает на кнопку. Если штыри устройства еще не отсоединились от 220 В, возникает бросок напряжения, светодиоды перегорают.

Видео: Как сделать драйвер мощного света.

Во втором варианте при нажатии кнопки аккумулятор подсоединяется к светодиодам напрямую. Это недопустимо, так как они могут выйти из строя при первом же включении.

Ели при проверке выяснилось, что матрицы сгорели – их следует заменить, а фонари доработать. В первом варианте необходимо изменить схему подключения светодиода, показывающего, что аккумулятор заряжается.

Как сделать ремонт драйверов светодиодных ламп

Схема драйвера светодиодного фонарика на аккумуляторе с кнопкой.

Во втором варианте вместо кнопки следует установить переключатель, а затем последовательно с каждым источником света припаять по одному добавочному резистору. Но это не всегда возможно, так как часто в фонарях устанавливают светодиодную матрицу. В таком случае к ней следует припаять один общий резистор, мощность которого зависит от типа применяемых LED элементов.

Как сделать ремонт драйверов светодиодных ламп

Схема светодиодного фонарика на аккумуляторе с переключателем и последовательно добавленным сопротивлением.

Остальные фонари питаются от батарей. В третьем варианте светодиоды могут сгореть при пробое диода VD1. Если это случилось, надо заменить все неисправные детали и установить дополнительный резистор.

Как сделать ремонт драйверов светодиодных ламп

Схема фонарика на батарейках (без добавочного резистора).

Как сделать ремонт драйверов светодиодных ламп

Схема фонарика на батарейках (с добавленным в цепь резистором).

Основные элементы последнего варианта фонаря (микросхема, оптрон и полевой транзистор) проверить сложно. Для этого нужны специальные приборы. Поэтому его лучше не ремонтировать, а вставить в корпус другой драйвер.

Как сделать ремонт драйверов светодиодных ламп


Разборка и ремонт светодиодного фонарика

Ремонт драйвера (LED) светильника

В магазинах можно встретить светодиодные осветительные приборы с регулируемым потоком света. Одна часть таких устройств имеет отдельный пульт. Но почти у всех настольных светильников регулятор ручной, и он встроен в драйвер питания.

Основная схема этих светильников почти ничем не отличается от остальных. Чтобы осуществить ремонт драйвера светодиодной лампы, необходимо действовать по уже указанным алгоритмам.

Рекомендуем к просмотру: Ремонт светодиодного светильника АРМСТРОНГ

Как восстановить светодиодную лампу за 2 минуты при минимальных навыках работы с паяльником и знаниях об электронике

image

Исторически так сложилось, что в моем загородном доме все освещение сделано с помощью светодиодных ламп мощностью 10-11, а в последнее время и 12-13 вт с цоколем Е27. Лампы накаливания на площадь 200 м2 тратили бы слишком много электроэнергии, что не вписывалось бы в концепцию моего энергоэффективного дома с приличным утеплением, твердотопливным дровяным котлом, бесперебойником на автомобильных аккумуляторах и рекуператором. Люминесцентные "энергосберегайки" я невзлюбил с первого взгляда — они часто перегорают, не имеют той энергоэффективности что светодиодные, хрупкие, токсичные при случайном разбивании, мерцают и имеют неприятный спектр.

Покупать дорогие светодиодные лампы лучшего качества или подешевле с сомнительным качеством? Я решил что буду покупать дешевые, по цене до 120 рублей за штуку, что с учетом периодических скидок в сетевых магазинах типа Леруа Мерлен вполне реально, а при заявленном сроке службы и энергоэффективности выглядит неплохим выбором. За несколько лет чего я только не перепробовал — всякие Космос, Camelion, Фотон, Bellight, Эра, Wolta и т.п… Из последних покупок — 13 ваттные лампы Norma стандартного размера по приемлемой цене 100 с небольшим рублей.


Лампа действительно яркая, инструментальных замеров я не проводил, но визуально светит ярче чем 11 и 12 ваттки того же и аналогичных производителей.


25000 часов работы? Ха-ха. Грубо говоря 3 года непрерывной работы? Ни одна лампа у меня столько не светила, перегорают раньше, как ни крути.


3 года гарантии, но 27 лет работы при условии использования 2.5 часа в сутки? Ха-ха-ха. Больше похоже на 3 года работы при использовании 2.5 часа в сутки, если усреднить те сроки службы, на которых перегорали мои лампы, купленные до этого.

Итак, мы имеем достаточно большой ассортимент неплохих по соотношению цена-яркость недорогих светодиодных ламп среднего качества, которые, к сожалению, склонны внезапно перегорать задолго до заявленного конца срока службы. Почему бы не попробовать продлить их жизнь несложным ремонтом?

image

Светодиодная лампа устроена довольно просто. Корпус, состоящий из цоколя, теплоотводящего радиатора в средней части и матового рассеивателя, драйвер (плата с микросхемой, диодным мостиком и несколькими конденсаторами) для обеспечения стабильных параметров питания светодиодов и плата со светодиодами.

Чтобы добраться до внутренностей лампы, нам нужно тонким ножом пройтись по щели между плафоном-рассеивателем и средней частью корпуса лампы, они соединены чем-то типа герметика, который легко разрезать и, поддев плафон кончиком ножа, вытащить его из защелок средней части корпуса. Обратная сборка лампы производится простым защелкиванием плафона на свое место, при необходимости промазав место контакта силиконовым герметиком.


Если хочется оценить состояние конденсаторов, трансформатора и микросхемы драйвера — аналогичным способом подрезаем и поддеваем плату со светодиодами и отделяем ее от средней части корпуса


Причин, по которым светодиодная лампа может перестать гореть, может быть несколько. Это может быть вспухание или короткое замыкание в одном из конденсаторов, перегорание микросхемы на драйвере, потеря контакта драйвера с цоколем (с удивлением обнаружил в лампочке Wolta драйвер не припаянный к цоколю, а опирающийся на него ножками-контактами). Наиболее частой причиной выхода лампочки из строя является перегорание одного из светодиодов на плате.

Ремонт в случае вспухания и выхода из строя конденсаторов, микросхемы, диодного мостика и т.п. я рассматривать не буду, т.к. данная статья посвящена простому двухминутному ремонту лампочки, доступному каждому, кто умеет держать в руках паяльник.

Ремонт, связанный с большими трудозатратами по выпаиванию, тестированию, покупке и замене радиодеталей, представляется мне нецелесообразным по соотношению потраченное время/сэкономленные деньги.

Светодиоды на плате соединены последовательно — по одному или блоками из 2-4 штук. В случае если в блоке один светодиод, как в лампочках стандартного типоразмера, при его перегорании размыкается вся цепь и остальные светодиоды перестают гореть т.к. через них перестает проходить электрический ток.

image

Перегоревший светодиод чаще всего можно определить визуально — он раскрошился или имеет черную точку или потемнение.

Итак, чтобы заставить светодиоды гореть, нам нужно восстановить цепь. Можно пойти по сложному пути — заказать светодиоды такого же номинала по напряжению и силе тока, или использовать как донор одну из лампочек такого же типа — отпаять от нее светодиоды, припаять к ремонтируемой лампе взамен испорченного, но мы уже решили, что наш способ ремонта — для тех, кто не имеет особых навыков работы с мелкими радиодеталями и не сможет воспользоваться столом для нагрева или феном для выпаивания светодиодов с лампы-донора и тем более не сможет припаять микродеталь миллиметрового размера аккуратно на плату при том, что контакты находятся в труднодоступном месте.

Значит нам остается восстановить цепь закорачиванием испорченного светодиода.
Выкрашиваем его отверткой, шилом или ножом, оголяем контакты, капаем на них флюсом — паяльной кислотой, канифолью и т.п. и наносим сверху капельку припоя, который соединит эти контакты и восстановит целостность цепи.

Выполнение этой процедуры займет не больше времени, чем прочитать ее описание.

Есть ли недостатки у данного метода? Очевидно, есть. Например, если у нас в цепи было 18 светодиодов напряжением 9 вольт (суммарное напряжение 162 вольта), то теперь в цепи у нас 17 светодиодов, и на каждый приходится уже не 9, а 9.53 вольта, что, конечно, заставит их гореть немного ярче, но и сократит срок их службы.

Тем не менее, если вы не эксперт в пайке и электронике и не сможете легко найти или выпаять из лампы-донора светодиод на замену сгоревшему, то и такой способ ремонта лампочки можно считать целесообразным, ведь альтернативой обычно является выбрасывание этой лампы. Не думаю что имеет большой смысл везти ее менять по гарантии, т.к. потраченное на это время вряд ли окупит стоимость лампы.

Делаем вечную лампочку

На упаковках светодиодных ламп указывают срок службы 30, 40 или 50 тысяч часов, но многие лампочки не живут и года.

Сегодня я расскажу, как за пять минут без каких либо инструментов модифицировать лампочку так, чтобы её срок службы значительно увеличился.


Прежде всего напомню, что все светодиодные лампочки имеют гарантию от года до семи лет. Если лампочка вышла из строя в течение срока гарантии, её можно обменять в магазине, где она была куплена. Для обмена в больших магазинах, вроде Леруа Мерлен, не потребуется даже чек и упаковка.

Причины выхода из строя ламп в основном две — выгорание светодиодов и выход из строя конденсаторов.

Если снизить мощность лампы на треть, срок жизни светодиодов значительно возрастёт (разумеется, яркость лампы при этом снизится). Этим мы и займёмся.

В самых дешёвых лампах используются очень плохие конденсаторы, которые не живут и года. Такие лампы модифицировать нет смысла — долго они всё равно не проживут.

Для модификации лучше всего подойдут лампы среднего ценового сегмента (есть шанс, что там конденсаторы получше). Мощность чем выше, тем лучше (ведь после её снижения лампа должна светить достаточно ярко). Оптимальны лампы на 15 Вт. Разумеется, лучше брать лампы с импульсным драйвером, у которых есть встроенный стабилизатор и они светят одинаково ярко при любом напряжении сети.

Существует два типа конструкции ламп — традиционная двухплатная (внутри корпуса плата драйвера, над ней круглая плата со светодиодами) и одноплатная (драйвер расположен прямо на плате со светодиодами, а конденсаторы припаяны к этой плате сзади). Для простой и быстрой модификации нужна лампа с одноплатной конструкцией.

Из своих запасов я нашёл лампы, идеально подходящие для переделки — Navigator NLL-A60-15-230-4K-E27 с датой выпуска 0419 (надеюсь у современных ламп такого типа такая же конструкция). Эта лампа имеет реальную мощность 13.66 Вт, даёт 1210 лм света, имеет индекс цветопередачи CRI(Ra) 83, у неё полностью отсутствует пульсация. Лампа оснащена импульсным драйвером. Такие лампы можно найти в продаже по цене от 120 рублей.


Разумеется, можно взять и модель с тёплым светом NLL-A60-15-230-2.7K-E27.
Первым делом снимаем колпак. У этой лампы его можно просто оторвать рукой (потребуется большое усилие). Под колпаком единая плата. На ней нас интересуют резисторы R1 и R2, они задают ток светодиодов.


Резисторы включены параллельно, их номиналы 2.7 Ом и 5.6 Ом. Аккуратно ломаем резистор R2, всеми силами стараясь не сломать всё вокруг резистора.


Вот и всё. Можно надевать колпак обратно.

Мощность лампы снизилась с 13.66 до 8.83 Вт. Световой поток снизился с 1210 до 925 лм. Теперь лампа способна заменить лампу накаливания 85 Вт, что тоже неплохо. У лампы значительно выросла эффективность: было 89 лм/Вт, стало 105 лм/Вт.

Главное, лампа стала гораздо «холоднее».


Температура корпуса непеределанной лампы достигает 67 градусов, у модифицированной всего 52 градуса.


Температуру на включённых светодиодах тепловизор показывает неправильно, но сравнить вполне можно.


Разница в температуре на светодиодах очень большая — 21 градус.


Светодиоды в модифицированной лампе теперь будут работать очень долго, дело за конденсаторами (им, кстати, тоже будет полегче из-за меньшей температуры внутри лампы). Если они не подведут, эта лампочка будет работать десятилетиями.

Читайте также: