Какой ток выдерживает медный провод таблица

Обновлено: 05.05.2024

Сечение кабеля.

Величину тока можно вычислить исходя из паспортной мощности потребителей при помощи формулы: I = Р/220. Зная суммарный ток всех потребителей и беря в учет соотношения допустимой для провода токовой нагрузки (открытой проводки) на сечение кабеля:

  • для медного провода 10 А на мм 2 ,
  • для алюминиевого 8 А на мм 2 , можно вычислить, подойдет ли провод либо нужно взять другой.

При прокладке скрытой силовой проводки (в трубке либо в стене) указанные показатели уменьшаются умножением на поправочный коэффициент 0,8. Обратите внимание на то, что открытая силовая проводка в большинстве случаев изготавливается из провода с сечением минимум 4 мм 2 из расчета достаточной механической прочности.

Указанные выше соотношения просто запомнить и благодаря им вы сможете получать хорошую точность в расчетах. Если такой точности недостаточно, то можно использовать нижеприведенные таблицы.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

В следующей таблице приведены данные по мощности тока и сечения кабельно-проводниковых материалов для расчетов и выбора зашитных средств, кабельно-проводниковых материалов и электрооборудования.

Выбор мощности, тока и сечения проводов и кабелей

Выбор сечения кабелей и проводов является обязательным и очень важным пунктом при монтаже и проектировании схемы любой электрической установки.
Для правильного выбора сечения силового провода необходимо учитывать величину максимально потребляемого нагрузкой тока.

В общем виде порядок выбора сечения силовой линии питания можно определить следующим образом:

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b910

При монтаже капитальных строений для прокладки внутренних силовых сетей допускается использование только кабелей с медными жилами (ПУЭ п. 7.1.34).

Исключением являются кабели, питающие трехфазные потребители без вывода для нулевого рабочего проводника (например асинхронный двигатель с к. з. ротором). В таких кабелях нулевой рабочий проводник может отсутствовать.

Из всего многообразия кабельной продукции, представленной на современном рынке, жестким требованиям электро и пожаробезопасности соответствуют только два типа кабелей: ВВГ и NYM.

Внутренние силовые сети должны быть выполнены кабелем не распространяющим горение, то есть с индексом «НГ» (СП–110–2003 п. 14.5). Кроме того, электропроводки в полостях над подвесными потолками и в пустотах перегородок, должны быть с пониженным дымовыделением, на что указывает индекс «LS».

Общая мощность нагрузки групповой линии определяется как сумма мощностей всех потребителей данной группы. То есть для расчета мощности групповой линии освещения или групповой розеточной линии необходимо просто сложить все мощности потребителей данной группы.

Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220.

1. Для определения сечения вводного силового кабеля необходимо подсчитать суммарную мощность всех планируемых к использованию энергопотребителей и умножить ее на коэффициент 1,5. Еще лучше – на 2, чтобы создать запас прочности.

3. Приведенные цифры справедливы для однофазной открытой прокладки силового кабеля. Если он прокладывается скрыто, сечение увеличивается в полтора раза. При трехфазной проводке мощность потребителей может быть увеличена вдвое, если прокладка открытая, и в 1,5 раза при скрытой прокладке.

4. Для электропроводки розеточных и осветительных групп традиционно используют провода, имеющие сечение 2,5 мм 2 (розетки) и 1,5 мм 2 (освещение). Поскольку многие кухонные приборы, электроинструменты и отопительные приборы являются очень мощными потребителями электроэнергии, их положено запитывать отдельными линиями. Здесь руководствуются следующими цифрами: провод, обладающий сечением 1,5 мм 2 , способен «потянуть» нагрузку в 3 кВт, сечением 2,5 мм 2 – 4,5 кВт, для 4 мм 2 допустимая мощность нагрузки уже 6 кВт, а для 6 мм 2 – 8 кВт.

Зная суммарный ток всех потребителей и учитывая соотношения допустимой для провода токовой нагрузки (открытой проводки) на сечение провода:

При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8.

Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 мм 2 из расчета достаточной механической прочности.

Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами.

В следующей таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов для расчетов и выбора защитных средств, кабельно-проводниковых материалов и электрооборудования.

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9798

Допустимый длительный ток для проводов и шнуров
с резиновой и ПХВ изоляцией с медными жилами

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9794

Сечение жилы Нормальное применение Предельно допустимые значения
(темп-ра жил +65 °С, воздуха +25 °С ) В кабельных коробах В кабельном коробе двух одножильных В кабельном коробе четырех одножильных В кабельном коробе одного трехжильного
Допустимый длительный ток для проводов с резиновой
и ПХВ изоляцией с алюминиевыми жилами

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9795

Допустимый длительный ток для проводов с медными жилами
с резиновой изоляцией в металлических защитных оболочках и кабелей
с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,
найритовой или резиновой оболочке, бронированных и небронированных

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9796

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией
в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91821

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.

Сводная таблица
сечений проводов, тока, мощности и характеристик нагрузки

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9799

Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9800

Рекомендуемое сечение силового кабеля в зависимости от потребляемой мощности:

* величина сечения может корректироваться в зависимости от конкретных условий прокладки кабеля

Мощность нагрузки в зависимости от номинального тока
автоматического выключателя и сечения кабеля

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91331

Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводках

Сечение жил, мм 2

Шнуры для присоединения бытовых электроприемников

Кабели для присоединения переносных и передвижных электроприемников в промышленных установках

Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах

Незащищенные изолированные провода для стационарной электропроводки внутри помещений:

непосредственно по основаниям, на роликах, клицах и тросах

на лотках, в коробах (кроме глухих):

для жил, присоединяемых к винтовым зажимам

для жил, присоединяемых пайкой:

Незащищенные изолированные провода в наружных электропроводках:

по стенам, конструкциям или опорам на изоляторах;

вводы от воздушной линии

под навесами на роликах

Незащищенные и защищенные изолированные провода и кабели в трубах, металлических рукавах и глухих коробах

Кабели и защищенные изолированные провода для стационарной электропроводки (без труб, рукавов и глухих коробов):

для жил, присоединяемых к винтовым зажимам

для жил, присоединяемых пайкой:

Защищенные и незащищенные провода и кабели, прокладываемые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой)

Сечения проводников и защитные меры электробезопасности в электроустановках до 1000В

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91845


Щелкните мышкой по изображению чтобы увеличить.

Таблица выбора сечения кабеля для оповещателей СОУЭ

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9379

Выбор сечения жилы кабельной линии СОУЭ для рупорных громкоговорителей

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9828

Выбор сечения кабеля для речевого оповещения

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b92598

Применение огнестойких кабелей в системах АПЗ

Благодаря своим частотным характеристикам огнестойкте кабели марок КПСЭнг-FRLS КПСЭнг-FRHF КПСЭСнг-FRLS КПСЭСнг-FRHF могут быть использованы в качестве:

  • шлейфов для адресно-аналоговых систем пожарной сигнализации;
  • кабелей приёма-передачи данных между приборами контрольными пожарными пожарной сигнализации и приборами управления системы противопожарной защиты;
  • интерфейсного кабеля систем оповещения и управления эвакуацией (СОУЭ);
  • кабеля управления систем автоматического пожаротушения;
  • кабеля управления систем противодымной защиты;
  • интерфейсного кабеля других систем противопожарной защиты.

В качестве справочной информации ниже приведены значения волновых сопротивлений и частотные характеристики различных марко-размеров огнестойких кабелей.

Таблица 1
№ п.п. Марка кабеля Волновое сопротивление, Ом
31,0 кГц 1000 кГц
1 КПСЭнг – FRLS 1х2х0.5
КПСЭнг – FRHF 1х2х0.5
120±20 100±15
2 КПСЭнг – FRLS 1х2х0.75
КПСЭнг – FRHF 1х2х0.75
110±15 90±10
3 КПСЭнг – FRLS 1х2х1.0
КПСЭнг – FRHF 1х2х1.0
100±15 80±10
4 КПСЭнг – FRLS 1х2х1.5
КПСЭнг – FRHF 1х2х1.5
90±10 70±10
5 КПСЭнг – FRLS 1х2х2.5
КПСЭнг – FRHF 1х2х2.5
80±10 60±5
Таблица 2
Марка кабеля Коэффициент затухания, дБ/100м
1 кГц 31 кГц 1 МГц 10 МГц 100 МГц
КПСЭнг – FRLS 1х2х0.5
КПСЭнг – FRHF 1х2х0.5
0,12 0,39 2,3 5,8 21,4
КПСЭнг – FRLS 1х2х0.75
КПСЭнг – FRHF 1х2х0.75
0,09 0,28 2,2 5,1 18,9
КПСЭнг – FRLS 1х2х1.0
КПСЭнг – FRHF 1х2х1.0
0,08 0,24 2,1 4,9 18,0
КПСЭнг – FRLS 1х2х1.5
КПСЭнг – FRHF 1х2х1.5
0,07 0,22 2,0 4,4 17,5
КПСЭнг – FRLS 1х2х2.5
КПСЭнг – FRHF 1х2х2.5
0,05 0,20 2,0 4,4 17,5

Общая сравнительная характеристика кабелей для локальной сети

*- Передача данных на расстояния, превышающие стандарты, возможна при использовании качественных комплектующих.

Выбор кабелей для систем видеонаблюдения

Чаще всего видеосигналы передаются между устройствами по коаксиальному кабелю. Коаксиальный кабель – это не только самый распространенный, но и самый дешевый, самый надежный, самый удобный и самый простой способ передачи электронных изображений в системах телевизионного наблюдения (СТН).

Коаксиальный кабель выпускается многими изготовителями с самыми разнообразными размерами, формами, цветами, характеристиками и параметрами. Чаще всего рекомендуют использовать кабели типа RG59/U, однако фактически это семейство включает кабели с самыми разнообразными электрическими характеристиками. В системах телевизионного наблюдения и в других областях, где применяются телекамеры и видеоустройства, также широко используются похожие на RG59/U кабели RG6/U и RG11/U.

Хотя все эти группы кабелей во многом похожи друг на друга, у каждого кабеля есть свои собственные физические и электрические характеристики, которые необходимо принимать во внимание.

Все три упомянутые группы кабелей относятся к одному и тому же общему семейству коаксиальных кабелей. Буквы RG означают «radio guide» (радиочастотный волновод), а числа обозначают различные виды кабеля. Хотя у каждого кабеля есть свой номер, свои характеристики и размеры, в принципе все эти кабели устроены и работают одинаково.

Устройство коаксиального кабеля

Наиболее распространенные кабели RG59/U, RG6/U и RG11/U имеют круглое сечение. В любом кабеле есть центральная жила, покрытая диэлектрическим изоляционным материалом, который, в свою очередь, покрыт токопроводящей оплеткой или экраном с целью защиты от электромагнитных помех (ЭМП). Наружное защитное покрытие поверх оплетки (экрана) называется оболочкой кабеля.

Два проводника коаксиального кабеля разделены непроводящим диэлектрическим материалом. Внешний проводник (оплетка) экранирует центральный проводник (жилу) от внешних электромагнитных помех. Защитное покрытие поверх оплетки предохраняет проводники от физических повреждений.

Центральная жила

Центральная жила – главное средство передачи видеосигнала. Диаметр центральной жилы обычно находится в пределах от 14 до 22 калибра по американскому сортименту проводов (AWG). Центральная жила либо медная целиком, либо стальная с медным покрытием (сталь, плакированная медью), в последнем случае жилу также называют неизолированным омедненным проводом (BCW, Bare Copper Weld). Центральная жила кабеля для систем СТН должна быть медной. Кабели, центральная жила которых не полностью медная, а только покрыта медью, имеют намного большее сопротивление контура на частотах видеосигнала, поэтому их нельзяприменять в системах СТН. Чтобы определить тип кабеля, посмотрите на сечение его центральной жилы. Если жила является стальной с медным покрытием, то ее центральная часть будет серебристого цвета, а не медного. От диаметра центральной жилы зависит активное сопротивление кабеля, то есть его сопротивление постоянному току. Чем больше диаметр центральной жилы, тем меньше ее сопротивление. Кабель с центральной жилой большого диаметра (а значит с меньшим сопротивлением) может передавать видеосигнал на большее расстояние с меньшими искажениями, но зато более дорог и менее гибок.

Если условия эксплуатации кабеля таковы, что он может часто изгибаться в вертикальном или горизонтальном направлении, выберите кабель с многожильным центральным проводником, который сделан из большого количества проводов малого диаметра. Многожильный кабель более гибкий по сравнению с одножильным и более стойкий с точки зрения усталости метала при изгибе.

Диэлектрический изоляционный материал

Центральная жила равномерно окружена диэлектрическим изоляционным материалом, обычно это полиуретан или полиэтилен. Толщина слоя этого диэлектрического изолятора одинакова по всей длине коаксиального кабеля, благодаря чему эксплуатационные характеристики кабеля по всей его длине одинаковы. Диэлектрики из пористого или вспененного полиуретана меньше ослабляют видеосигнал, чем диэлектрики из твердого полиэтилена. При расчете потерь по длине для любого кабеля желательны меньшие потери по длине. Кроме того, вспененный диэлектрик придает кабелю большую гибкость, которая облегчает работу монтажников. Но хотя электрические характеристики кабеля с вспененным диэлектрическим материалом более высоки, такой материал может поглощать влагу, которая ухудшает эти характеристики.

Твердый полиэтилен жестче и лучше сохраняет свою форму, чем вспененный полимер, более устойчив к защемлению и сдавливанию, но прокладывать такой жесткий кабель несколько труднее. Кроме того, потери сигнала на единицу длины у него больше, чем у кабеля с вспененным диэлектриком, и это нужно учитывать, если длина кабеля должна быть большой.

Оплетка, или экран

Снаружи диэлектрический материал покрыт медной оплеткой (экраном), которая является вторым (обычно заземленным) проводником сигналов между телекамерой и монитором. Оплетка служит экраном от нежелательных внешних сигналов, или наводок, которые обычно называют электромагнитными помехами (ЭМП) и которые могут неблагоприятно влиять на видеосигнал.

Качество экранирования от электромагнитных помех зависит от содержания меди в оплетке. Коаксиальные кабели рыночного качества содержат неплотную медную оплетку с экранирующим эффектом приблизительно 80%. Такие кабели пригодны для обычных случаев применения, когда электромагнитные помехи малы. Эти кабели хороши в тех случаях, когда они проложены в металлическом кабелепроводе или металлической трубе, которые служат дополнительным экраном.

Если условия эксплуатации не очень хорошо известны и кабель прокладывается не в металлической трубе, которая может служить дополнительной защитой от ЭМП, то лучше выбрать кабель с максимальной защитой от помех или кабель с плотной оплеткой, содержащей больше меди по сравнению с коаксиальными кабелями рыночного качества. Повышение содержания меди обеспечивает лучшее экранирование за счет большего содержания экранирующего материала в более плотной оплетке. Для систем СТН требуются медные проводники.

Кабели, в которых экраном служит алюминиевая фольга или оберточный фольговый материал, не пригодны для систем телевизионного наблюдения (СТН). Такие кабели обычно применяются для передачи радиочастотных сигналов в передающих системах и в системах распределения сигнала с коллективной антенны.

Кабели, в которых экран сделан из алюминия или фольги, могут искажать видеосигналы настолько сильно, что качество изображения упадет ниже уровня, требуемого в системах наблюдения, особенно в том случае, когда длина кабеля велика, поэтому такие кабели не рекомендуется применять в системах СТН.

Внешняя оболочка

Последним компонентом коаксиального кабеля является внешняя оболочка. Для ее изготовления используются различные материалы, но чаще всего поливинилхлорид (ПВХ). Поставляются кабели с оболочкой различных цветов (черные, белые, желтовато-коричневые, серые) – как для наружной установки, так и для установки в помещениях.

Выбор кабеля определяется также следующими двумя факторами: расположение кабеля (внутри помещения или снаружи) и его максимальная длина.

Коаксиальный видеокабель предназначен для передачи сигнала с минимальной потерей от источника с волновым сопротивлением 75 Ом к нагрузке с волновым сопротивлением 75 Ом. Если используется кабель с другим волновым сопротивлением (не 75 Ом), то возникают дополнительные потери и отражения сигналов. Характеристики кабеля определяются рядом факторов (материал центральной жилы, диэлектрический материал, конструкция оплетки и др.), которые следует тщательно учитывать при выборе кабеля для конкретного применения. Кроме того, характеристики передачи сигнала по кабелю зависят от физических условий вокруг кабеля и от метода прокладки кабеля.

Используйте только кабель высокого качества, выбирайте его, внимательно учитывая среду, в которой он будет работать (в помещении или снаружи). Для передачи видеосигналов лучше всего подходит кабель с медной однопроводной жилой, за исключением случая, когда требуется повышенная гибкость кабеля. Если условия эксплуатация таковы, что кабель часто изгибается (например, если кабель подсоединен к сканирующему устройству или камере, которая поворачивается по горизонтали и по вертикали), требуется специальный кабель. Центральный проводник в таком кабеле многожильный (скручен из тонких жил). Проводники кабеля должны быть сделаны из чистой меди. Не применяйте кабель, проводники которого сделаны из стали, плакированной медью, потому что такой кабель плохо передает сигнал на тех частотах, которые используется в системах СТН.

В качестве диэлектрика между центральной жилой и оплеткой лучше всего подходит вспененный полиэтилен. Электрические характеристики вспененного полиэтилена лучше, чем у сплошного (твердого) полиэтилена, но он больше подвержен отрицательному воздействию влаги. Поэтому в условиях повышенной влажности предпочтительнее твердый полиэтилен.

В типовой системе СТН применяются кабели длиной не более 200м, желательно кабели RG59/U. Если внешний диаметр кабеля около 0,25 дюйм. (6,35 мм), то он поставляется в катушках по 500 и 1000 фут. Если нужен более короткий кабель, используйте кабель RG59/U с центральной жилой калибра 22, активное сопротивление которого составляет около 16 Ом на 300 м. Если нужен более длинный кабель, то подойдет кабель с центральной жилой калибра 20, сопротивление которого по постоянному току равно приблизительно 10 Ом на 300м. В любом случае можно легко приобрести кабель, в котором диэлектрическим материалом является полиуретан или полиэтилен. Если требуется кабель длиной от 200 до 1500 фут. (457 м), лучше всего подойдет кабель RG6/U. При тех же электрических характеристиках, что у кабеля RG59/U, его наружный диаметр также примерно равен диаметру кабеля RG59/U. Кабель RG6/U поставляется в катушках длиной 500 фут. (152 м), 1000 фут. (304 м) и 2000 фут.(609 м) и изготавливается из различных диэлектрических материалов и различных материалов для внешней оболочки. Но диаметр центральной жилы кабеля RG6/U больше (калибр 18), поэтому его сопротивление постоянному току меньше, оно равно приблизительно 8 Ом на 1000 фут. (304 м), а это означает, что сигнал по этому кабелю можно передавать на большие расстояния, чем по кабелю RG59/U.

Параметры кабеля RG11/U выше параметров кабеля RG6/U. В то же время электрические характеристики этого кабеля в основном такие же, как у других кабелей. Можно заказать кабель с центральной жилой калибра 14 или 18 с сопротивлением постоянному току 3-8 Ом на 300м). Поскольку этот кабель из всех трех кабелей имеет наибольший диаметр (0,405 дюйм. (10,3 мм)), то работы по его прокладке выполнять труднее. Кабель RG11/U обычно поставляется в катушках по длиной 500 фут. (152 м), 1000 фут. (304 м) и 2000 фут. (609 м). Для применения в особых условиях производители часто изготавливают модификации кабелей RG59/U, RG6/U и RG11/U.

В результате изменений правил пожарной безопасности и техники безопасности в различных странах все большую популярность в качестве материала для диэлектрика и оболочки приобретает фторопласт (тефлон, или Teflon®) и другие огнестойкие материалы. В отличие от ПВХ эти материалы не выделяют ядовитых веществ при пожаре и поэтому считаются более безопасными.

При большом разнообразии видеокабелей для камер можно легко подобрать наиболее подходящий для конкретных условий. После того как определитесь с тем, какой должна быть ваша система, ознакомьтесь с техническими характеристиками оборудования и выполните соответствующие расчеты.

Сигнал ослабляется в каждом коаксиальном кабеле, и это ослабление тем больше, чем кабель длиннее и тоньше. Кроме того, ослабление сигнала увеличивается с ростом частоты передаваемого сигнала. Это одна из типичных проблем охранных систем телевизионного наблюдения (СТН) в целом.

Например, если монитор находится на расстоянии 300м от телекамеры, то сигнал ослабляется примерно на 37%. Самое плохое в этом то, что потери могут быть неочевидными. Поскольку вы не видите потерянную информацию, то можете даже не догадываться о том, что такая информация вообще была. Во многих видеоохранных системах СТН есть кабели длиной по несколько сотен и тысяч метров, и если потери сигналов в них велики, то изображения на мониторах будут серьезно искажены. Если расстояние между камерой и монитором превышает 200м, необходимо предпринять особые меры для обеспечения хорошей передачи видеосигнала.

Оконечная нагрузка кабеля

В системах телевизионного охранного наблюдения сигнал передается от камеры к монитору. Обычно передача идет по коаксиальному кабелю. Правильная оконечная нагрузка кабеля существенно влияет на качество изображения.

Используя номограмму (Рис. 1) можно определить значение напряжения подаваемого на видеокамеру (только для кабелей с медной жилой) задавшись сечением кабеля, максимальным током и удалением от источника питания.
Полученное значение напряжения нужно сравнить с минимально допустимым значением напряжения, при котором камера может стабильно работать.
Если значение меньше допустимого, то необходимо увеличить сечение используемых кабелей или использовать другую схему электропитания.
Номограмма рассчитана на источник электропитания видеокамер постоянным током с напряжением 12В.

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9561

Рис 1. Номограмма для определения напряжения на камере.

Волновое сопротивление (импеданс) коаксиального кабеля находится в диапазоне от 72 до 75 Ом, необходимо, чтобы сигнал передавался по однородной линии в любой точке системы для предотвращения искажения изображения и обеспечения надлежащей передачи сигнала от телекамеры к монитору. Импеданс кабеля должен быть постоянным и равным 75 Ом на всей его длине. Чтобы видеосигнал передавался от одного устройства к другому правильно и с малыми потерями, выходной импеданс телекамеры должен быть равен импедансу (волновому сопротивлению) кабеля, который, в свою очередь, должен быть равен входному импедансу монитора. Оконечная нагрузка любого видеокабеля должна быть равна 75 Ом. Обычно кабель подсоединен к монитору и одно это уже обеспечивает соблюдение указанного выше требования.

Обычно импеданс видеовхода монитора регулируется переключателем, расположенным около сквозных разъемов (вход/ выход), предназначенных для подсоединения дополнительного кабеля к другому устройству. Этот переключатель позволяет включить нагрузку величиной 75 Ом, если монитор является конечной точкой передачи сигнала, или включить высокоомную нагрузку (Hi-Z) и передать сигнал на второй монитор. Ознакомьтесь с техническими характеристиками оборудования и инструкциями к нему, чтобы определить требуемую оконечную нагрузку. Если оконечная нагрузка будет выбрана неверно, изображение обычно бывает слишком контрастным и слегка зернистым. Иногда изображение двоится, бывают и другие искажения.

Для систем видеонаблюдения промышленностью выпускаются несколько типов комбинированных кабелей, специально предназначенных для передачи видеосигнала с одновременным подключением питания видеокамер или сигналов управления, а также микрофонных устройств (ККСЭВ, ККСЭВГ, ККСЭПГ).

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9227

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9228

Более подробную информацию по выбору кабеля для СВН читайте здесь (Выбор видеокабеля для СВН),
а также здесь (Коаксиальный кабель в системах видеонаблюдения).

Таблица расчета нагрузки медных проводов

Электросеть является потенциальным источником возможного возникновения пожара. Чтобы предупредить опасность, нужно внимательно отнестись к ее монтажу. Проводка внутри помещения должна проводиться строго по установленным правилам и требованиям. Для того чтобы легче было ориентироваться при выборе материала для монтажа, была разработана таблицу сечения кабелей по мощности, в которой указаны все возможные нюансы подсчетов напряжения по устанавливаемой сети.

Что такое сечение провода, и как его рассчитать?

Сечение кабеля – это площадь жилки, полученная во время разрезания провода. В процессе монтажа необходимо внимательно отнестись к сечению провода, благодаря этому можно предотвратить возгорание в проводке. Происходит это потому, что при соотношении низкого сечения и высокой нагрузки происходит нагрев провода, из-за чего изоляция начинает плавиться, а вскоре и воспламеняется.

Провода с большим сечением безопасны, поскольку выдерживают большие нагрузки, но по своей стоимости иногда несут неоправданные финансовые затраты. Правильно будет проводить электросеть в доме из расчета планируемого подключения приборов и техники, выбрав для этого оптимальное сечение. Все правила расчетов смотрите в ПУЭ (номера таблицы 1, 3, 4).

Подбирается сечение по следующим параметрам:

  • сила тока, измеряемая в Амперах;
  • мощность, указывается в киловаттах;
  • тип материалов, используемых в проводке, алюминиевая или медная жилка;
  • количество подводимых фаз.

Как выбрать сечение по мощности?

Сечение выбирают в первую очередь, рассчитав его по мощности. Для этого ведется подсчет всех приборов, которые будут использоваться в доме. Мощность бытовой техники можно увидеть на самом приборе. К сумме прибавляется от двух до трех киловатт, учитывая будущие покупки электротоваров.

Внутри дома лучше всего использовать исключительно медную проводку, поскольку она лучше проводит ток, при этом гибкая и имеет большой срок эксплуатации в отличие от алюминиевых жилок. Единственный недостаток – высокая стоимость материала.

В таблице «Правил установки электрооборудования» указывается сечение жилки внутридомовой проводки, изготовленной из меди.

Рассмотрев указанные примеры, можно увидеть, что в данном случае расчеты проводятся, исходя из показателей мощности и силы тока.

Таблица сечения проводов из алюминия составляются по другому принципу. Поскольку сила тока в такой проводке значительно меняется, то нужно учитывать следующие показатели:

  • длину используемого кабеля;
  • сечение его жилок;
  • сопротивление, которое способен оказывать материал провода;
  • какую температуру нагрева может выдерживать кабель.

Таким образом в таблице указывается, в каком соотношении будут сила тока и сечение жилки. Подробнее можно посмотреть таблицу ниже.

Как рассчитать сечение по мощности и длине кабеля

При подведении подсчетов нужно помнить, что при сопротивлении материала часть тока теряется. Поэтому длина кабеля значительно влияет на потерю напряжения. Подобное явление возникает на больших участках электросети, длина проводки которого измеряется в километрах. В быту этот показатель довольно низкий.

Чтобы правильно вычислить сечение жилок, можно воспользоваться следующими формулами:

Для вычисления силы тока понадобится произвести расчет: I = Р / (U cos ф)

  • I – показатель, который необходимо вычислить;
  • Р – мощность приборов, которые будут использоваться в быту;
  • U – напряжение, что поступит в сеть;
  • cos ф – показатель, который означает подключаемую электротехнику.

Чтобы определить сечение провода, рекомендуется воспользоваться следующей формулой: Rо=р L / S

  • Rо – показатель сопротивления материала проводника;
  • Р – показатель сопротивления материала, используемого для проводки;
  • L – общая длина кабеля, используемого для проведения электросети в доме;
  • S – площадь жилки на сечении

Прокладывая электросеть по помещению, необходимо принимать во внимание все ее особенности и количество узлов.

Какая проводка будет использоваться: закрытая или открытая?

Рассчитывая, какая нагрузка будет поступать на проведенную проводку, клиент должен определиться с тем, как она будет проходить по помещению, снаружи стен или будет закрыта штукатуркой.

Если помещение, в котором будет укладываться проводка, изготовлено из кирпича или бетона, то кабель рекомендуется положить в специальные канавки и закрыть штукатуркой. В домах, построенных из дерева, проводка должна проходить по обработанной поверхности, а в качестве защитного кожуха используют специальные каналы для электрокабеля или гофрированную трубу. Кроме того, в первом случае электрики рекомендуют использовать кабеля электропровода плоской формы, для открытого типа – форма кабеля должна быть круглой.

Какую максимальную нагрузку выдержит провод с сечениями 1,5 мм²/2,5 мм²/4 мм²

Сечение проводников – не пустой звук, от него зависит очень многое, включая безопасность всего дома. Нельзя подключать электроприборы к первому попавшемуся кабелю. Если проводник будет неподходящего диаметра, возникнет перегрев проводки, оплавление изоляции, короткое замыкание и, в худшем случае, – пожар.

Какую максимальную нагрузку выдержит провод с сечениями 1,5 мм²/2,5 мм²/4 мм²

Предельно допустимая мощность для 1,5-, 2,5-, и 4-миллиметровых кабелей

Для точного определения рабочей нагрузки кабеля можно прибегнуть к следующему правилу: миллиметровый медный провод выдерживает порядка 10 Ампер тока. Теперь нужно перевести эти данные в амперы и киловатты.

10 Ампер приблизительно равно 2 кВт. Получается, что 1,5-миллиметровый кабель выдержит около 3,5 кВт. Аналогично рассчитываем рабочую мощность других проводников.

Какую максимальную нагрузку выдержит провод с сечениями 1,5 мм²/2,5 мм²/4 мм²

Также помните, что 3-фазная сеть пропускает через себя 380 В, а потому значение тока и мощность будут другими. Немалое значение имеют материалы кабеля. Проводники из алюминия и меди, даже если они одинакового сечения, выдерживают различные нагрузки (медь является более «выносливой»).

Как рассчитать нагрузку для медных кабелей ?

  • 1,5-миллиметровый проводник (мм ²) способен выдержать - до 3,3 кВт,
  • 2,5-миллиметровый (мм ²) – до 4,5 кВт,
  • а 4-миллиметровый (мм ²) , соответственно, - до 6 кВт.

Учтите, что приведённые значения подходят только для стандартной сети с 1 фазой и 220 Вольтами.

Для простоты восприятия ниже я привёл таблицу, которую стоит сохранить куда-нибудь и при случае пользоваться.

Таблица для расчета сечения проводника (при скрытой проводке) Таблица для расчета сечения проводника (при скрытой проводке)

Если сеть имеет 3 фазы , то нужно обратиться за помощью к таблице мощностей, которую вы видите выше.

На что обращать внимание при выборе проводников?

Подбирая кабеля, обязательно берите во внимание два главных параметра. Во-первых, речь идёт о нагрузке, которую вы предполагаете передать на кабель. Посчитайте, сколько электроприборов будут «питаться» посредством этого кабеля. Потом подберите автоматический выключатель, чтобы его номинал был приближён к максимально допустимой силе тока проводника.

Если в доме установлены обыкновенные розетки, достаточно 2,5-миллиметрового медного кабеля. В такие розетки можно включать утюг и электрический обогреватель, главное, чтобы общая мощность приборов не превышала 3,5 кВт (около 16 Ампер).

Какую максимальную нагрузку выдержит провод с сечениями 1,5 мм²/2,5 мм²/4 мм²
Если розетки предназначаются только для осветительных приборов, хватит и 1,5-миллиметрового кабеля. Самой большой мощностью отличаются электрические плиты. Как правило, для их подключения берут 4- или 6-миллиметровый кабель.

Получается, если вы будете знать предельно допустимую нагрузку проводника, вы запросто поймёте для каких розеток он подойдет, а для каких – нет. Также не забывайте, что значение имеет материал кабеля, способы его прокладки и прочие рабочие нюансы. К выбору проводников нужно подходить со знанием дела!

Благодарю, что дочитали статью до конца! Надеюсь она была вам полезна.

Площадь сечения провода. Таблицы и формулы

В этой статье разберемся с понятием “площадь сечения” и проанализируем справочные данные. Выбору площади поперечного сечения проводов (иначе говоря, толщины) уделяется большое внимание на практике и в теории. Ведь от площади сечения зависит сопротивление 1 метра провода, а значит - максимальный ток, ограниченный температурой нагрева, и падение напряжения на данном участке провода.

Сечение медного провода Сечение медного провода

Расчет сечения провода

Строго говоря, понятие “толщина” для провода используется в разговорной речи, а более научные термины – диаметр и площадь сечения. На практике толщину провода всегда характеризуют площадью сечения.

Рассчитать сечение провода на практике можно очень просто. Зная диаметр (например, измерив его штангенциркулем), можно легко вычислить площадь сечения по формуле

S = π (D/2)² , где

  • S – площадь сечения провода, мм2
  • π – 3,14
  • D – диаметр токопроводящей жилы провода, мм. Его можно измерить, например, штангенциркулем.

Формулу площади сечения провода можно записать в более удобном виде: S = 0,8 D² .

Поправка. Откровенно говоря, 0,8 – округленный коэффициент. Более точная формула: π (1/2)² = π / 4 = 0,785. Спасибо внимательным читателям ;)

Рассмотрим только медный провод , поскольку в 90% в электропроводке и электромонтаже применяется именно он. Преимущества медных проводов перед алюминиевыми – удобство в монтаже, долговечность, меньшая толщина (при том же токе).

Но с ростом диаметра (площади сечения) высокая цена медного провода съедает все его преимущества, поэтому алюминий в основном применяют там, где ток превышает значение 50 Ампер. В данном случае используют кабель с алюминиевой жилой 10 мм2 и толще.

Площадь сечения проводов измеряется в квадратных миллиметрах. Самые распространенные на практике (в бытовой электрике) площади сечения: 0,75, 1,5, 2,5, 4 мм2

Есть и другая единица измерения площади сечения (толщины) провода, применяемая в основном в США, – система AWG . На Дзене Самэлектрик.ру есть таблица сечений проводов по системе AWG и перевод из AWG в мм2.

Рекомендую почитать также мою статью про выбор сечения провода для постоянного тока там много теоретических выкладок и рассуждений о падении напряжения, сопротивлении проводов для разных сечений, и какое сечение выбрать оптимальнее для разных допустимых падений напряжения.

И ещё статья на Дзене – Падение напряжения на трехфазных кабельных линиях большой длины. приведен реальный пример объекта, приводятся формулы и рекомендации, как уменьшить потери. Потери на проводе прямо пропорциональны току и длине. И обратно пропорциональны сопротивлению.

При выборе площади сечения проводов следует руководствоваться тремя основными принципами.

  1. Площадь сечения провода (иначе говоря, его толщина) должна быть достаточной для прохождения через него электрического тока. Достаточной – это означает, что при прохождении максимально возможного в данном случае тока нагрев провода будет допустимым (как правило, не более 60 С)
  2. Сечение провода должно быть достаточным, чтобы падение напряжения на нём не превышало допустимое значение. Это особенно актуально для длинных кабельных линий (десятки и сотни метров) и больших токов.
  3. Толщина провода и его защитная изоляция должна обеспечивать его механическую прочность, а значит надежность.
Например, для питания люстры в гостиной используются лампочки с суммарной потребляемой мощностью 100 Вт (ток чуть более 0,5 А). Вроде бы, вполне достаточно проводов с площадью сечения 0,5 мм2? Но какой электрик в здравом уме будет закладывать такой провод в потолочную плиту? В данном случае как правило применяют 1,5 мм2.

На самом деле, выбор толщины провода зависит от одного параметра – максимальной рабочей температуры. При превышении этой температуры провод и изоляция на нём начнут плавиться и разрушаться. Иначе говоря, максимальный рабочий ток для провода с определенным сечением ограничивается только максимальной его рабочей температурой. И временем, которое сможет проработать провод в таких условиях.

Ниже дана общеизвестная таблица сечения проводов для подбора площади сечения медных проводов в зависимости от тока. Исходные данные – площадь сечения проводника.

Проектные и электромонтажные работы в сетях 0,4-6-10-35 кВ

- электроснабжение объектов энергетики, проектные, электромонтажные и пусконаладочные работы под ключ

ЭнергоДиодСистем


ЭнергоДиодСистем / Полезное / Выбор мощности, тока и сечения проводов и кабелей

Выбор мощности, тока и сечения проводов и кабелей

Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Зная суммарный ток всех потребителей и учитывая соотношения допустимой для провода токовой нагрузки ( открытой проводки) на сечение провода:

  • для медного провода 10 ампер на миллиметр квадратный,
  • для алюминиевого 8 ампер на миллиметр квадратный, можно определить, подойдет ли имеющийся у вас провод или же необходимо использовать другой.

АКЦИЯ! ДО 30 СЕНТЯБРЯ

При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8. Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм из расчета достаточной механической прочности.

Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами.

В следующей таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов, для расчетов и выбора зашитных средств, кабельно-проводниковых материалов и электрооборудования.

Сечение провода по току.

В теории и практике, выбору площади поперечного сечения провода по току (толщине) уделяется особое внимание. В данной статье, анализируя справочные данные, познакомимся с понятием «площадь сечения».

Расчет сечения проводов.

сечения кабеля

В науке не используется понятие «толщина» провода. В литературных источниках используется терминология – диаметр и площадь сечения. Применимо к практике, толщина провода характеризуется площадью сечения.

Довольно легко рассчитывается на практике сечение провода. Площадь сечения вычисляется с помощью формулы, предварительно измерив его диаметр (можно измерить с помощью штангенциркуля):

S = π (D/2)2 ,

  • S – площадь сечения провода, мм
  • D- диаметр токопроводящей жилы провода. Измерить его можно с помощью штангенциркуля.

Более удобный вид формулы площади сечения провода:

Небольшая поправка - является округленным коэффициентом. Точная расчетная формула:

В электропроводке и электромонтаже в 90 % случаях применяется медный провод. Медный провод по сравнению с алюминиевым проводом, имеет ряд преимуществ. Он более удобен в монтаже, при такой же силе токе имеет меньшую толщину, более долговечен. Но чем больше диаметр (площадь сечения), тем выше цена медного провода. Поэтому, несмотря на все преимущества, если сила тока превышает значение 50 Ампер, чаще всего используют алюминиевый провод. В конкретном случае используется провод, имеющий алюминиевую жилу 10 мм и более.

В квадратных миллиметрах измеряют площадь сечения проводов. Наиболее чаще всего на практике (в бытовой электрике), встречаются такие площади сечения: 0,75; 1,5; 2,5; 4 мм .

Существует иная система измерения площади сечения (толщины провода) - система AWG, которая используется, в основном в США. Ниже приведена таблица сечений проводов по системе AWG, а так же перевод из AWG в мм .

Рекомендовано прочитать статью про выбор сечения провода для постоянного тока. В статье приведены теоретические данные и рассуждения о падении напряжения, о сопротивлении проводов для разных сечений. Теоретические данные сориентируют, какое сечение провода по току наиболее оптимально, для разных допустимых падений напряжения. Также на реальном примере объекта, в статье о падении напряжения на трехфазных кабельных линиях большой длины, приведены формулы, а также рекомендации о том, как уменьшить потери. Потери на проводе прямо пропорциональны току и длине провода. И являются обратно пропорциональными сопротивлению.

Выделяют, три основные принципа, при выборе сечения провода.

1. Для прохождения электрического тока, площадь сечения провода (толщина провода), должна быть достаточной. Понятие достаточно означает, что когда проходит максимально возможный, в данном случае, электрический ток, нагрев провода будет допустимый (не более 600С).

2. Достаточное сечение провода, что бы падение напряжения не превышало допустимого значения. В основном это относится к длинным кабельным линиям (десятки, сотни метров) и токам большой величины.

3. Поперечное сечение провода, а также его защитная изоляция, должна обеспечивать механическую прочность и надежность.

Для питания, например люстры, используют в основном лампочки с суммарной потребляемой мощностью 100 Вт (ток чуть более 0,5 А).

Выбирая толщину провода, необходимо ориентироваться на максимальную рабочую температуру. Если температура будет превышена, провод и изоляция на нем будут плавиться и соответственно это приведет к разрушению самого провода. Максимальный рабочий ток для провода с определенным сечением ограничивается только максимально его рабочей температурой. И временем, которое сможет проработать провод в таких условиях.

Далее приведена таблица сечения проводов, при помощи которой в зависимости от силы тока, можно подобрать площадь сечения медных проводов. Исходные данные – площадь сечения проводника.

Читайте также: