Как узнать напряжение светодиодного светильника

Обновлено: 14.05.2024

Важные технические характеристики и параметры светодиодных ламп

Снижение розничных цен на светодиодные лампы привело к резкому росту их продаж. Однако ситуация с выбором качественного товара для многих по-прежнему остаётся тупиковой. Если купить лампочку накаливания было просто, с появлением КЛЛ задача не значительно усложнилась за счет более широкого ассортимента и оттенков излучаемого света. Параметры светодиодных ламп имеют значительно больше пунктов, чем у лампочек предыдущих поколений.

Но не стоит пугаться. Чтобы купить хорошую светодиодную лампу, углублённых познаний товара не понадобится. Достаточно один раз разобраться с основными параметрами, чтобы потом легко ориентироваться среди чисел, указанных на упаковке. Так что же нужно знать покупателю о светодиодных лампах, и на какие технические характеристики обратить внимание перед покупкой?

Основные характеристики

Следуя пословице: «Встречают по одёжке…» достаточно взять в руки коробку с лампочкой, чтобы ознакомиться с её основными техническими характеристиками. Обратить внимание следует не на крупные яркие цифры, а на напечатанное мелким шрифтом описание из 10 и более позиций.

Световой поток

Во времена, когда лампа накаливания была источником света №1, понятие светового потока мало кого интересовало. Яркость свечения определялась номинальной мощностью лампочки. С появлением светодиодов мощность потребления источников света снизилась в разы, а КПД вырос. За счет этого появилась экономия, о которой так часто напоминают рекламные ролики.

график соответствия мощности и светового потока

Световой поток (Ф, лм или lm) – величина, которая указывает на количество световой энергии, отдаваемой осветительным прибором. Опираясь на значение светового потока можно легко подобрать замену существующей лампочке со спиралью. Для этого можно воспользоваться нижеприведенной таблицей соответствия. Наравне со световым потоком часто можно встретить понятие «световая отдача». Её определяют как отношение светового потока к потребляемой мощности и измеряют в лм/Вт. Данная характеристика более полно отражает эффективность источника излучения. Например, светодиодная лампа нейтрального света мощностью 10 Вт излучает световой поток примерно в 900-950 лм. Значит, её светоотдача будет равна 90-95 лм/Вт. Это примерно в 7,5 раз больше, чем у аналога со спиралью в 75 Вт с таким же световым потоком.

Бывает, что после замены лампы накаливания на светодиодную её яркость оказывается ниже заявленной. Первая причина такого явления – установка дешёвых китайских светодиодов. Вторая – заниженная мощность потребления. Эти обе причины говорят о товаре низкого качества.

цветовая температура

Также величина светового потока зависит от цветовой температуры. В случае со светодиодами принято указывать световой поток для нейтрального света (4500°K). Чем выше цветовая температура, тем больше световой поток и наоборот. Разница в светоотдаче между однотипными светодиодными лампами теплого (2700°K) и холодного (5300°K) свечения может достигать 20%.

Мощность

Мощность потребления светодиодной лампы (P, Вт) – вторая по важности техническая характеристика, которая показывает на то, сколько электроэнергии потребляет светодиодная лампа за 1 час. Суммарное энергопотребление складывается из мощности светодиодов и мощности драйвера. Наиболее востребованы в наше время led осветительные приборы мощностью 5-13 Вт, что соответствует 40-100 ваттным лампам с нитью накала.

Качественные драйвера импульсного типа потребляют не более 10% энергии от общей мощности.

В качестве рекламы производители часто пользуются понятием «Эквивалентная мощность», которая выражается в надписи на упаковке наподобие 10 Вт=75 Вт. Это означает, что светодиодную лампу в 10 Вт можно вкрутить вместо обычной «груши» в 75 Вт, не потеряв при этом в яркости. Разнице в 7-8 раз можно верить. Но если на коробке красуется надпись вроде 6 Вт=60 Вт, то зачастую это не более чем рекламный трюк, рассчитанный на рядового покупателя. Это не значит, что изделие плохого качества, но реальная светоотдача будет, скорее всего, совпадать с лампой накаливания не в 60, а гораздо меньше.

Напряжение и частота питания

Напряжение питания (U, В) принято указывать на коробке в виде диапазона, в пределах которого производитель гарантирует нормальную работу изделия. Например, параметр 176–264В свидетельствует о том, что лампочка уверенно справится с любыми перепадами сетевого напряжения без существенной потери яркости.

Как правило, светодиодная лампа со встроенным токовым драйвером имеет широкий диапазон входных напряжений.

Если источник питания не содержит качественного стабилизатора, то перепады напряжения в сети питания будут сильно сказываться на светоотдаче и влиять на качество освещения. В России наибольшее распространение имеют led-лампы с питанием от сети переменного тока 230В частотой 50/60 Гц и от сети постоянного тока 12В.

Тип цоколя

основные виды цоколей

Размер цоколя необходимо знать для того, чтобы подобрать лампочку в соответствии с существующим патроном в светильнике. Основная масса светодиодных ламп выпускается под резьбовой цоколь Е14 и Е27, которые являются стандартом для настенных, настольных и потолочных светильников советского образца. Не редкость светодиодные лампы с цоколем GU4, GU5.3, которые пришли на смену галогенным лампочкам, установленным в точечных светильниках и китайских люстрах с пультом дистанционного управления.

Цветовая температура

Цветовая температура (TC, °K) указывает на оттенок излучаемого света. Применительно к светодиодным лампам белого свечения всю шкалу условно делят на три части: с тёплым, нейтральным и холодным светом. При выборе следует учесть, что тёплые тона (2700-3500°K) успокаивают и располагают к уюту, а холодные (от 5300°K) бодрят и возбуждают нервную систему. В связи с этим для дома рекомендуется использовать тёплого свечения, а на кухне, в ванной и для работы – нейтрального. Светильники на светодиодах с TC≥5300°K пригодны только для выполнения специфической работы и в качестве аварийного освещения.

Угол рассеивания

угол рассеивания

По углу рассеивания можно судить о распространении светового потока в пространстве. Данный показатель зависит от конструкции рассеивателя и расположения светодиодов. Нормой для современных ламп широкого применения является значение ≥210°. Для эффективной работы с мелкими деталями лучше купить лампу с углом рассеивания 120° и установить её в настольный светильник.

Возможность диммирования

Возможность диммирования (управление яркостью освещения) светодиодной лампы подразумевает её корректную работу от светорегулятора (диммера). Диммируемые лампы стоят дороже, так как их электронный блок имеет более сложное устройство. Обычная led-лампочка при подключении к регулятору света не станет работать или будет моргать.

Коэффициент пульсации

формула коэффициента пульсации

Коэффициент пульсации (Кп) не всегда приводится в перечне характеристик, несмотря на то, что имеет первостепенное значение и оказывает влияние на здоровье. Необходимость в измерении данного параметра возникла ввиду наличия в лампе электронного блока и высокого отклика светодиодов. Низкокачественные источники питания не способны идеально сгладить пульсации выходного сигнала, в результате чего светодиоды начинают мерцать с некоторой частотой.

Коэффициент пульсации светодиодных ламп с питанием от сети стабильного постоянного тока равен нулю.

Наиболее качественными принято считать светодиодные лампы с Кп ниже 20%. В моделях с драйвером тока коэффициент пульсаций не превышает 1%. Определить данный параметр на практике несложно с помощью осциллографа. Для этого нужно измерить амплитуду переменной составляющей сигнала на светодиодах и разделить её на напряжение, измеренное на выходе блока питания.

По частоте переменного сигнала в нагрузке можно определить тип применённого драйвера.

Диапазон рабочих температур

Следует внимательно отнестись к данной характеристике, если предполагается эксплуатировать светодиодную лампочку в нестандартных условиях: на улице, в производственных цехах. Некоторые модели способны корректно работать только в узком диапазоне температур.

Индекс цветопередачи

С помощью индекса цветопередачи (CRI или Ra) можно оценить, насколько естественным виден цвет предметов, освещённых светодиодной лампой. Хорошим считается Ra≥70.

Степень защиты от влаги и пыли

степень защиты

Этот параметр выражается в виде обозначения IPXX, где ХХ – две цифры, указывающие на степень защиты от твёрдых предметов и воды. Его можно не обнаружить в перечне характеристик, если лампа предназначена исключительно для использования внутри помещений.

Дополнительные параметры

Срок службы изделия

Срок службы – весьма абстрактная характеристика светодиодной лампы. Дело в том, что под сроком службы производитель понимает общее время работы светодиодов, а не лампы. При этом наработка на отказ остальных деталей схемы остаётся под большим сомнением. Кроме того, на время работы влияет качество сборки корпуса и пайки радиоэлементов. К тому же не один производитель, в связи с долгим сроком службы, не проводит полноценных тестов по деградации светодиодов в лампе. Так что заявленные 30 тыс. часов и более – это теоретический показатель, а не реальный параметр.

Тип колбы

тип колб

Несмотря на то что тип колбы для многих не является критичным техническим параметром, во многих моделях его указывают в первой строчке. Обычно тип и маркировка колбы выражается в цифробуквенном коде.

Масса

Весом изделия редко кто интересуется в момент покупки, но для некоторых облегчённых светильников он имеет значение.

Габариты

Сколько производителей – столько и корпусов, отличающихся внешним видом и габаритами. Например, светодиодные лампы мощностью 10 Вт от разных изготовителей могут отличаться в длину и ширину более чем на 1 см. Выбирая новую led лампу для освещения, не стоит забывать о том, что она должна поместиться в уже имеющийся светильник.

Рынок светодиодной продукции продолжает динамично развиваться, вследствие чего характеристики ламп изменяются и совершенствуются. Надеемся, что в ближайшее время применительно к светодиодным лампам будут выработаны стандарты качества, которые упростят покупателю задачу с выбором. Пока же собственные знания – это главная опора при выборе и покупке.

Проверка светодиодной лампы на работоспособность мультиметром

Поскольку колба LED-лампочки не прозрачная, визуально не получится определить, какие из чипов перегорели. Это касается и остальных элементов. Чтобы проверить светодиодную лампу, используют мультиметр – прибор для измерения сопротивления и тока. Также он понадобится при проверке кабеля на обрыв.

Чтобы выявить неисправность, следует научиться пользоваться мультиметром, узнать принцип его работы, ознакомиться с режимами и правилами подготовки к использованию. Существуют аналоговые и цифровые мультиметры. Специалисты советуют покупать второй вариант из-за более точных показателей при диагностике.

Подготовка мультиметра для проверки

Перед проверкой нужно внимательно осмотреть мультиметр на отсутствие повреждений. Крышка батарейного отсека должна закрываться плотно. Далее стоит проверить щупы и идущие к ним провода. Если необходимо сделать изоляцию, для этого подойдёт изолента или термоусадочная трубка. На щупах не должно быть сколов, в противном случае их стоит обмотать так же.

Перед работой режим нужно переключить на сопротивление 200 Ом. Черный кабель подключается к гнезду «Com», а красный к измеряемым величинам. На экране должна появиться единица. Если показание другое, мультиметр сломан или работает некорректно. Далее щупы скрещиваются между собой, после чего вместо единицы должен появиться 0.

Проверка светодиодной лампы на работоспособность мультиметром

Рис.1 – мультиметр.

Эти показания говорят что тестер работает правильно. Если изображение на дисплее бледное или цифры мигают, скорее всего, батарейки садятся. Для проверки светодиодной лампы необходимо выбрать на тумблере режим «поиск обрыва». Он обозначен пиктограммой чипа.

Этапы проверки LED-лампы 220 В

Чтобы проверить светодиоды в лампе на 220 В тестером, необходимо выполнить следующее:

  • проверить тумблер и установить режим проверки чипов;
  • подключить провода к проверяемому диоду;
  • проверить полярность.

Если всё сделано правильно, показатели на экране изменятся. Ещё один способ диагностики - проверить транзисторы. На участке pnp катод подключается к отверстию «C», а анод к «E».

Прозвонка отдельных светодиодов

Для прозвонки отдельных светодиодов мультиметр следует перевести в режим проверки транзисторов Hfe. После диод вставляется в разъем, как на фото.

Проверка светодиодной лампы на работоспособность мультиметром

Рис.2 – прозвонка чипов через режим Hfe.

Данные контакты являются минусовыми и плюсовыми электродами, заставляющими диод светиться. Важно не перепутать полярность, так как светодиод не загорится. На всякий случай можно поменять местами выводы чипа, чтобы убедиться в его неисправности.

Перед прозвонкой определите, где у диода анод и катод. Мультиметры могут иметь разные характеристики и конструкцию, а гнезда для проверки иногда отличаются. Но каждый имеет все необходимые слоты.

Проверка LED-прожектора

Определите тип светодиода. Если он имеет вид желтого квадрата, проверить его с помощью мультиметра не получится, так как напряжение такого источника иногда превышает 30 Вольт. В данном случае для проверки используется рабочий драйвер с соответствующим напряжением и током.

Проверка светодиодной лампы на работоспособность мультиметром

Рис.3 – прожектор с одним мощным светодиодом.

Если в прожектор установлена плата с большим количеством SMD-чипов, его можно проверить мультиметром.

Рис.4 – прожектор с платой и светодиодами SMD.

Внутри корпуса находится драйвер, прокладки для защиты от влаги и плата с диодами. После разборки действовать нужно также, как и в случае с проверкой LED-лампы.

Проверка светодиодного моста

Засветить мост целиком мультиметром не получится. Иногда можно получить легкое свечение в Hfe. В режиме проверки диодов проверяется каждый из чипов отдельно.

Проверка светодиодной лампы на работоспособность мультиметром

Рис. 5 – токоведущие части ленты.

Если проверяются токоведущие части, тестер следует перевести в режим прозвонки и пройтись по каждому выводу питания на всех концах проверяемой зоны. Таким образом можно отыскать поврежденную часть моста. На фото синей и красной полосой выделены зоны, которые должны прозваниваться от начала ленты и до конца.

Как проверить, не выпаивая диод

Светодиоды, установленные на плату, проверяются с помощью щупа. Но стандартные инструменты могут и не пролезть в разъем для транзистора. Здесь понадобится тонкий проводник. Это могут быть:

  • швейные иглы;
  • часть кабеля или жилки из многожильного провода;
  • канцелярские разогнутые скрепки.

Проводник придется припаять к фольгированному щупу или подсоединить без штекера, получив переходник. Если используется фольгированная пластинка с припаянными кусочками проволоки, необходимо вставить её в соответствующий слот мультиметра и воспользоваться самодельными щупами.

Почему светодиодные лампы выходят из строя

Светодиодом называется полупроводниковое устройство, внешне напоминающее стандартный диод. Они отличаются малым пределом обратного напряжения. Электрический разряд или некорректная настройка схемы могут спровоцировать перегорание чипов. Малоточные яркие диоды, которые служат индикаторами источников питания, чаще всего перегорают из-за нестабильности напряжения в сети.

Советуем посмотреть видео: Как проверить светодиод в светодиодной лампе с помощью мультиметра.

Самые распространенные причины перегорания диодных ламп – это:

  • неправильная сила тока. В характеристиках, прописанных на упаковке, указывается максимальный срок службы. Но это параметр при оптимальном токе около 20 мА. Китайские лампочки редко отличаются качеством, так как производители устанавливают в них дешевые чипы, часто использующиеся для подсветки дисплеев гаджетов. Эти элементы рассчитаны на 5 мА и перегорают быстро;
  • низкое качество диодов. С целью экономии производители нередко устанавливают в лампу чипы, изготовленные по устаревшим технологиям, а именно с прозрачным р-контактом. Этот вариант самый экономичный и применяемый для подсветки экранов смартфонов. При нагревании срок службы таких светодиодов значительно сокращается. Поэтому их нельзя использовать в светильниках;
  • тепловыделение. Иногда лампочка перегорает из-за перегрева. Это может быть спровоцировано плохим сочетанием корпуса со светодиодами. Например, если чип разработан на основе новейших технологий, работать в корпусе чипов прошлых поколений он будет с трудом и быстро перегорит. В большинстве случаев это связано с размером посадочного гнезда.
  • некачественная сборка. Из-за жесткой конкуренции производители пытаются выводить на рынок как можно больше устройств. Поэтому контроль сборки снижается, что становится причиной деградации диодов.
  • неправильное использование. Перегрев лампочки может произойти не только из-за нарушения технологии сборки. Иногда целесообразнее приобретать лампы российских производителей, так как они адаптированы под работу местных сетей и лучше переносят перепады напряжения.

Проверка светодиодной лампы на работоспособность мультиметром

Рис. 6 – низкокачественная диодная лампа.

Светодиодные ленты устанавливать нужно только на алюминиевый профиль. Если лампа постоянно перегорает независимо от производителя, необходима проверка проводки.

Заключение

Мультиметр – один из лучших вариантов проверки работоспособности светодиодной лампы. Единственное, что требуется от мастера, это научится использовать его и настраивать. Неправильная настройка тестера может привести к некорректным результатам.

Способы проверки светодиодной ленты на работоспособность

В последние годы популярность светодиодных лент просто зашкаливает. Встретить их можно везде. Применяют их в осветительных и декоративных целях. Приобрести ленту и блок питания не составляет труда. Проверить и устранить неисправности может каждый, а как это сделать и что понадобится, мы сейчас выясним.

Неисправности и их проверка

Самые распространённые ленты питаются от напряжения сети в 12 вольт, оно является безопасным для человека. Итак, чтобы проверить светодиодную ленту, нам понадобятся: лента, блок питания к ней, тестер и немного времени.

Проверка с помощью мультиметра.

Фото 01. Проверка с помощью мультиметра.

Блок питания

“Для начала - нужно найти начало”

Проверка любой цепи производится по этапам. Начинать рекомендуется с источника питания, так как он в первую очередь влияет на работоспособность. Существует два типа источников питания:

  1. Закрытого типа – имеют четыре провода, два из них – вход, это источник переменного питания от сети 220 В, и выход, тоже два провода. На фото-примере, согласно схеме подсоединения, видно, что слева подсоединяется переменная сеть 220 В, а справа выход постоянного тока 12 В с указанием полярности согласно цвету. Brown (коричневый) – это +, Blue (синий) – это минус. Соблюдайте полярность!

Внешний вид блока питания.

Фото 02. Внешний вид блока питания закрытого типа.

2. Открытого типа – подсоединение осуществляется при помощи зажимов. Такие источники питания аналогично имеют маркировку. В нашем случае контакты 1 и 2 – сеть переменного напряжения 220 В, контакт 3 - земля, 4 и 5 - минус, 6 и 7 - плюс.

Внешний вид блока питания открытого типа.

Фото 02. Внешний вид блока питания открытого типа.

Для проверки питания установите тестер в режим измерения переменного напряжения, убедитесь, что 220 В поступает (клемма 1 и 2), затем переведите в режим измерения постоянного тока и убедитесь, что на выходе (клеммы 4 и 6) получаем необходимые 12 В.

Способы проверки светодиодной ленты на работоспособность

Фото 04. Проверка показывает, что данный БП исправен.

Обратите внимание, что поломка блока питания чаще всего грозит его заменой, так как ремонт может обойтись гораздо дороже.

Проверив исправность блока питания, переходим следующему этапу - проверить светодиодную ленту мультиметром.

Проверка ленты

Существует четыре типа возможных неисправностей:

  • не горит полностью;
  • не горит половина;
  • мигает или мерцает вся лента;
  • мигает или мерцает или не горит отдельная часть (части);

Выше мы рассмотрели какие могут быть неисправности, далее рассмотрим их подробно.

Не горит полностью

Вслед за проверкой блока питания проверьте провода: возможно, они имеют повреждения, и напряжение к ленте не поступает. Проверьте качество соединения провода с лентой, оно может быть выполнено:

    При помощи пайки и тоже может иметь повреждения.

Способы проверки светодиодной ленты на работоспособность

Фото 05. Пайка светодиодной ленты.

Способы проверки светодиодной ленты на работоспособность

Фото 06. Соединительные разъемы.

Устраните следы окиси и все механические повреждения. Не допускайте замыкания контактов. Не старайтесь отремонтировать старые соединения, лучше использовать новые коннекторы – это обезопасит вас и ваше помещение от короткого замыкания. Если все соединения в порядке - проблема в самой ленте.

Лента гибкая, но не забывайте, что в основе её лежит гибкая печатная плата, которая имеет ограничения на изгиб, она может перегнуться и лопнуть. В таком случае плата внутри ленты может иметь повреждения сразу после пайки, в самом начале ленты. Попробуйте подать напряжение с блока питания на следующие контакты. Они расположены немного дальше, на местах разреза ленты. Соблюдайте полярность (+,-). Для этого удобно на провода от блока питания припаять крокодилы, и зажать в них иголки.

Способы проверки светодиодной ленты на работоспособность

Фото 07. Устройство ленты
Не горит половина

Частный случай описанной выше проблемы. Возможен обрыв цепи печатной платы на участке ленты. Необходимо прозвонить и удалить из цепи поврежденный участок. Также его можно определить методом проверки подачи напряжения, на ячейки последовательно одну за другой, на каждый контакт. Соединение выполнить аккуратно. Пользуйтесь соединительными контакторами либо паяльником. Остатки флюса удалите спиртом.

Лента мигает или мерцает

Способы проверки светодиодной ленты на работоспособность

Фото 08. Мерцающая лента.

Причин может быть несколько:

  • поврежден блок питания – в таком случае проверить ленту можно, подсоединив ее к исправному источнику питания. Если проблема решена, замените блок питания на новый;
  • при исправном блоке питания проверьте провода постоянного тока, которые находятся на участке цепи “блок питания - лента”, также обратите внимание на соединения, возможен плохой контакт;
  • при условии что блок питания в норме, контакты тоже — проблема в участке ленты: переломана дорожка печатной платы. Удалите такой участок. Как его определить указано выше.
  • срок службы светодиодов истёк – замените ленту.
Мигают, мерцают или не горят отдельные части

Это тоже распространённая проблема. Происходит от повреждения одного из светодиодов, соединённого последовательно, либо сопротивления, которое впаяно перед ними.

Повышенная яркость ленты также является причиной этой неисправности. В таких случаях лучше всего заменить повреждённый участок ленты. При хороших навыках работы паяльником можно самостоятельно устранить данную неполадку. Далее мы расскажем об этом.

4 способа ремонта светодиодной ленты

Проверка светодиода с помощью тестера

Светодиоды имеют срок службы, и когда-то выходят из строя. Давайте рассмотрим, как проверить светодиод.

Для проверки выпаянного светодиода мультиметром необходимо перевести прибор в режим проверки диодов:

  • анод - положительный электрод, подключается красный щуп тестера;
  • катод – отрицательный электрод, подключается чёрный щуп тестера;
  • на дисплее увидим величину падения напряжения;
  • если изменить полярность - падения напряжения быть не должно, такие результаты говорят нам об исправности светодиода.

Способы проверки светодиодной ленты на работоспособность

Фото 09. Тестер в положении прозвонки светодиода.

Как проверить светодиод на плате

Процедура проверки остается неизменной, единственное, что необходимо – сделать выносные щупы. Если у вас нет специальных переходников для выноса щупов, то в разъем для проверки светодиода отлично становятся швейные иглы. Таким образом, мы просто делаем переходник своими руками.

Способы проверки светодиодной ленты на работоспособность

Фото 10. Заводские сменные насадки на щупы.

Изготовление прозвонки своими руками

Можно сконструировать самодельный прибор, который состоит из двух медицинских игл, проводов и батарейки. На каждую иглу наматываем провод, подсоединяем каждый конец к элементу питания. Не выпаивая светодиод, подкидываем иголки на контакты светодиода и видим, работает он или нет. Помните: любой светодиод питается постоянным напряжением, а потому имеет плюс и минус. Соблюдайте полярность. Ошибка не выводит светодиод из строя, но и не зажигает его. Видео, как сделать прибор я ставлю ниже.

Отличия светодиодной ленты на 220 В от 12 В

В продаже бывают ленты, у которых на одном из концов имеется вилка и небольшой коробок – диодный мост. Это они и есть, ленты на 220 В, что используются в основном для наружных декоративных работ. Кратность среза такой ленты 1 м. Она использует двухполупериодный выпрямитель напряжения, который является уязвимым звеном в цепи. Такие ленты опасны для людей тем, что напряжение сети достигает трехсот вольт, поэтому касаться их настоятельно не рекомендуется.

Напряжение питания светодиодов. Как узнать напряжение


Вычисление напряжения питания светодиода является необходимым шагом для любого проекта электроосвещения, и, к счастью, это сделать просто. Такие измерения необходимы, чтобы рассчитать мощность светодиодов, поскольку нужно знать его ток и напряжение. Мощность светодиода рассчитывается путем умножения тока на напряжение. При этом нужно быть крайне осторожным при работе с электрическими цепями, даже при измерениях небольших величин. В статье подробно рассмотрим вопрос о том, как узнать напряжение, чтобы обеспечить правильную работу светодиодных элементов.

Работа светодиодов

Светодиоды существует в разных цветах, бывают двух и трехцветными, мигающими и меняющими цвет. Чтобы пользователь мог запрограммировать последовательность работы светильника, используются различные решения, которые напрямую зависят от напряжения питания светодиода. Для подсветки светодиода требуется минимальное напряжение (пороговое), при этом яркость будет пропорциональна току. Напряжение на светодиоде немного увеличивается с током, потому что есть внутреннее сопротивление. Когда ток слишком высок, диод нагревается и перегорает. Поэтому ток ограничивают до безопасной величины.

Резистор помещается последовательно, поскольку для решетки диода требуется гораздо более высокое напряжение. Если U обратное, ток не течет, но для высокого U (например, 20 В) возникает внутренняя искра (пробой), которая разрушает диод.

Работа светодиодов

Как и для всех диодов, ток протекает через анод и выходит через катод. На круглых диодах катод имеет более короткий провод, а корпус имеет катодную боковую тарелку.

Зависимость напряжения от типа светильника

Типы светильников

С увеличением количества светодиодов высокой яркости, предназначенных для обеспечения замены ламп для коммерческого и внутреннего освещения, происходит равное, если не большее, распространение решений по электропитанию. С сотнями моделей от десятков производителей становится сложно понять все перестановки входных/выходных напряжений питания светодиода и значений выходного тока/мощности, не говоря уже о механических размерах и многих других функциях для затемнения, дистанционного управления и защиты цепи.

На рынке имеется большое количество различных светодиодов. Их различие определены множеством факторов, в производстве светодиодов. Полупроводниковый макияж является фактором, но технология изготовления и инкапсуляция также играют основную роль в определении характеристик светодиодов. Первые светодиоды были круглыми, в виде моделей C (диаметр 5 мм) и F (диаметр 3 мм). Затем в реализацию поступили прямоугольные диоды и блоки, объединяющие несколько светодиодов (сетей).

Полусферическая форма немного напоминает лупу, которая определяет форму светового луча. Цвет излучающего элемента улучшает диффузию и контрастность. Наиболее распространенные обозначения и форма ЛЭД:

  • A: красный диаметр 3 мм в держателе для CI.
  • B: красный диаметр 5 мм, используемый в передней панели.
  • C: фиолетовый 5 мм.
  • D: двухцветный желтый и зеленый.
  • E: прямоугольный.
  • F: желтый 3 мм.
  • G: белый высокая яркость 5 мм.
  • H: красный 3 мм.
  • K- анод: катод, обозначенный плоской поверхностью во фланце.
  • F: 4/100 мм анодный соединительный провод.
  • C: светоотражающая чашка.
  • L: изогнутая форма, действующая как увеличительное стекло.

Спецификация устройств

Свод различных параметров светодиодов и напряжения питания находится в спецификациях продавца. При выборе светодиодов для конкретных применений необходимо понимать их различие. Существует множество различных спецификаций светодиодов, каждый из которых будет влиять на выбор конкретного вида. Основой спецификаций светодиодов являются цвет, U и сила тока. LEDS имеют тенденцию обеспечивать один цвет.

Цвет, излучаемый светодиодом, определяется с точки зрения его максимальной длины волны (lpk), то есть длины волны, которая имеет максимальную светоотдачу. Обычно вариации процесса дают пиковые изменения длины волны до ± 10 нм. При выборе цветов в спецификации LED стоит помнить, что человеческий глаз наиболее чувствителен к оттенкам или цветовым вариациям вокруг желтой/оранжевой области спектра - от 560 до 600 нм. Это может повлиять на выбор цвета или положения светодиодов, что напрямую связано с электрическими параметрами.

Светодиодный ток и напряжение

Светодиодный ток и напряжение

При работе LED имеют заданное падение U, которое зависит от используемого материала. Напряжение питания светодиодов в лампе также зависит от уровня тока. Светодиоды являются устройствами, управляемыми током, а уровень света является функцией тока, рост его увеличивает выход света. Необходимо обеспечить такую работу устройства, чтобы максимальный ток не превышал допустимый предел, что может привести к чрезмерному рассеиванию тепла внутри самого чипа, уменьшению светового потока и сокращению срока службы. Для большинства LED требуется внешний резистор, ограничивающий ток.

Некоторые светодиоды могут включать последовательный резистор, поэтому указывается, какое напряжение питания светодиодов необходимо. Светодиоды не допускают большого обратного U. Оно никогда не должно превышать его заявленное максимальное значение, которое обычно довольно мало. Если есть вероятность появления обратного U на светодиоде, то лучше встроить защиту в схему, чтобы предотвратить поломку. Обычно это могут быть простые диодные схемы, которые обеспечат адекватную защиту любого светодиода. Не нужно быть профессионалом, чтобы это усвоить.

Источник питания для светодиодов

Источник питания для светодиодов

Светодиоды освещения имеют токовое питание, а их световой поток пропорционален току, протекающему через них. Ток связан с напряжением питания светодиодов в лампе. Несколько диодов, соединенные последовательно, имеют равный ток, протекающий через них. Если они соединены параллельно, каждый светодиод получает одинаковое U, но различные текущие потоки через них из-за дисперсии эффекта на вольт-амперной характеристики. В результате каждый диод излучает другой световой поток.

Поэтому при подборе элементов необходимо знать, какое напряжение питания у светодиодов. Для работы каждого на его клеммах требуется приблизительно 3 вольта. Например, 5-диодная серия требует примерно 15 вольт на клеммах. Чтобы подавать регулируемый ток при достаточном U, LEC использует электронный модуль, называемый драйвером.

Существует два решения:

  1. Внешний драйвер устанавливается снаружи светильника, с безопасным сверхнизким напряжением источника питания.
  2. Внутренний, встроенный в фонарь, т. е. субъединица с электронным модулем, регулирующим ток.

Этот драйвер может питаться от сети 230 В (класс I или класс II) или с безопасным сверхнизким U (класс III), например, при напряжении 24 В. LEC рекомендует второе решение для электроснабжения, поскольку оно дает 5 основных преимуществ.

Преимущества подбора напряжения ЛЭД

Правильный расчет напряжения питания светодиодов в лампе имеет 5 ключевых преимуществ:

  1. Безопасное сверхнизкое U, возможно, независимо от количества светодиодов. Светодиоды должны устанавливаться последовательно, чтобы гарантировать одинаковый уровень тока в каждом из них из одного источника. В результате, чем больше светодиодов, тем выше напряжение на клеммах светодиодов. Если это устройство с внешним драйвером, тогда сверхчувствительное напряжение безопасности должно быть значительно выше.
  2. Интеграция драйвера внутри фонарей позволяет обеспечить полную установку системы безопасным сверхнизким напряжением (SELV), независимо от количества источников света.
  3. Более надежная установка в стандарте проводки для светодиодных ламп, соединенных параллельно. Драйверы обеспечивают дополнительную защиту, особенно от повышения температуры, что гарантирует более длительный срок службы при соблюдении напряжения питания светодиодов для разных типов и тока. Более безопасный ввод в эксплуатацию.
  4. Интеграция питания светодиодов в драйвер позволяет избежать неправильного обращения в полевых условиях и улучшает их способность выдерживать горячее подключение. Если пользователь подключит светильник со светодиодами только к внешнему драйверу, который уже включен, это может вызвать перенапряжение светодиодов при их подключении и, следовательно, их разрушение.
  5. Простое обслуживание. Любые технические проблемы легче видны в светодиодных лампах с источником напряжения.

Рассеяние мощности и тепла

Рассеяние мощности и тепла

Когда падение U на сопротивлении важно, нужно правильно подобрать резистор, способный рассеивать требуемую мощность. Потребление тока в 20 мА может показаться низким, но рассчитанная мощность говорит об обратном. Так, например, для падения напряжения на 30 В резистор должен рассеивать 1400 Ом. Расчет рассеиваемой мощности P = (Ures x Ures) / R,

  • P - значение мощности, рассеиваемой резистором, которая ограничивает ток в светодиоде, Вт;
  • U - напряжение на резисторе (в вольтах);
  • R - значение резистора, Ом.

P = (28 x 28) / 1400 = 0,56 Вт.

Напряжение питания светодиода 1 вт не выдержало бы перегрев в течение длительного времени, да и 2 Вт тоже слишком быстро выходили бы из строя. Для этого случая необходимо параллельно подключить два резистора 2700 Ом / 0,5 Вт (или два резистора 690 Ом / 0,5 Вт в ряд) для равномерного распределения рассеивания тепла.

Тепловой контроль

Поиск оптимальной мощности для системы поможет узнать больше о контроле тепла, который понадобится для надежной работы ЛЭД, поскольку светодиоды выделяют тепло, которое может быть очень опасным для устройства. Слишком много тепла заставит светодиоды производить меньше света, а также сокращают время эксплуатации. Для светодиода с напряжением питания 1 вт мощности рекомендуется искать радиатор с параметрами 3 квадратных дюйма для каждого ватта светодиодов.

В настоящее время светодиодная промышленность растет довольно быстрыми темпами и важно знать разницу в светодиодах. Это общий вопрос, поскольку изделия могут варьироваться от очень дешевых до дорогих. Нужно быть осторожными в покупке дешевых светодиодов, так как они и могут работать отлично, но, как правило, не работают долго и быстро горят из-за плохих параметров. При изготовлении светодиодов производитель указывает в паспортах характеристики со средними значениями. По этой причине покупатели не всегда знают точные характеристики светодиодов по световому потоку, цвету и прямому напряжению.

Определение прямого напряжения

Перед тем, как узнать напряжение питания светодиода, устанавливают соответствующие настройки мультиметра: ток и U. Перед тестированием устанавливают сопротивление на самое высокое значение, чтобы избежать перегорания светодиода. Это можно сделать просто: зажимают выводы мультиметра, регулируют сопротивление до тех пор, пока ток не достигнет 20 мА и фиксируют напряжение и ток. Для того чтобы измерить прямое напряжение светодиодов понадобятся:

  1. Светодиоды для проверки.
  2. Источник U светодиода с параметрами выше, чем светодиодный индикатор постоянного напряжения.
  3. Мультиметр.
  4. Зажимы Alligator, чтобы удержать светодиод на тестовых проводах для определения напряжения питания светодиодов в светильниках.
  5. Провода.
  6. Переменный резистор 500 или 1000 Ом.

Первичный ток синего светодиода составлял 3,356 В при 19,5 мА. Если используются напряжение 3,6 В, значение резистора для использования рассчитывают по формуле R = (3,6 В-3,356 В) / 0,0195 А) = 12,5 Ом. Для измерения светодиодов высокой мощности выполняют ту же процедуру и устанавливают ток, быстро удерживая значение на мультиметре.

Измерение напряжения питания smd светодиодов высокой мощности с прямым током> 350 мА может быть немного сложным, потому что, когда они быстро нагреваются, U резко падает. Это означает, что ток будет выше при заданном U. Если пользователь не успеет, он должен будет остудить светодиод до комнатной температуры, прежде чем снова выполнять измерение. Можно использовать 500 Ом или 1 кОм. Чтобы обеспечить грубую и точную настройку или последовательно подключать переменный резистор более высокого и низкого диапазона.

Альтернативное определение вольтажа

Первым шагом для расчета потребления энергии светодиодами является определение напряжения светодиода. Если нет мультиметра под рукой, можно изучить данные производителя и найти паспортное U светодиодного блока. В качестве альтернативы можно оценить U, основываясь на цвете светодиодов, например, напряжение питания белого светодиода 3,5 В.

После того, как замерено напряжение светодиода, определяют ток. Его можно измерить непосредственно с помощью мультиметра. Данные завода- изготовителя дают приблизительную оценку тока. После этого можно очень быстро и легко вычислить энергопотребление светодиодов. Чтобы рассчитать потребление энергии светодиодом, просто умножают U светодиода (в вольтах) на ток светодиода (в амперах).

Результат, измеренный в ваттах - это мощность, которую используют светодиоды. Например, если светодиод имеет U 3,6 и ток 20 миллиампер, он будет использовать 72 милливатт энергии. В зависимости от размера и масштаба проекта показания напряжения и тока могут измеряться в меньших или больших единицах, чем базовый ток или ватт. Может потребоваться преобразования единиц. При выполнении этих расчетов помнят, что 1000 милливатт равно одному ватту, а 1000 миллиампер равно одному амперу.

Тест светодиода с помощью мультиметра

Тест светодиода с помощью мультиметра

Чтобы протестировать светодиод и узнать, работает ли он и какой выбрать цвет - применяется мультиметр. Он должен иметь диодную тестовую функцию, которая обозначается символом диода. Затем для тестирования закрепляют измерительные шнуры мультиметра на ножках светодиода:

  1. Подключают черный шнур на катоде (-) и красный шнур на аноде (+), если пользователь ошибается - светодиод не светится.
  2. Подают небольшой ток датчикам и если видно, что светодиод слегка светится, то он исправный.
  3. При проверке мультиметра нужно учитывать цвет светодиода. Например, желтый (янтарный) светодиодный тест - пороговое напряжение светодиода 1636 мВ или 1,636 В. Если протестирован белый светодиод или синий светодиод, пороговое напряжение выше 2,5 В или 3 В.

Для проверки диода показатель на дисплее должен находиться в пределах от 400 до 800 мВ в одном направлении и не показывать в обратном направлении. Нормальные светодиоды имеют пороговые U, описанные в таблице ниже, но для того же цвета могут иметь значительные различия. Максимальный ток составляет 50 мА, но рекомендуется не превышает 20 мА. При 1-2 мА диоды уже хорошо светятся. Пороговое U светодиода

Напряжение питания красного светодиода

Если аккумулятор полностью заряжен, то при 3,8 В ток составляет всего 0,7 мА. В последние годы светодиоды достигли значительного прогресса. Существуют сотни моделей, диаметром 3 мм и 5 мм. Есть более мощные диоды диаметром 10 мм или в специальных корпусах, а также диоды для монтажа на печатной плате длиной до 1 мм.

Запуск светодиодов от источника переменного тока

Светодиоды обычно считаются устройствами постоянного тока, работающими от нескольких вольт постоянного тока. В маломощных приложениях с небольшим количеством светодиодов это вполне приемлемый подход, например, в мобильных телефонах, где питание подается от аккумулятора постоянного тока, но другие приложения, например линейная система освещения полос, простирающаяся на 100 м вокруг здания, не может функционировать на такой схеме.

Привод постоянного тока страдает от потерь на расстоянии, что требует использования более высоких U привода с самого начала, а также дополнительных регуляторов, которые теряют электроэнергию. Переменный ток упрощает использование трансформаторов для понижения U до 240 В или 120 В переменного тока от киловольт, используемых в линиях электропередачи, что гораздо более проблематично для постоянного тока. Для запуска любых типов светодиодов напряжением питания из сети (например, 120 В переменного тока) требуется электроника между источником питания и самими устройствами для обеспечения постоянного U (например, 12 В постоянного тока). Важна способность управления несколькими светодиодами.

Lynk Labs разработала технологию, которая позволяет осуществлять питание светодиода от переменного напряжения. Новый подход заключается в разработке AC-светодиодов, которые могут работать непосредственно от источника питания переменного тока. Многие автономные светодиодные светильники просто имеют трансформатор между настенной розеткой и приспособлением для обеспечения требуемого постоянного U.

Ряд компаний разработали светодиодные лампочки, которые ввинчиваются непосредственно в стандартные разъемы, но они неизменно также содержат миниатюрные схемы, которые преобразуют переменный ток в постоянный, прежде чем поступать на светодиоды.

Стандартный красный или оранжевый светодиод имеет пороговое U от 1,6 до 2,1 В, для желтого или зеленого светодиодов напряжение от 2,0 до 2,4 В , а для синего, розового или белого - это напряжение примерно от 3,0 до 3,6 В. В приведенной ниже таблице приведены некоторые типичные значения напряжений. Значения в скобках соответствуют самым близким нормализованным значениям в серии E24.

Характеристики напряжения питания для светодиодов показаны в таблице ниже.

Запуск светодиодов от источника переменного тока

  • STD - стандартный светодиод;
  • HL - светодиодный индикатор высокой яркости;
  • FC - низкого потребления.

Этих данных достаточно, чтобы пользователь самостоятельно мог определить необходимые параметры устройств для светового проекта.

Читайте также: